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1. Introduction

Let M be a compact orientable surface with non-empty boundary and with
X{M) < 0, and let T = nlM. Let C be the free homotopy class of a closed loop on
M and let W = W{C) be a word in a fixed set of generators T which represents C. In
this paper we give an algorithm to decide, starting with W, whether C has a simple
representative, that is a representative without self-intersections. Such a word will be
said to be simple. As an application, we begin a study of simple words in F. Our
results also apply to infinite geodesies on M, corresponding to biinfinite words in F,
where now we ask which finite blocks appear in such a word when the corresponding
infinite homotopy class has a simple representative.

For finite words there are, of course, other such algorithms, see for example [8, 9,
2, 3, 4]. Our algorithm most resembles that in [2] in that it is purely mechanical and
combinatorial. It is simpler than that in [2] but what is more important is that it
reveals the underlying mechanism which determines whether self-intersections occur;
the combinatorics of that mechanism seem quite interesting and non-trivial.

We represent M as U/T where U ^ D is the universal covering space of M, and
where D is the unit disc with the Poincare metric and F is a discrete group of
hyperbolic isometries. Poincare showed in [7] that C contains a simple
representative if and only if the unique smooth geodesic representative C of C is
simple, and that C is simple if and only if for each lift y of C to D the curves in the
infinite family {fy}fer

 a r e pairwise disjoint. Now, to see if geodesies yl5 y2 e {fy} are
disjoint in D it is enough to know whether the ideal endpoints of yx on 3D separate
those of y2. Crucial to our work is a scheme for parametrizing points on 3D by
infinite words in F, first developed by Nielsen in [6]. The idea of this paper is to
show how information on the order of the points 3yl53y2 on 3D is encoded in
Nielsen's 'boundary expansion' (Theorem A) and then to examine consequences.

When dM ± 0 the group F is a free group so that each conjugacy class has a
unique shortest representative which is obtained by cyclic reduction of any word in
the class. However, if dM = 0 the shortest word in the conjugacy class is in general
not unique. If dM = 0 and W e T has a shortest representative which does not
contain any pieces which are half of the defining relator in F, then the problem of
deciding whether W is simple is identical with that on the surface with a disc
removed, that is one simply regards F as if it were a free group. On the other hand,
the exceptional cases when W contains half a relator involve some subtle points
which are not without interest, but are somewhat tangential to the main idea in the
paper. For that reason, we shall omit the case in which dM = 0 .

Here is an outline of this paper. The tools we need are set up in §§2 and 3 where
we prove Theorem A. The algorithm (Theorem B) is given in §4. In §5 we give

Received 11 February, 1983.

The first author was partially supported by N.S.F. grant no. MCS 79-04715.

J. London Math. Soc. (2), 29 (1984), 331-342



3 3 2 JOAN S. BIRMAN AND CAROLINE SERIES

applications. In the. special case of a surface of genus 1 with a single boundary
component the group F is free of rank 2 and so, as will be shown, the set of simple
words in F coincides with the set of all generators of F. This situation was studied in
a recent paper of Cohen, Metzler and Zimmerman [5], and our Theorem C is a
direct generalization of their result, presented here as Theorem 5.1.

The first author acknowledges a travel grant from the Barnard College Faculty
Research Committee.

2. The group F

The problem of whether a word W in the generators of F determines a free
homotopy class on M which has a simple representative is a problem about F, and
M, for which we use the techniques of hyperbolic geometry. We are free to choose,
for each topological surface M, the most convenient group F such that U/F is
homeomorphic to M. Let us define a convenient class of groups.

Draw p = 4g + 2b — 2 symmetrically placed disjoint geodesic arcs in O with their
endpoints on 3 0 , as in Figure 1. Label these C l 5 . . . ,C p in anticlockwise order.
Choose transformations Sj-elsomB, ) = l,. . . ,p/2 which identify these circles in
pairs in such a way that Sj{Cr) = Cp; then CT is the isometric circle of Sj. Let F be the
group generated by s l s . . . , spl2.

Let U be the convex hull in D of the limit set of F. Then for appropriate choice of
sl 5. . . , sp/2 the surface U/T will have genus g ^ 0, and b > 0 boundary components.
For example, if g = 0 we may choose the Sj so that sj(C2b.J.1) = Cj,
1 ^ ; < b— 1 = p/2. For g > 0, b > 0 we could choose Sj{C2g+b+j.y) = Cjt for
1 < ; < 2 # - l and s/C6 g + 2 6_ ;_2) = C, for 2g ^ j ^ 2g + b-\. These particular
choices are illustrated in Figures 1 and 2. The curves representing these generators
on M are shown in Figure 3. The region outside the circles Cj is a fundamental
region for F which we denote by R.

The symbol T will be used to denote the set of generators and their inverses, that
is F = {slf..., sp/2, slt..., sp/2}. If x e F, we shall sometimes write x" 1 and sometimes
x for the inverse of x. The symbol sj, e = ± 1 , will be understood to mean Sj = sfl

pr sj"1. A word in T means a word in the symbols of T. The equivalence class of a
word is the set of all words which represent the same element of the group F. The
symbol T(g, b) will always be understood to mean the specific groups illustrated in
Figures 1 and 2. The letter O denotes the origin in D.. Elements in F are composed
from right to left, that is if elt e2 e F then exe20 means e^e^OJ).

A finite word w = ele2 ... en, ejeT, is said to be reduced if e} =/= e ; + 1 for every
; = 1,..., n — 1 and cyclically reduced if it is reduced and en ± ex. An infinite word
ete2 ... or a biinfinite word ... e^1eoele2 ... is reduced if each of its finite subwords is
reduced.

3. Boundary expansions and cyclic lexicographical ordering

Let F be one of the groups we are considering, and recall that we defined F by
specifying isometric circles for the generators of F. Label the arc cut off on d D by the
isometric circle of eif e{ 6 F, by [ e j . We call these arcs the first order intervals on 3D.
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FIG. 3. M(2, 1)
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For each positive integer m and each reduced word ex ...em in T define the m-th
order interval [ei... em] by

We claim that the set of m-th order intervals is disjoint and that

Since for 2 < r ^ m,

lel...er'] = ex...er-l[er~\ = ex... er.2\_er.ier']

and

by applying (ej ... e ^ j ) " 1 it is enough to see that efcej] <= [e j whenever e,, e,e F
and e,- ^ e,-. Now since e,- ^ e,-, [e7] lies outside the isometric circle of eK and so is
mapped by e( into the isometric circle of e,. Truis^fe,-] c: [e,].

Assume inductively that all the (w —l)-th order intervals are disjoint. Then for
fixed x e F, all the m-th order intervals [xe2 ••• em] with e2 =/= x are disjoint. Since by
the above [xe2 ••£„,] <= [x], and since [x] n [y] = 0 , for distinct x,yeT, the
result follows.

It is not hard to prove, and follows as a special case of 4.9, 4.10 in [8], that if
exe2... is an infinite reduced word in T then

(1) f) [>!... e j = lim ex...em0,
m = l

(2) the set <<!; = lim ex ... em0 : exe2... is an infinite reduced word> is precisely
(̂  m-»oo J

the limit set A of F on 3D. This representation of points in A is unique.

From now on we write ^ = exe2... if ^ = lim ex ... em0 and refer to exe2... as
the boundary expansion of £,. m~>c0

An alphabet is a finite ordered set of distinct symbols. A cyclic alphabet is a
cyclically ordered set of distinct symbols. A cyclic alphabet, say A = {x l 5 . . . , xn},
becomes an alphabet Ax. on choosing one of the symbols Xj€ A as an initial letter.
Thus to the cyclic alphabet A, we associate n distinct alphabets Axx,..., AXn.

Assign to F the cyclic alphabet whose letters are the symbols in the generating set
F arranged in the order in which the first order intervals occur around 3D
anticlockwise. For example, if F = F(0, b) we have

!

{sl,s2, ...,s2g+b_1,sl,s2, ...,s2g-l,s2g+b-l,s2g+b-2,..., s 2 g ) , g f= 0 ,



AN ALGORITHM FOR SIMPLE CURVES ON SURFACES 3 3 5

THEOREM A. Let P, Q be distinct points on 3D with boundary expansions
ele2 ...,/i f2 ••• • Then P precedes Q in anticlockwise order around 3D starting from the
point I (see Figures 1 and 2) if and only if either

(i) ex precedes fx in the alphabet AS{, or

(ii) e{ = fifor each i = 1,..., m and em + 1 precedes fm + l in the alphabet Aim.

Proof. By the definition of boundary expansions we have P e[ex ...em] and
Q e E/i • -/m] f°r e a c n m- ^ ei ^ f\ t n e n P e Cei]> Q e C/i]» anc* so since ASI lists the
first order intervals anticlockwise round 3D starting at the point / we obtain (i).

Suppose now that e, = f for i ^ m and em + 1 ±fm + x. Then P , Q e [ e x . . .em].
Let ^ = {er...em)~\ Then ^ . . . c j = e ' ^ e j , and ^ P e [ e M + 1 ] , ^ f i e C ^ + J .
Moreover e~l[em~\ is an interval on 3D outside [em]. Now the anticlockwise order of
P, () around 50 starting from / is the same as the anticlockwise order of P, Q in
[>! ... em]. This is the same as the anticlockwise order of gP, gQ in g[ex ... em], which
by the above observations may be read off as the same as the anticlockwise order of
Om + i l E/m + i] round 3D starting at [ e j ; that is, the order of em + i,fm + 1 in the
alphabet Aim.

The rule for ordering points on 3D described in Theorem A we shall call the
cyclic lexicographical ordering. Obviously it depends on the choice of T and A.

We now look at the use of boundary expansions to represent geodesies in D.
Suppose that e = . . . e_ 1 e o e 1 . . . is a biinfinite reduced word in the generators.
Consider the two points x, y whose boundary expansions are exe2 ..., e0e_1e_2 ...
respectively. Notice that since x E [ e j , y e [e0] and e0 ^ ex because e is reduced,
certainly x ^ y. Thus we have the following.

(3.1) Each reduced biinfinite word e determines a unique oriented geodesic with
positive endpoint e1e2 ... and negative endpoint eoe_! .... This geodesic we denote
by y(e).

Since by definition of the boundary expansions ele2 ... = lim ex... en0, we have
the following. n"°°

(3.2) If xedD has boundary expansion ele2..., then exx has boundary
expansion e2e3 .... If / e F, / =/= et, then fx has boundary expansion fexe2 ....

As a consequence we obtain the following.

(3.3) Let e = ...e.le0ele2... be reduced. Let <x"(e), n e Z , be the sequence
whose j-th entry is in position j + n in e. Then y(a"e) = (ex. . . erl)~

1y{e).

Finally, let W = ... WWW ... where W is a cyclically reduced word. By (3.2) the
endpoints of y(W) are fixed by W and W""1. Thus y(W) is fixed by W, since
W e T c Isom D. Hence we have the following.

(3.4) The projection of y(W) to M is a closed smooth geodesic with homotopy
class W.
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4. The algorithm

In this section we give our algorithm for deciding whether a cyclically reduced
word or a reduced biinfinite word in T is simple. In the latter case, the procedure
may involve infinitely many tests. As always, we assume that b > 0, and T is any of
the groups described in §2.

Let C be a closed curve on M. Let W be the reduced word representing the image
of C in n^M) and let U be the cyclic reduction of W. By (3.4), y{... UU ...) projects
to a smooth geodesic C on M with homotopy class U. Since W and U are conjugate
in nx(M), C and C are in the same free homotopy class and therefore W is simple if
and only if the same is true of U. Thus it is sufficient to test cyclically reduced words
for simplicity.

If C is an infinite geodesic on M then C lifts to a geodesic in D passing through
the fundamental region R defined in §2.

Let the positive and negative endpoints of this geodesic on 3D be ele2... and
eoe_!. . . respectively. It is clear that these points lie in distinct first order intervals on
3D, and thus that.. . e.1eoei... is a biinfinite reduced word in T. Thus every infinite
geodesic on M corresponds to a biinfinite reduced word in F which may be tested for
simplicity using the algorithm. (The lift of C to a geodesic intersecting R is obviously
not unique. As will be apparent from the proof of Theorem B, the different possible
lifts all correspond to shifts a"{... e_xeoex...) of the same sequence ... e.1eoe1....)

Fix the generating set T to be {s1,..., spl2, slt..., sp/2}. Our cyclic alphabet is the
cyclically ordered set defined in §3, for example if T is one of the groups T{g, b), then
A is A(g, b). A word W = exe2 ... will be said to precede a word W = e\e2 ...,
written W < W, if W precedes W in the cyclic lexicographic ordering of
Theorem A, that is if exe2... precedes e\e'2... in anticlockwise order around 30
from / .

A cut in the reduced biinfinite word W = ... e.le0ele2... e J_1e je j + 1 . . . is a
subdivision of W into a left half and a right half, and will be indicated by the symbol
... ej-2ej_1 | ejeJ+i.... Each cut in W determines two reduced infinite words
W = e}ej+l... and W = ej.lej.2.... We shall sometimes refer to these as the right
and left words at the cut.

THEOREM B (the algorithm).

Part 1, finite words. Let W = exe2 ...er be a finite, non-periodic cyclically
reduced word in T. Let Wj,j = 1,..., r, denote the r cyclic permutations of W and let
Wj1 be the inverse of Wj. Order these 2r words by the cyclic lexicographical ordering
rule so that W'JX <W%<...< W%. Let X = W™, W™ ... W%. Then, thinking ofX as
a word in the free group with free basis Wx,..., WT, the word W is simple if and only ifX
can be cyclically reduced to the empty word.

Part 2, biinfinite words. Let W = ...e1eoele2 ... be a reduced biinfinite word.
Choose cuts in W, say ...ey_2ej.l\eiej+l ... and ... ek_2ek_1 | ekek+1 .... Let
Wj, WJ1, Wk, W^x be the right and left words associated to these cuts. Then W is
simple if and only if for each pair of cuts the pair Wj, Wj1 does not separate Wk, Wk~

l

with respect to the cyclic lexicographical ordering on 3D.

E X A M P L E S . L e t g = 2 , b = 1 , s o t h a t A = s x , s 2 , s 3 , s 4 , s x , s 2 ,
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1. Let W = SJS2S3. The six words which we must order are

W2 = S S

W% = s%sxs2 , W$ =

The ordering gives Wx < W^1 < W3 < W2
l < W2 < W;1 (cf. Figure 4). Since

Wi W;l W3 W~l W2 W;l ~ 0, Wis simple.

Wl = s2s2s3..., Wyl = s3s2s2...,

W2 = s2s3s2 ..., W2 = S2S3S2 ... 5

W3 = s3s2s2..., W;1 = s2s2s3...

and W2 < Wx < Wf1 < W2
l < W^1 < W3. (Note: W2 precedes Wx because s3

precedes s2 in the alphabet A-s; similarly, W ĵ"J precedes W3
 x because s3 precedes s2

FIG. 4.
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in the alphabet AS2). Since no pair W}, WJ1 separates any pair Wk, Wk
l, the word W

is simple. Only three pairs need be checked because W is a repeating word.

3. Let W = ... s]s\.... Introduce the cuts ... st | st ..., ... s2 \ s2.... Since sl,sl

separate s2, s2 in the alphabet ASI, the word W cannot be simple.

Proof of Theorem B. We shall first prove part 2. We then show how it
specializes to part 1 by regarding W as a periodic biinfinite word W = ... WWW....

We are given that W = ... e_2e_1e0e1e2 . . . . By (3.1) W determines a unique
geodesic y(W) in D whose endpoints e, rj on 3D are the limits of the sequence
{exe2 ...en0, eQe.Y... e.nO : n e N}. Since, by (3.3) the geodesies y(o-"(W)), nel,
are all translates of y( W) by T, it is clear that if any two of these geodesies intersect,
then W is not simple. The heart of the argument is to prove the converse of this
statement.

The sequence W determines an edge path in D which consists of arcs joining the
points . . . , e 0 e_ j0 , e 0 0 , O,elO,e1e2O,... in order. We denote this path by the
symbol W(O). More generally /W(O), fe T, denotes the edge path sequence joining
the points • ..,fe0e_10,fe00,fO,felO,fele20,...; its limit points on 3D are
fe,fy, where £, rj are the limit points of the original edge path sequence.

Now, the geodesic y(W) covers a geodesic C on M. If C is not simple then there
exist distinct geodesies which cover C, say the images of y(W) under f,heV, which
intersect transversally in D. By our observations above, these geodesies have ideal
endpoints on 3D which are the images of E, rj under / , h respectively, also they
intersect if and only if fe,frj separate he, hr\ on 3D. On the other hand, fe,frj are
also limits of the edge path sequence /W(O), and similarly he, hr\ are limits of the
edge path sequence JiW(O), and so C is not simple if and only if for some f,heT the
edge paths /W(O), fiW(O) intersect. But then these edge paths have a common
vertex, say kO, ksY. Therefore the image of /W(O), fcW(O) under k~l have the
common vertex, 0 , that is there are edge paths /W(/c"10), /iW(/c"1O) which
intersect at 0. Hence we may assume without loss of generality that f,hsT were
chosen in the first place so that /W(0) , hW(0) intersect at 0.

Now, the vertices of / W ( 0 ) are the points

{fe1e2...ekO,f(e_k...e1eor
10:keN}.

That is, / W ( 0 ) must be the path akW(0) for some keZ. Similarly /iW(O) must be
the path <rjW(0) for some) € Z, that is, the family of geodesies {y(ffnW)}ne2 contains
intersecting members. Thus we have proved that the projection o/y(W) on M is non-
simple if and only if there are integers j , keZ such that the geodesies y ( a j W ) , y(<7kW)
intersect transversely.

Now, the geodesies y(ffjW), y((TkW) intersect transversely in D if and only if
the ideal endpoints of y(<7JW) separate those of y(<rkW) on 3 0 . Since
W = ... e.2e.1eQele2 ..., the ideal endpoints of y(o-'W) have boundary expansion
Wj = ejej+1 ... and WJX = ej_1ej.2.... These are the words associated to a cut at
ej. Hence W is non-simple if and only if the points on 30 which are determined by
Wj, WJX separate those determined by Wk, Wk

l for some), ke Z. By Theorem A
the order of points on O is determined from their boundary expansions by our cyclic
lexicographical ordering rule. Thus the algorithm is valid in the situation of biinfinite
words.
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To prove part 1 suppose that W is periodic. Let W be the word which is the
minimum period of W. It is only necessary to test finitely many pairs <TJ\V, <rkW, and
these are in one to one correspondence with the cyclic permutations of W. We are
then reduced to ordering the 2r words Wj,j = 1,..., r, e = + 1 as in the statement of
the theorem. These determine r geodesies on D, say yi,...,yr, where y,- has endpoints
Wj, WJl with boundary expansions WjWj..., Wjl WJ1.... Figure 4 shows a typical
picture of how the geodesies yl5.. . , yr might arrange themselves in D. The condition
that no pair jj, yk, 1 ^ j ^ k ^ r, intersect is easily seen to be equivalent to the
condition that the word Wl\W%... W% be freely equal to the empty word. This
completes the proof.

REMARK. In Theorem A of [1] the authors prove that the number of blocks of
length n which can occur in a biinfinite simple word is bounded by a polynomial in
n. The proof of this fact in [1] is independent of the work in this paper, although the
result is necessarily a consequence of Theorem B above, since Theorem B gives
necessary and sufficient conditions for a biinfinite word to be simple. It would be
interesting to have a proof of polynomial growth based upon Theorem B.

5. Applications

In this section we study the word forms which can occur when W is a simple
word in T(g,l), g ^ 1. As before, the generating set is T = {sl,...,s2g, s1,...,s2g},

where by our choice the loop around the single boundary component is represented
by

.. S29)(S1S2S3S4 .. . S2g) •

Our work will be seen to generalize a recent result of Cohen, Metzler and
Zimmerman, who in [5] studied basis elements (that is words which are generators)
for the group F(l , 1). Since Si^i are basis elements, and since every automorphism
of F(l , 1) is induced by a homeomorphism of M(l , 1), every basis element of F(l , 1)
is the homotopy class of some simple loop on M(l , 1). Conversely, if C is a simple
loop which does not separate Af(l, 1), then, by classification of surfaces, C is the
image of a standard generator under some homeomorphism of M(l , 1); thus the
homotopy class of C determines a basis element. Finally, since there is only one
homotopy class in F ( l , l ) which is represented by a separating curve, namely
sls2sis2, we have the following restatement of the main result of [5].

THEOREM 5.1 [5]. Up to permutations of the generators which interchange sx and
s2, Si and slt or s2 and s2 a simple word W±x in F( l , 1) is up to cyclic permutations
either st or s1s2s1s2 or has the form

W = sn
1
is2s

n
1
2s2...s1ks2

where {nlt n2,..., nk} £ {n, n+l} for some ne Z + .

REMARK 5.2. If one defines an automorphism $ of F ( l , l ) by (^(sj = s l s

</>(s2) = s"1s2, then (j)(W) has length strictly less than W and Sj occurs with exponent
± 1. As observed in [5] this fact, in conjunction with the Euclidean algorithm, yields
a recursive description which can be used to enumerate all simple words in F(l , 1).
Compare this with Corollary 5.3 and Remark 5.4 below.



340 JOAN S. BIRMAN AND CAROLINE SERIES

We now state our generalization of Theorem 5.1.

THEOREM C. Let W be a reduced biinfinite in the generators ofV(g, 1), g ^ 1.

(1) W is simple if and only if its image under each of the automorphisms xapb ofT
is simple, where p is the cyclic permutation (sl) s2, s3, s4,..., s2g, slt s2, s3, s4,..., s2g)
and x is the involution (sl,s1)(s2, s2)... (s2g, s2g).

(2) W is simple only if at most one of the letters sjt 1 ^ j ^ 2g, appears in W with
exponent n =/= ± 1.

(3) Suppose that some letter Sj appears in W with all exponents ± ± 1 . By (1)
above, we may without loss of generality assume that the generator which appears with
exponent £ ±1 is st. Let nx, n2,..., nk be the set of exponents of s1 in v. Then W is
simple only if there exists an integer n such that

{ K I . N . - . k l } = {n,n + l } .

(4) Let v be a subword o / W which after a permutation of generators as in {I) has

the form

v = sHiluls'^u2...s]kuk,

where s, does not appear in any of the subwords Uj and where |n,| > 1, 1 ^ j f ^ k.

Then W is simple only if

(i) the sequence of exponents +1 in each Uj is alternating;

(ii) the last letter ofu} has the same exponent as the first letter ofuj+l;

(iii) if Hj and nj+i have the same (respectively opposite) signs then Uj has odd
[respectively even) length.

REMARK. If W is finite, we may test for simplicity by applying the theorem to the
biinfinite word ^ = ... WWW.... The example of the simple word
•S1S3S1 s4s?s4 shows that the condition |n,| > 1 for 1 ̂ ; ^ fe in (3) and (4) is
necessary.

Proof (1) Note that the permutation p of the generators is an automorphism
of T(g, 1). This automorphism is induced by the isometry of M{g, 1) which is induced
by an anticlockwise rotation of D of n-\-(2nl4g) about 0. One sees similarly that T is
geometrically induced by rotation through n.

Our algorithm (Theorem B (2)) asserts that W is simple if and only if for every
pair of cuts the endpoint pairs associated to one do not separate the endpoint pairs
associated to the other. The criterion for deciding whether this is the case is the rule
for cyclic lexicographical ordering.

(2) Suppose that W has the form ... sf... sf... for some pair 1 ̂  i =£ j ^ 2g,
with e, 5 = ± 1, that is that two distinct letters s,, Sj each appear in W with exponent
=£ ± 1. Introducing cuts ... s-1 s-... sj | s j . . . we obtain right and left words s,-..., sf...,
Sj;..., Sj.... Assume without loss of generality that s, precedes Sj in the alphabet ASi.
Then since st < Sj < s,- < s,- we see that W is not simple.

(4i) Suppose that sx appears with exponent n ^ 1 and that W also contains
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a subword s^j, £ = ± 1 , 2^i^j^2g. Introduce the cuts
W = ... sf11 sf'... s-1 s]. . . (as will be seen it will not matter whether s-sj'precedes or
follows si). Since s^Sx separate sj, sf6 for every admissible choice of i,j, e it follows
that W is not simple. This proves that the exponents in the words Uj of (4i) must
alternate.

(4ii) Suppose that W contains a subword of the form v = sisisj*,
£ = ± 1, i ± 1,; ̂  1. Without loss of generality we may assume that n > 1 (if not,
permute the generators so that each s< is interchanged with s{). Choosing cuts
W = ...s^Si | s "" x |sj"£. . . , we obtain right and left words s""1 ..., s^sp. . . from the
first cut and s j " 8 . . . , ^ ^ ... from the second.

If £ = 1, cyclic lexicographical ordering gives s""1 < s1sl < SySi < Sj. If
e = —1 we obtain s""1 < Sj < sxSi < s1s1, so that W cannot be simple.

(3) Suppose that W contains subblocks ...s^sis1}... and ... s{s™sq..., with
||m| —|n|| ^ 2. We may without loss of generality assume that m and n are both
positive, since this depends only on the orientation of arcs on the geodesic
determined by W, but the fact that two arcs do or do not intersect is independent of
their orientation. We may also assume that m > n, by changing names if necessary.
If £ = 1 cut at.. . SiSy | s"~isj... to get the right and left words s"l~

1sj..., ^s,- . . . and at
. . .S i | s? . . . to get the right and left words s" ..., s ^ . . . . Cyclic lexicographical
ordering gives s" < s1~lSj < s~l < ^ s , which is impossible for simple W. If £ = - 1
we choose our cuts at . . .s.s""1 | st s,-... and .. .s" \s\.... Now the ordering gives
s^j < SySi < rl~

lsi < s\ (because in the alphabet Ah the letter Sj precedes s j , and
so again W is not simple.

(4iii) Suppose that W = ... s - s ^ ... s^s^+1sf..., e, 5 = ± 1 . We may without
loss of generality assume that |H,+ II ^ |n,-| (if not, replace W by its 'inverse' as in (3)).
Introducing the permutation (sl5 sx)... {s2g, s2g) if necessary, we may further assume
that Hj ^ 2. We claim that if n} and nj+ x have the same sign, then <5 = e, while if they
have opposite signs then S = — e. For, suppose that nj+1 ^ n} ^ 2 and S = — e.
Choose cuts in W

If e = + 1 , nj+l > rij we have s^+l~' < s1J~lsu < s1sv < s^, so that W is not
simple. If £ = + 1 , and nj+1 = rij, we have snj~lsz < s^'^,, < sisv < s^i and again
W is not simple. If e = — 1 , nj+1 > rij, we have s^'1^ < s"J+1"' < ^s,- < s^,
whereas if nj+1 = rij we have sl''^,, < s"l

J~isz < s^j < slsv. The case when rij, nj+l

have opposite signs is similar. Since the sequence of exponents which occur in each u,-
alternate, by rule (4i), the assertion in (4iii) follows.

COROLLARY 5.3. Let W be a simple word in T in which some letter occurs with all
exponents n ^ ± 1. Then there is a canonical automorphism ofT which strictly reduces
the length of W.

Proof. By Theorem C we may assume that W has the form
v = sn

1
lu1s

n
1
2u2...s"l

kuk where the «,- satisfy conditions (4i) to (4iii). Apply the
automorphism 4> of T defined by ^{s^ = sit (f){Sj) = s£nSj.

The rules (4) will be seen to be exactly what is needed in order that <f>(W) be
shorter than W.
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REMARK 5.4. Notice that the rules in Theorem C and the reduction above
depend crucially on our choice of generators for F, although the algorithm itself
works quite generally as explained at the beginning of §2.

REMARK 5.5. Using Corollary 5.3 one can simplify the problem of describing
simple words in V(g, 1) by a reduction analogous to the procedure outlined in
Remark 5.2. However, unlike the situation in F(l, 1), the reduction process is not
complete, the principle reason being that there are in general infinitely many non-
trivial homotopy classes of separating simple curves on M{g, 1), g ^ 2, but only one
onM( l . l ) .
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