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ABELIAN AND SOLVABLE SUBGROUPS OF THE
MAPPING CLASS GROUP

JOAN S. BIRMAN, ALEX LUBOTZKY AND JOHN McCARTHY

I. Introduction. Let M be an orientable, compact Riemann surface of genus g
with b boundary components and c connected components. Assume each
connected component of M has negative Euler characteristic. The mapping class
group, /(M), of M is the group of isotopy classes of orientation preserving
self-homeomorphisms of M, where if 0M 4: O, admissible isotopies fix each
component of M setwise. (Thus, in particular, the isotopy class of a Dehn twist
about a curve which is parallel to a component of 0M is considered to be trivial.)
The reader is referred to [B2], [H2], IT], [FLP], and [G2] for background
concerning this group. The main results of this paper will be two theorems about
the algebraic structure of /(M):

THEOREM A. Let G be an abelian subgroup of (M). Then G is finitely
generated with torsion free rank bounded by 3g + b 3c.

THEOREM B. Every solvable subgroup of z’(M) is virtually abelian. Further-
more, if G is a virtually solvable subgroup of (M), then G contains an abelian
subgroup, A, such that the index of A in G is bounded by V(M), where V(M) is a

positive integer depending only upon M.

We now give examples which illustrate Theorem A.
The most obvious examples of abelian subgroups of (M) are the groups

generated by Dehn twists about a family of disjoint simple closed curves. These
groups are free abelian with rank equal to the cardinality of the family of curves.
The maximum cardinality of such a family is 3g + b 3c. Therefore, the bound
in Theorem A is exact. For example, Figure shows a surface of genus 3,
constructed by attaching 3 handles, H, H2, and H3, to a sphere with 3 holes, P,
along the boundary curves, ,, 72, ’3, of P. The group generated by the Dehn
twists about ]tl, "2, 73, /1, /2, f13 has maximal rank. However, this rank can be
achieved in other ways as well. For example, if o is a pseudo-Anosov map
supported on H,., then one or more of the Dehn twists about the fig’S can be
replaced by the oi’s to yield various free abelian subgroups of maximal rank.
Next we give examples illustrating Theorem B. Refer to Figure again, only

now imagine that each H is a copy of Mg, l, where g > 1. Let ’0" < < j < 3 be
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an involution on H U/49 which exchanges H; and /4j., and extends to a
2 is a Dehnhomeomorphism of M which is supported on H U/49 U P, so that -j

twist about Yk, k :/= i, j. The homeomorphisms 2, 3, ’/’23 generate a subgroup Go
of /(M) which contains the infinite abelian subgroup A0 generated by
’12, 3, 3, and Go/Ao $3, the symmetric group on 3 letters. Now, in addition,
choose an abelian subgroup A of /{ (Ms, l) and "Embed a copy, Ai, in each Hi".
Then Go,Ao,A ,A2,A 3 generate a solvable subgroup G of /{(M) which contains
an abelian subgroup (the group generated by Ao,A,Az,A3)of finite index.
The proofs of Theorems A and B use Thurston’s classification theorem for

single elements in the group {(M):

THURSTON’S THEOREM ([Th], [FLP]). To each " (M) there is associated a

representative Diff+M and a t-invariant system of disjoint simple closed curves
A such that M split along A is the union of two disjoint, compact and in general not
connected and possibly empty subsurfaces M and M2, and up to a permutation of
the components of M and of M:, and isotopy supported in a collar neighborhood of
A, is pseudo-Anosov on M and offinite order on

In this theorem, the system A is in general not unique, as is easily seen when
has finite order. We will need something more, and so we introduce in Section 2
the concept of an "essential reduction system". As a by-product we will be able
to improve Thurston’s Theorem by showing:

THEOREM C. A system A satisfying the conditions of Thurston’s Theorem, which
is minimal among such systems, is unique up to isotopy.
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In Section 2 we introduce essential reduction systems, establish their main
properties, and prove Theorem C. In Section 3 we prove Theorem A. In Section
4 we prove Theorem B.

Harvey asks in [H2] whether t/(M) has a finite dimensional, faithful, linear
representation, and whether g(M) is arithmetic. In relation to these questions,
we observe that g(M) has various properties in common with the class of
finitely generated linear groups. For instance, it is finitely generated [D];
residually finite [Gr], and virtually torsion free (cf. [B-L]). As a consequence of
Theorem A, there is a bound to the derived length of solvable subgroups. (See
the Remark following the proof of Theorem B.) In [W], it is shown that if F is a
virtually solvable subgroup of GL(n, C), then F contains a solvable subgroup, G,
such that the index of G in F is bounded by a function of n. By Theorem B,
g(M) shares this property as well. As a corollary of Theorem B, every solvable
subgroup of /(M) is of bounded Hirsch rank [Hi]. This property and the results
of Theorem A are shared by the class of finitely generated arithmetic groups, but
not, in general, by the class of finitely generated linear groups. It is interesting to
note that Theorem B exhibits a property which is shared by the class of all
arithmetic groups acting on hyperbolic spaces. For other relations of this nature
see [K].

2. Essential reduction classes. The collection of nonoriented isotopy classes of
simple closed curves in M which are not parallel to 3M and not homotopically
trivial in M is denoted by the symbol (M).

If - g(M) and a (M), then ’(a) denotes the class of t(a), where -and a a. Similarly, if " C’(M), then z(a) denotes the collection
((a) a s }. We leave it to the reader to verify that if -(a/) and A s"
and B , then there is a representative, , such that t(A)= B, and this
representative is well defined modulo relative isotopy.
A subset, s" c (M), is admissible if a set of representatives, A /’, can be

chosen to consist of pairwise disjoint curves. Similarly, we say that A is an
admissible set of representatives.
We now introduce some groups which are determined by the choice of an

admissible system s" c (M). The symbol ’, (M) denotes the stabilizer of s"
in ’(M). We write M, for the natural compactification of M- A, where A is
any admissible representation of s’. If z ’(M), then we can choose an
admissible A and a representative " such that t(A)= A. Furthermore,
t[_ extends uniquely to M. Again, we leave it to the reader to verify that this
process determines a well-defined class, ’(M). We shall refer to this class,
", as the reduction of along . The assignment, z- ,, yields a homomorphism,
/ t(M)t (M), which we shall refer to as the reduction homomorphism.
For any simple closed curve, a, in M there is a well known homeomorphism,

a, which is called a Dehn twist about a. It is supported on an annular
neighborhood of a, and is defined by splitting M along a, twising one end of the
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split by 360 and reglueing. If c /(M), then we denote the isotopy class of a,

where a is any representative of c, by %.
Caution" In general / is not an isomorphism. By our definition of the

mapping class group of a bounded surface, each Dehn twist %, c ’, will be in
kernel/.
A natural representation, O /(M)-->Aut(OM), arises from the permutation

of boundary components.
Let Z, be the cyclic subgroup of /(M) generated by %. If is an

admissible subset of /(M), then Z will denote the subgroup of ’(M)
generated by (%’c ). The following lemma describes the relationship of

Z to / ([H2], note 1, p. 266).

LEMMA 2.1. Let be an admissible subset of (M). Then:
(1) kernel(/)= Z is a free abelian group with free basis (%’ ). In

particular rank(Za,) cardinality(z).
(2) Z c_ center(kernel(O / -/(M)--> Aut(OM)).

Proof. Part (1) is well known and we omit the proof. Clearly, therefore

Z c_ kernel(O / ). To see that Z is contained in the center(kernel(0 A )),
let o kernel(O A ). Then, o(a)= a. But o%0

-1
zo) %. Therefore, %

commutes with o so Z is contained in the center of kernel(O A ).

If M [IiI Mi, then we will use F(M) to denote the collection (Mi’i I)
of connected components of M. There is a natural representation, q0" {(M)
-->Aut(F(M)), which arises from permutation of components. Kernel(q0) is
naturally isomorphic to ( iig(Mi). If ’(M), then for some exponent, n,
./.n kernel(q0). For any such exponent, we refer to the elements of /(Mi)
obtained by restriction of -r as restrictions of ’.

A mapping class, " {(M), is pseudo-Anosov if ’(Mi) =/: 0 for every I,
and ,n(c):/: a for any c /(M) and any n :/: 0. The class, - {(M), is said
to be reducible if there is an admissible set, a’, such that -(’)= ’. In this
event, we shall refer to such a set, , as a reduction system for . Each c " is
a reduction class for ’.

A mapping class,, /(M), is adequately reduced if each of its restrictions is
either finite order or pseudo-Anosov. A reduction system, a’, for - is an adequate
reduction system for if reduced along " is adequately reduced. Using this
concept, Thurston’s Theorem may now be restated as

THEOREM 2.2 ([Th], [OS]). Every mapping class, " /(M), is either reducible
or adequately reduced. If " is reducible, then there exists an adequate reduction
system, , for ’.

The function denoted by i" (M)-(M)---> is the geometric intersection

form. It is defined by setting i(c,/3) equal to the minimum number of points of
intersection of a and b, where a and b range over the representatives of a and/3
respectively.
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FIGURE 2

Definition. A reduction class, a, for - is an essential reduction class for if for
each fl (M) such that i(a, fl)4:0 and for each integer m 4: 0, the classes
.m(/3) and/3 are distinct.

Example. In Figure 2, let -= -. Then c is an essential reduction class for -,
(see Appendix, Expos6 4, [FLP]) but/3 is not, even though -(/3) =/3. The reason
is that i(fl, 7)4: 0, but (7)= 7.

We now establish some of the properties of essential reduction classes and
adequate reduction systems.

PROPOSITION 2.3. Let , ’ be reduction classes for (M). Suppose is

essential. Then (a, a’) O.

Proof. If i(a, a’) v 0, then ’n(a’) 4: a’ for each n v 0, contradicting the
hypothesis that et’ is a reduction class.

LEMMA 2.4. Let N be connected where x(N) < O. Let 6 be an isotopy class of a
properly embedded arc which is not homotopic to an arc in N. Let "(N) with

() 6. Then either
(i) N is a pair ofpants

or

(ii) there exists a class 7 in (N) such that (7)=7 and i(7,) 4:0 for all
classes, t -(N), which intersect 6 nontrivially.

Proof. Let d be a properly embedded arc representing 6. Let /(d) be a
regular neighborhood of the dimensional subcomplex of N formed by d
together with the boundary components of N which meet d at its endpoints (see
Figure 3). There are two possible configurations; one corresponds to the situation
where the endpoints of d meet distinct boundary components (Figure 3a), the
second to the situation where the endpoints meet a common component (Figure
3b). In either case, /(d) is a pair of pants (i.e., a sphere with 3 discs removed). It
has 3 boundary components. In case (a) two of these are components of ON. Let
7 denote the isotopy class of the third. If 7 is parallel to )N, then N is a pair of
pants. Otherwise, 7 is not homotopically trivial, for if so, then N would be an
annulus, which is ruled out. So 7 (N). Since -()= , then -(7) 7. If
a (N) intersects 8 nontrivially, then i(a, 7)4: 0. For if not, then c could be
represented by a simple closed curve in (D), so that c would be, necessarily,
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parallel to one of the boundary components of (d), and therefore, parallel to
ON or to 7. Case (b) is similar. II

If a is an admissible subset of ’(M), then the symbol ,(M) will denote
the subset of (M) consisting of isotopy classes which do not belong to " and
which are representable by curves in M- A, where A is any admissible set of
representatives for a. It is an easy exercise to show that -’(M) is well defined
independently of the choice of A.

LEMMA 2.5. Let be an adequate reduction system for and let a ’. Let
’=- a). Then the following are equivalent:

(1) is essential,
(2) ’ is not an adequate reduction system for T for an), m =/: O.

Proof. First, we show (1) implies (2). Assume a is essential. Choose m 4: 0. If
’m(a’) :/: ’, then ’ is not a reduction system for T and we are done. So we
may assume zm(’,)= ’, which implies zm(a)= t. Let c’ be the lift of a to

M. Then c’ is a reduction class for A’(zm). We will show that c’ is essential.
Choose any ’(M) with i(c’,’):/: 0 and any n :/: 0. Then ,’ projects to
y ’(M) with i(a, 7) 0. Since a is essential, Tmn(’y) =/:: "[. Lifting back to M,,
it follows that A ,(.m,)(,):/: ,. Therefore, &’ is essential for A ,(rm). So A ,(.m)
is not adequately reduced, hence ’ was not an adequate system for rm.
Now we show (2) implies (1). We assume c is not essential. We show that "is an adequate reduction system for T for some integer m :/: 0. Since a is not

essential, there exists a curve class y -(M) and an integer n :/: 0 such that
i(a, 7)=/: 0 and -"(,)= 7. Splitting M along , the class, 7, determines a finite
family of pairwise disjoint isotopy classes of properly embedded arcs in M,
which we denote by . Since i(a, ,) 4: 0, we conclude that at least one component
of occurs on each component of M, which "borders on a".

Since .n(y)= 7, therefore ,()= . By choosing a larger exponent, n, if
necessary, we can assume, in addition, that ,P" preserves each component of M,
each component of OM and each component of . In particular, the restrictions
of ,P" to the components of M bordering on a each preserve a nontrivial isotopy
class of a properly embedded arc. By Lemma 2.4, for each such component,
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either the corresponding restriction of n is reducible or the component is a pair
of pants. By assumption, n is adequately reduced. Therefore, each restriction of
,n is either finite order or pseudo-Anosov. Since a pair of pants will not support a
pseudo-Anosov mapping class [OS], and since pseudo-Anosov mapping classes
are completely reduced, it follows that the particular restrictions in question are
each finite order. Hence, by choosing a larger exponent, n, if necessary, we may
assume, in addition to the preceding remarks, that the restrictions of " to the
components bordering on ct are trivial.
We now examine the corresponding situation when we reduce along ag’. Let

/X’ be the reduction homomorphism, and let ’ and c’ be the lifts of 3’ and c to
M,,. Since ag is an adequate reduction system for z, it follows that c’ is an
adequate reduction system for A’(w). Therefore, each restriction of /’(w) to a
component of M, is finite order or pseudo-Anosov, except, possibly, the
restriction t, to the component N of M,, which contains ^’
From the above discussion, it is evident that u(c’)= c’. Also, since the

restrictions of ," to the components of M, bordering on c are trivial, the
reduction of , along ’ is trivial. We conclude (see Lemma 2.1) that , is a power
of a Dehn twist about &’.
Now we consider 7 again. There are two separate cases to consider"

Case 1. c M- A’ where A’ represents a’. Then, since i(a,,) =/= 0 by our
choice of ,, it follows that i(c’, ’)= i(c, 3’)=/= 0. So ’ is a class in .A’(N) which
intersects c’ nontrivially, and t, is a power of a Dehn twist about c’ with
u(’) ’. By an argument just like that used in the proof of Lemma 2.1, part
(2), we conclude that u cannot be a nontrivial power. Hence u identity, so

/X’(-n) is adequately reduced.

Case 2. i(7,s’) =/= 0. Then ’ is a family of arcs, at least one of which passes
through N. As before, we may assume that n was chosen so that each component
of ’ is preserved by A’("). Applying Lemma 2.4, and the fact that N is not a
pair of pants, we conclude that there exists ’(N) such that i(k’,6)=/= 0 and
t,(6)= . As before, we conclude that this is possible only if , identity.
Therefore, /’(-") is adequately reduced.

LEMMA 2.6. Let (c -(M)lc is an essential reduction class for }.
Then

(1) o(a’)= ag’o-, for all o /(M).
(2) ag’,,, a’, for all rn =/= O
(3) ag, is an adequate reduction system for r.

(4) ag, C_ ag for each adequate reduction system ag for r.

Proof. (1) Let c be an essential reduction class for r. Choose a reduction
system, ag, for r with a a’. Then o(c0 o(ag), a reduction system for oro-
If /3 a(m), with i(o(a), fl)=/=O, then i(a,o-l(fl))=/=O. Hence,



1114 BIRMAN, LUBOTZKY, AND McCARTHY

5/:0-1() for all n4=O. Hence, (O’ro-l)n(fl):7/= , SO O(a) is an essential
reduction class for ozo -I. Therefore, o(’,)c_ o,o-’. By the same argument,
o-1(o0-,) C_ , so a’oo-’ C_ o(). Hence, o()

(2) By Proposition 2.3, ,. is admissible. By Part (1), (am)= a’m. Hence,
every a is a reduction class for z. Choose a m, fl ’(M) with
i(a, fl) 4 O, n O. Then (,,)n(fl) 4=/3, hence, "(fl) 4=/3, hence, a is essential
for -. The reverse inclusion follows similarly.

(3) By Proposition 2.3, is admissible. By part (1) above, z()= ’.
Therefore, ’ is a reduction system for $. Hence,

_
/’a, (M). Let o be the

reduction of along ’, and let be an adequate reduction system for o. If the
cardinality of is 0, then o is adequately reduced. Otherwise, choose
and let ’ {/3 ). lifts to an admissible subset, ’, of ’a; (M). Let a be
the class of " such that/3 c. We conclude that (’) and, therefore, that
a is a reduction class for -. Since a ’/ (M), a is not essential for
Therefore, we may choose 7 (M) and n =/=0 such that i(a, 7)4=0 and
"(y)= y. The latter condition implies that 7 / (M). Hence, y lifts to
6 c/(M,r) with i(fl,6)4= 0 and o"(6)= 6. In other words, fl is not an
essential reduction class for o. From Lemma 2.4, we conclude that for some
m 4=0, ’ is an adequate reduction system for om. By Part (2), we have. Since o is the reduction of m along, it follows from induction
that o is adequately reduced. Therefore, o is adequately reduced.

(4) Let be an adequate reduction system for and let a be an essential
reduction class. If a ’, then Proposition 2.3 asserts that i(a,)= 0 and,
hence a .(M). Since a ,, therefore a ’,- ’, which is an
admissible set in.(M). Also, -(’, ’) /’, . Let/3 be the lift of a to
M, and o be the reduction of - along a’. By arguments similar to those above,
we conclude that/3 is an essential reduction class for o, and hence, that o is not
adequately reduced. But this is a contradiction and therefore a

We may now establish Theorem C.

Proof of Theorem C. Let - ((M). Then, by Theorem 2.2 either - is
adequately reduced (in which case A O) or z is reducible, and if - is reducible,
then there exists an adequate reduction system. Let s, { a -(M) la is an
essential reduction class for ’). By Lemma 2.5, s’, is the intersection of all
adequate reduction systems for . Hence s, is canonical and unique. The
desired curve system, A, is any representative of sV,.

3. Abelian subgroups of t’ (M). In this section we prove Theorem A.
If G is a subgroup of -/(M) and each - G is adequately reduced, then G is

adequately reduced. Let G denote an abelian subgroup of #’(M). Let rank(G)
denote the torsion free rank, and let Tor(G) denote the torsion subgroup of G.

LEMMA 3.1. (1) Let ’a be the union of the essential reduction systems ,
" G. Then ’6 is an adequate reduction system for each " G.
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(2) If G is adequately reduced, then rank(G)< Co(M), where Co(M) is the
number of components of M not homeomorphic to a pair ofpants.

Proof. (1) For each - G we have s, .C_ . By Lemma 2.6 part (3), , is
an adequate reduction system for . Therefore, it suffices to prove that sZa is a
reduction system for z, i.e., that -(.a)= and that the curves in s/ are
pairwise disjoint. Let o G. Since G is abelian, o -o"- Hence, from Lemma
2.6, part (1), we conclude that -(s/o) x hence r(ae’a)= a. Furthermore,
if c, 2 , we may choose o, o2 G such that cj is an essential reduction
class for oj, j= 1,2. If i(a,c2)-0 then o’(c2)vec2, for each n ve0. But
o(o2) ’o2, hence this is impossible. Therefore, i(a,c)= 0 and is an
admissible system.

(2) Let F denote the collection of connected components of M I]ii mi,
and let be the representation

q ,"(M ) --), Aut(F(M )).

Let G’= G C3 kernel q). Then rank(G)= rank(G’). Hence we may assume
without loss of generality that G c kernel(q). Let ri" kernel(q) [’(Mi) be the
natural projection. Let G ,ni(G and H G;. Then G is contained in H, so
rank(G) < rank(H). But rank(H)= rank(G). In addition, G,. is an adequately
reduced abelian subgroup of /(Mi). If M is a pair of pants, then ’(M,.) is
finite (see [OS]). Therefore rank(G/)= 0. If rank(G/)> 0, then G contains a
pseudo-Anosov class r. Since Gi is abelian, Gi is contained in the normalizer,
N(r), of the cyclic subgroup of ’(Mi) generated by -. By a result proved in [M],
any torsion free subgroup of N(r) is infinite cyclic. Hence, rank(G/)= and the
assertion follows immediately.

Proof of Theorem A. By Lemma 3.1, G c_ /, (M). Let H be the reduction
of G along ’v. Then, by Lemma 2.1, there is a short exact sequence"

1-> G Z--> G--> H--> 1.

From the sequence, rank(G)=rank(G cq Z)+rank(H). By Lemma 2.1,
rank(G Z)< cardinality of s/a. By Lemma 3.1, part (2), rank(H)
< Co(M,). For each component of M/o. not homeomorphic to a pair of pants
choose a class, fl (M.), contained in that component. This forms a
collection which is admissible and whose cardinality is exactly Co(M).
lifts to an admissible subset, sO" c -eo. (M), so that U is an admissible
subset of --(M). The cardinality of ._a U is exactly the cardinality of sg’a
plus C0(M.e). Our assertion concerning rank(G) follows, because the cardinality
of an admissible subset of (M) is bounded above by 3g + b 3c. This proves
that the torsion free rank of G is finite. To see that G is finitely generated,
therefore, it suffices to show that Tor(G) is finite. But this follows from the fact
that /(M) contains a torsion free subgroup of finite index.

In order to see this last assertion, we need to reduce to known results. If M is
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connected and closed, then this result is proved in [H2] and [B-L]. If M is
connected and has boundary, then ’(M) is a subgroup of Out(F), where F is a
free group of finite rank [N2]. Since Out(F) is virtually torsion free, (el. [B-L]),
the theorem follows immediately. If M is not connected, then, since kernel() is
of finite index in /(M) and since kernel(09) ()/(Mi), we are reduced to
considering the mapping class group, /(Mi), of a connected component of

’(M), and so we are done.

4. Virtually solvable subgroups of /(M). In this section we prove Theorem
B. Let G be a virtually solvable subgroup of /(M), and Go a normal, solvable
subgroup of G, of finite index in G. If GO is nontrivial, let H be the last nontrivial
term in the derived series for G0. Since H is a characteristic, normal subgroup of
G0, and GO is normal in G, then H is a normal subgroup of G. Furthermore, H is
a nontrivial, abelian, normal subgroup of G. We shall say that a subgroup,
H C_ G, is a preferred subgroup of G if H is a nontrivial, abelian, normal subgroup
of G. In the examples of Section 1, H gp{Ao,A,A.,A3) is a preferred
subgroup. From the above construction, if G does not admit a preferred
subgroup, then GO is trivial and therefore G is finite. The simplest situation we
shall need to consider occurs when M is connected, G is torsion free and G
admits an adequately reduced, preferred subgroup. If G satisfies these three
conditions, we say that G is primitive.

LEMMA 4.1. If G is primitive, then G is infinite cyclic and generated by a

pseudo-Anosov mapping class.

Proof. Let H be an adequately reduced, preferred subgroup of G. The
hypothesis implies that H is torsion free, nontrivial and adequately reduced.
Since M is connected, Lemma 3.1 implies that rank(H)= l, and hence H is
infinite cyclic and generated by a pseudo-Anosov mapping class, -. Since H is
normal in G, G is a torsion free subgroup of the normalizer, N(H). By a result
proved in [M], G is infinite cyclic. Since - G, and a mapping class is
pseudo-Anosov if and only if a nontrivial power of it is pseudo-Anosov, then G is
also generated by a pseudo-Anosov mapping class,

Proof of Theorem B. If G c_ kernel(q) and each nontrivial restriction, ri(G), is
primitive, then G has primitive restrictions. We shall prove that there exists a
subgroup, H, of G, of finite index in G, and an admissible set, c 4(M), such
that H C_ /(M) and the reduction, /(H), of H along /" has primitive
restrictions. This is the first step. In order to make an estimate on [G’H], the
index of H in G, we introduce the following notations. If N is a connected
manifold, let T(N) denote a torsion free subgroup of ((N), of finite index,
t(N), in ’(N). (If N is closed, then such a subgroup exists (cf. [H2], [B-L]). If N
has boundary, then ,/(N) is a subgroup of the outer automorphism group,
Out(F), of a free group, F, of finite rank [N2]. Since Out(F) is virtually torsion
free, again such a subgroup exists.) Similarly, T(M) denotes T(Mi), and t(M)
its index in /(M). A simple calculation shows that t(M)< [(c(M)!)"
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(IIt(Mi))]. Finally, if H is a subgroup of ’(M), then HT H N T(M). Note,
by our definitions, HT C kernel().

If Gr has primitive restrictions, then by Lemma 4.1, rj(Gr) is free abelian
and hence Gr is free abelian. Also [G: Gr] < t(M). Hence, in this event we are
done. We shall now show that if Gr does not have primitive restrictions, then
there exists an admissible set, c ’(M), with Gr c ’(M). Hence, assume
Gr does not have primitive restrictions; at least one nontrivial restriction, %(Gr),
is not primitive. By construction ri(Gr) is torsion free and virtually solvable;
hence %(Gr) admits a preferred subgroup, H, which is not adequately reduced.
By Lemma 3.1, a’/4 c -(Mi) is a nontrivial adequate reduction system for H,
where ’/ is the union of the essential reduction systems, ’,, - H. Since H is
normal in i(GT), for each o ri(GT) and " H, OTO--I H. Therefore, by
Lemma 2.6 (1), o(n) c_ n- Similarly, o-l(’n) c_ n, so n c_ o(n), so
o(n) ’n. If o rj(Gr), where j :/: i, then clearly o(’n)= n. Since
Gr c_ .(Gr), it immediately follows that Gr c (M), where " ’.
At this point, the reader may wish to refer to the diagram below as we proceed

through the next argument:

G=Go -G - G2 - ’3 - - Gk Gk+l =H

GD

Ak_ A k A

) .rT

G3D

GT A (/_jr)

Let G Gr and ’1 ’, so that GI c ’,(M). Let A ’a,,(M)-->
/(M!) be the reduction homomorphism, and G 1= AI(GI)Q ’(Mt). Let
G2= A-I(Gr) N G1, so G2 C_ G, [GI’G2] [GI’Grl] < t(M,) and A I(G2)=
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G,r If G has primitive restrictions, then G2 is a subgroup of G, of finite index in
G, which reduces along z" to a group with primitive restrictions. If Gr does not
have primitive restrictions, then as before there exists an admissible set,

" c ’(M,), such that G), c ’,(MI). Let a’2 be the union of z’1 and the
projection of to /(M), then a’2 is an admissible set, ’1 is properly
contained in ’2 and G2 c_ /2(M). (In the diagram above, A’ denotes the
reduction homomorphism associated to ’(M,), and A 2, the reduction
homomorphism for ’(M). Clearly, A 2 /k / l’)

Continuing in this manner we construct a descending sequence of subgroups,
G GO _D G _D _D G, _D G,+1, and a strictly increasing sequence of admissi-
ble subsets of (M)

O=MoCMc... cM
such that Gk c_ ’k (M), [Gk" G+] < t(M,), and the reduction, Ak(ak+l) of

G+I along sg’, either has primitive restrictions or admits a nontrivial reduction
system. In the latter event, we augment the two sequences by introducing Gk+ 2

and s/k+l as above. Since k < cardinality of a/’ < 3g + b 3c, it is impossible
to augment s’.g for k>3g+b-3c. Therefore, for some k<3g+b-3c,
/ k(Gk + 1) has primitive restrictions. Setting H G+ 1, Ck and A A k,

we have completed the first step of the proof; that is, we have obtained a
subgroup, H, of G, of finite index in G and an admissible set, c ’(M), such
that H C_ ’(M) and the reduction, A(H), of H along r has primitive

krestrictions. In fact, a simple calculation shows that [G" H] < Ii=ot(.M) where
k < 3g + b- 3c.
The next step of the proof is to find a subgroup of finite index in H which is

free abelian. Let F A(H)C_ kernel(q), where is the natural map ’(M)
--> Aut(F(M)). By construction of H, F has primitive restrictions. By Lemma
4.1, therefore, F is free abelian. By Lemma 2.1 we have a short exact sequence,

-->Z r) H--> H-->A F--> l, where Z H is also free abelian. If this sequence
were a split central extension, then H would be free abelian as well. We must
pass to a subgroup of finite index of H to insure that the sequence will be split
central. Let O’’/(Mc)-->Aut(OM) be the natural representation, and F
F r kernel(0), and E A-1(F). Again, by Lemma 2.1 we have a short exact

sequence:

--> Z.,---> E--> F __>

Now we shall construct a splitting, X" F .- E.
Since F has primitive restrictions and FC_ F, by Lemma 5.1, the jth

restriction, ).(F) c (M), is trivial or infinite cyclic. If infinite cyclic, then
the restriction is generated by the class of a homeomorphism, sj, of M,j which
fixes each boundary component of M pointwise. Viewing M. as a

submanifold of M we may extend Sj trivially to a homeornorphism, tj, of M. If
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j 4: k, then (/ and k will commute, since they are supported on disjoint
submanifolds. Let oi ’(Me) be the class of sj and rj /(M) the class of
Since @rj(F) is free abelian with free basis, oj), the association oj.-rj extends
uniquely to a homomorphism, ?" @.(F)/(M). The restriction of X to F
is, by construction, a splitting, " F- E, as desired. Furthermore, since
F c_ kernel(0), by Lemma 2.1 (1), we conclude that Z c_ center of E. Hence the
sequence, (.), is a split central extension, and E is free abelian.

Let K E q H, then K is a free abelian subgroup of H, and [H’K] [F"
F < b(M)!. Therefore, we conclude that

G K] < t(Mz )
i’-

"[b(Mz)! (**)

where

k < 3g + b- 3c

It remains to be shown that the right hand term of (**) is bounded by a function
of M.

For each i, let M/,. lIMi,j. Then, as mentioned earlier, t(M,) < [c(M,)!]
[t(Mi,j)]. Each Mi,j corresponds to a connected submanifold of M with negative
Euler characteristic. Since there are only a finite number of possibilities up to
homeomorphism, then we may choose a universal bound, u(M), for { t(Mi,j) }.
Furthermore, c(M,) < 2g + b 2c IN(M)I; b(M) < 6g + 3b 6c. Together
with (**), we obtain an upper bound for [G K], that is:

[G K] < {[(2g + b 2c)’][u(M)]2g+b-2c} ’g+b-’ .(6g + 3b 6c)!

This proves that every virtually solvable subgroup, G, of /(M) contains an
abelian subgroup, K, of index bounded by V(M).

Remark. We understand the derived length of an abelian subgroup to be 1.
Hence, if G is solvable, it is clear that d(G) < V(M) as well.
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