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We have had a long-standing interest in the way that structure in the mapping class group of a
surface reflects corresponding structure in the topology of 3-manifolds, and conversely. We find
this area intriguing because the mapping class group (unlike the collection of closed orientable
3-manifolds) is a group which has a rich collection of subgroups and quotients, and they might
suggest new ways to approach 3-manifolds. (For example, it is infinite, non-abelian and residually
finite [14]). In the other direction, 3-manifolds have deep geometric structure, for example the
structure that is associated to intersections between 2-dimensional submanifolds, and that sort of
inherently geometric structure might bring new tools to bear on open questions regarding the
mapping class group. That dual theme is the focus of this article.

In §1 we set up notation and review the background, recalling some of the things that have
already been done relating to the correspondence, both ways. We will also describe some
important open problems, as we encounter them. We single out for further investigation a new
tool which was introduced in [17] by Hempel as a measure of the complexity of a Heegaard
splitting of a 3-manifold. His measure of complexity has its origins in the geometry of
3-manifolds. He defined it as the length of the shortest path between certain vertices in the curve
complex of a Heegaard surface in the 3-manifold. In fact, the mapping class group acts on the
curve complex and the action is faithful. That is, the (extended) mapping class group is
isomorphic to the automorphism group of the curve complex. In §2 we will propose some number
of open questions which relate to the distance, for study. In §3 we suggest approaches which could
be useful in obtaining additional tools to investigate some of the problems posed in §2. Some of
the ‘additional tools’ are in the form of additional open problems.

The symbols ♦1,♦2,♦3, . . . will be used to highlight known results from the literature.
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1 Background

Let Sg be a closed, connected, orientable surface, and let DiffS±
g , (resp. DiffS+

g ) be the groups of
diffeomorphisms (resp. orientation-preserving diffeomorphisms) of Sg. The mapping class group
Mg is π0(Diff+Sg). The extended mapping class group M±

g is π0(Diff±Sg). The groups Mg and
M±

g are related by a split short exact sequence:

{1} −→Mg −→M±
g −→ Z/2Z −→ {1}. (1)

We will be interested in certain subgroups of Mg. To describe the first of these, regard Sg as the
boundary of an oriented handlebody Hg. The handlebody subgroup Hg ⊂Mg is the (non-normal)
subgroup of all mapping classes that have representatives that extend to diffeomorphisms of Hg.

We turn our attention to closed, connected orientable 3-manifolds. Let Hg be an oriented
handlebody and let H ′

g = τ(Hg) be a copy of Hg, with the induced orientation. We are interested
in Heegaard splittings of 3-manifolds, i.e. their representations as a union of the handlebodies Hg

and H ′
g, where Hg and H ′

g are glued together along their boundaries via a diffeomorphism
∂Hg → ∂H ′

g. The gluing map is necessarily orientation-reversing, but if we choose a fixed
orientation-reversing diffeomorphism i : Sg → Sg whose isotopy class ι realizes the splitting in the
exact sequence (1), we may describe the gluing as i ◦ f , where f is orientation-preserving. Then f
determines an element φ ∈Mg, and since the topological type of the 3-manifold which is
so-obtained depends only on the mapping class φ of f , we use the symbol M = Hg ∪φ H ′

g to
describe the Heegaard splitting of genus g of M . The surface Sg = ∂Hg = ∂H ′

g, embedded in M ,
is a Heegaard surface in M . As is well-known (for example see [41] for a proof) every closed,
connected, orientable 3-manifold can be obtained from a Heegaard splitting, for some φ ∈Mg.

Since the cases g ≤ 1 are well understood and often need special case-by-case arguments, we will
assume, unless otherwise indicated, that g ≥ 2. From now on, when we do not need to stress the
genus we will omit the symbol g.

Heegaard splittings are not unique. If M admits two splittings, with defining maps φ1, φ2 then
the splittings are equivalent if the splitting surfaces are isotopic, and if (assuming now that they
are identical) there is a diffeomorphism B : M → M that restricts to diffeomorphisms b1 : H → H
and b2 : H ′ → H ′. By further restricting to the common boundary of H and H ′ we obtain
elements β1, β2 in the mapping class group, with

τιφ2β1 = β2τιφ1, or φ2 = ((τι)−1β2(τι))(φ1)(β−1
1 ). (2)

Since β1 and (τι)−1β2(τι) are independent and are both in H, it follows that the double coset
Hφ1H ⊂M gives the infinitely many distinct elements in M which define equivalent Heegaard
splittings of the same genus. Note that our 3-manifold may have other Heegaard splittings of
genus g that are not in the double coset Hφ1H, but if none such exist the splitting defined by all
the gluing maps in Hφ1H is unique. For example, it was proved by Waldhausen in [53] that any
two Heegaard splittings of the same genus of S3 are equivalent.

There is another way in which Heegaard splittings are not unique. Since taking the connected
sum of any 3-manifold M with S3 preserves the topological type of M , this gives a nice way to
produce, for any genus g splitting of any M infinitely many splittings of genus g + 1, all in the
same equivalence class: Choose an arbitrary Heegaard splitting H ∪ψ H ′ of genus 1 for S3. Let
H ∪φ H ′ be any Heegaard splitting of M . Then take the connected sum (H ∪φ H ′)#(H ∪ψ H ′),
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arranging things so that the 2-sphere that realizes the connected sum intersects the Heegaard
surface in a circle, splitting it as the connect sum of surfaces of genus g and 1. Writing this as
H ∪φ#ψ H ′, we say that this Heegaard splitting has been stabilized. Note that this notion
immediately generalizes to include the possibility that the splitting S2 decomposes M into the
connect sum of three manifolds M ′#M ′′, both defined by Heegaard splittings, where neither M ′

nor M ′′ is S3. In [15], Haken showed more, proving that if a 3-manifold M is the connected sum
of 3-manifolds M ′ and M ′′, then any Heegaard splitting of M is equivalent to one which is a
connect sum of splittings of M ′ and M ′′. Thus it also makes sense to say, when no such connect
sum decomposition is possible, that a Heegaard splitting is irreducible. So ‘irreducible’ has two
meanings as regards a Heegaard splitting: either the 3-manifold that it defines is not prime, or
the given splitting is stabilized.

We are ready to describe some of the early work relating to the interplay between the topology of
3-manifolds and the structure of mapping class groups of surfaces. The mapping class group acts
on H1(Sg, Z)), and the induced action determines a homomorphism χg : Mg → Sp(2g, Z). The
kernel of χg is the Torelli subgroup Ig ⊂Mg. A good exercise for a reader who is unfamiliar with
the mapping class group is to show that if M is defined by the Heegaard splitting Hg ∪φ H ′

g, then
every 3-manifold which has the same first homology as M has a Heegaard splitting of the form
Hg ∪ρ◦φ H ′

g, for some ρ ∈ Ig. This is the beginning of a long story, which we can only describe in
the briefest way. It depends in fundamental ways on the collection of 7 deep and far-reaching
papers of Johnson, written in the 1980’s, about the structure of Ig. We refer the reader to
Johnson’s review article [23] for an excellent guide to the results in these 7 papers.

♦1 Building on the exercise that we just assigned, Sullivan [47] used mappings classes in Ig and
Heegaard splittings to construct 3-manifolds with the same homology as the connected sum
of g copies of S1 × S2, i.e. the manifold defined by the splitting Hg ∪id H ′

g. He then asked
how the intersection ring of such a manifold differs from that of a true #g(S1 × S2)? In this
way Sullivan discovered a homomorphism from Ig to an abelian group of rank

(
g
3

)
. Johnson

then proved that Sullivan’s map lifts to a map τ1 : Ig → A1, where A1 is a free abelian
group of rank

(
2g
3

)
. We are interested here in the Sullivan-Johnson homomorphism τ1. It

has a topological interpretation that is closely related to Sullivan’s construction. Johnson
asked whether τ1(Ig) was the abelizization of Ig, and proved it is not. That is, A1 is a
proper quotient of I ′g.

♦2 To say more we need to take a small detour and ask about generators of Ig. The most
obvious ones are the Dehn twists about separating curves of Sg, but they don’t tell the full
story. Johnson proved that for g ≥ 3 the group Ig is finitely generated by certain maps
which are known as ‘bounding pairs’. They are determined by a pair of non-separating
simple closed curves on Sg whose union divides Sg, and Johnson’s generators are a pair of
Dehn twists, oppositely oriented, about the two curves in a bounding pair.

This leads us, of course, to the normal subgroup Kg ⊆ Ig that is generated by Dehn twists
about all separating curves on Sg. For g = 2 the groups I2 and K2 coincide (because there
are no bounding pairs on a surface of genus 2), but for g ≥ 3 the group Kg is a proper
subgroup of the Torelli group. So now we have two subgroups of Mg that have interest, the
Torelli group Ig and the subgroup Kg. To give the latter new meaning, we return to the
homomorphism τ1 that we defined in (♦1) above. Johnson proved that kernel(τ1) = Kg.

♦3 Since the image of τ1 is abelian, one wonders how kernel(τ1) is related to the commutator
subgroup [Ig, Ig] ⊂ Ig? To say more we return to the topology of 3-manifolds, and a
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Z/2Z-valued invariant µ(M3) of a homology sphere M3 that was discovered by Rohlin.
Recall that, by the exercise that we assigned before the start of (♦1), every homology sphere
may be obtained from S3 by cutting out one of the Heegaard handlebodies and regluing it
via some γ ∈ Ig. (Here we are tacitly assuming what was proved in [53]: that all Heegaard
splittings of any fixed genus g of S3 are equivalent, so that it doesn’t matter which splitting
of S3 you choose, initially.) We refer to the 3-manifold obtained after the regluing as Mγ . In
1978 the author and R. Craggs [5] showed that the function γ → µ(Mγ) determines a finite
family of homomorphisms δγ : Ig → Z/2Z. The homomorphisms depend mildly on the
choice of γ. Johnson proved that the finitely many homomorphisms Ig → Z/2Z that were
discovered in [5] generate Hom(Ig → Z/2Z) and used them to construct another
homomorphism τ2 : Ig → A2, where A2 is an abelian group, with the kernel of τ2 the
intersection of the kernels of the homomorphisms of [5]. We now know about two subgroups
of Ig whose study was motivated by known structure in the topology of 3-manifolds, namely
kernel(τ1) and kernel(τ2), and it turns out that kernel(τ1) ∩ kernel(τ2) = [Ig, Ig].

♦4 Further work in this direction was done by Morita in [36] and [37]. Casson’s invariant
µ̃(Mγ) of a homology 3-sphere Mγ is a lift of the Rohlin-invariant µ(Mγ) to a Z-valued
invariant. One then has a function δ̃γ : Ig → Z which is defined by sending γ to µ̃(Mγ).
Morita related this function to structure in Kg. To explain what he did, recall that in (♦1)
and (♦3) we needed the fact that the γ could be assumed to be in Ig. In fact a sharper
assertion was proved by Morita in [36]: we may assume that γ ∈ Kg. Morita then went on,
in [36] and [37] to prove that if one restricts to Kg the function δ̃γ determines a
homomorphism τ̃2 : Kg → Z which lifts τ2|Kg : Kg → Z/2Z.

This brings us to our first problem, which is a vague one:

Problem 1 The ideas which were just described relate to the beginning of the lower central series
of Ig. There is also the lower central series of Kg. The correspondence between the group
structure of Mg and 3-manifold topology, as regards the subgroups of Mg that have been studied,
has been remarkable. It suggests strongly that there is much more to be done, with the possibility
of new 3-manifold invariants as a reward.

Investigations relating to the correspondences that we just described slowed down during the
period after Thurston [49] did his groundbreaking work on the topology and geometry of
3-manifolds. Recall that the 3-manifolds that we are discussing can be decomposed along
embedded 2-spheres into prime summands which are unique, up to order. We learned from
Thurston that there is a further canonical decomposition of prime 3-manifolds along a canonical
family of incompressible tori, the ‘JSJ decomposition’. In particular, Thurston conjectured that
each component after the JSJ decomposition supported its own unique geometry, and the
geometry was a very important aspect of the topology. 1 As a consequence, it was necessary to
deal with 3-manifolds with boundary. We pause to describe the modifications that are needed to
describe their Heegaard splittings.

Let X be a collection of pairwise disjoint simple closed curves on a surface S. An oriented
compression body HX is obtained from an oriented S × I and X by gluing 2-handles to

1As we write this article, over 20 years after Thurston announced his results, the main conjecture in [49], the
geometrization conjecture, seems close to being proved via partial differential equations and the work of Perelman,
giving new importance to the JSJ decomposition.
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S × {1} ⊂ S × [0, 1] along the curves in X, and then capping any 2-sphere boundary components
with 3-handles. Note that if S has genus g, and if X has g components, chosen so that the closure
of S split along X is a sphere with 2g discs removed, then g 2-handles and one 3-handle will be
needed and HX will be a handlebody with boundary S. More generally HX will have some
number of boundary components. It is customary to identify S with the ‘outer boundary’ of HX ,
i.e. S × {0} ⊂ HX .

To construct an oriented three-manifold M with boundary we begin with S × I, and a copy
τ(S × I), where τ is a homeomorphism and τ(S × I) has the induced orientation. As in the
Heegaard splitting construction, let i : S × {0} → τ(S × {0}) be a fixed orientation-reversing
involution, and let f : S ×{0} → S ×{0} be an arbitrary orientation-preserving diffeomorphism of
S. Then we may use i ◦ f to glue S × {0} to τ(S × {0}) along their outer boundaries. Let φ be
the mapping class of f . This still makes sense if we attach 2-handles to S × I and τ(S × I) along
curve systems X ⊂ S × {1} and Y ⊂ τ(S × {1}) to get compression bodies HX and HY . In this
way we obtain an oriented 3-manifold M = HX ∪φ HY with boundary which generalizes the more
familiar construction, when HX and HY are handlebodies. We continue to call the more general
construction a Heegaard splitting, but now it’s a splitting of a 3-manifold with boundary. See [41]
for a proof that every compact orientable 3-manifold with boundary arises via these generalized
Heegaard splittings. Note that in particular, in this way, we obtain Heegaard splittings of the
manifolds obtained after the JSJ decomposition.

An example is in order, but the most convenient way to explain the example is to pass to a
slightly different way of looking at compression bodies. Dually, a compression body is obtained
from S × [0, 1] by attaching some number, say p, of 1-handles to S × {0} ⊂ S × [0, 1]. This time
we identify S with S × {1}. An example of a Heegaard splitting of a 3-manifold with boundary is
obtained when M is the complement of an open tubular neighborhood N(K) of a knot K in S3.
In this case ∂M = ∂(S3 \N(K)) is a torus. By attaching some number, say p 1-handles to the
boundary of the (in general) knotted solid torus N(K), we can unknot N(K), changing it to a
handlebody in S3. (Remark: the minimum such p is known as the ‘tunnel number’ of K.) The
union of this handlebody and its complement H ′ is a Heegaard splitting of S3 (not of the knot
space). The Heegaard surface for this splitting of S3 will turn out to be a Heegaard surface for a
related Heegaard splitting of the knot complement. To see this, let N0(K) ⊂ N(K) be a second
neighborhood of K. Then

S3 −N0(K) = (N(K)−N0(K)) ∪ p (1-handles)∪H ′ = (∂N(K)× I) ∪ p(1-handles)∪H ′.

The 3-manifold H = (∂N(K)× I) ∪ p(1− handles) is an example of a compression body.
Therefore our knot complement, which is a 3-manifold with torus boundary, has been represented
as a union of a compression body HX and a handlebody H ′, identified along their boundaries. By
construction, ∂HX = ∂H ′ is a closed orientable surface of genus p + 1. This surface is called a
Heegaard surface in S3 \N0(K), and so S3 −N0(K) = HX ∪φ H ′, where the glueing map φ is an
element of the mapping class group Mp+1. In this way, Heegaard splittings of the components
after the JSJ decomposition fit right into the existing theory.

There was also a second reason why the correspondence that is the focus of this article slowed
down around the time of Thurston. In the important manuscript [11], the following new ideas
(which are due to Casson and Gordon, and build on the work of Haken in [15]) were introduced in
the mid-1980’s. Let M be a 3-manifold which admits a Heegaard splitting H ∪φ H ′. Define a
disc pair (D,D′) to be a pair of properly embedded essential discs, with D ⊂ H and D′ ⊂ H ′, so
that ∂D, ∂D′ ⊂ S = ∂H = ∂H ′. The Heegaard splitting is said to be:
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• reducible if there exists a disc pair (D,D′) with ∂D = ∂D′. Intuitively, either the given
Heegaard splitting is stabilized, or the manifold is a non-trivial connected sum, the
connected sum decomposition being consistent with the Heegaard splitting. Observe that
this is identical with our earlier definition of a reducible Heegaard splitting, but with a new
emphasis.

• strongly irreducible if and only if for every disc pair (D,D′) : ∂D ∩ ∂D′ 6= ∅.

and also, the corresponding negations:

• irreducible if and only if it is not reducible. Equivalently, for every disc pair
(D,D′), ∂D 6= ∂D′.

• weakly reducible if and only if it is not strongly irreducible. Equivalently, there exists a disc
pair (D,D′) with ∂D ∩ ∂D′ = ∅.

Note that any reducible splitting is also weakly reducible, and any strongly irreducible splitting is
also irreducible. Here are several applications of these notions:

♦5 In [11] Casson and Gordon proved that if a 3-manifold M has a Heegaard splitting H ∪φ H ′,
where H and H ′ are compression bodies, and if the splitting is strongly irreducible, then
either the Heegaard splitting is reducible or the manifold contains an incompressible surface.

♦6 A different application is the complete classification of the Heegaard splittings of graph
manifolds. These manifolds have the property that when they are split open along the
canonical tori of the JSJ decomposition, the closure of each component is a Seifert fiber
space. See the paper [44], by Schultens, for a succinct and elegant presentation of the early
work (much of which was her own) and the final steps in this classification. Her work uses
the JSJ decomposititon, and also depends crucially on the concept of a strongly irreducible
Heegaard splitting.

♦7 Casson and Gordon used the same circle of ideas to prove the existence of manifolds with
irreducible Heegaard splittings of arbitrarily high genus.

For many years after [11] was published it seemed impossible to interpret the Casson-Gordon
machinery in the setting of the mapping class group. As a result, the possibility of relating this
very deep structure in 3-manifold topology to corresponding structure in surface mapping class
groups seemed out of reach. All that changed fairly recently. because of new ideas due to John
Hempel [17]. To explain his ideas, we first need to define the ‘complex of curves’ on a surface, a
simplicial complex C(S) that was introduced by Harvey [16] in the late 1970’s. It has proved to
be of fundamental importance in the theory of Teichmüller spaces. The complex C(S) has as its
vertices the isotopy classes of essential simple closed curves (both separating and non-separating).
Distinct vertices v0, v1, . . . , vq determine a q-simplex of C(S) if they can be represented by q
pairwise disjoint simple closed curves on S. The complex C(S), and also its 1-skeleton, can be
given the structure of a metric space by assigning length 1 to every edge and making each simplex
a Euclidean simplex with edges of length 1. We have an important fact:
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♦8 Aut(C(S)) was investigated by Ivanov in [20]. He proved2 that the group Aut C(S) is
naturally isomorphic to the extended mapping class group M±. This paper lead to an
explosion of related results, with different complexes (see the next section for a detailed
discussion). Therefore, when one talks about the complex of curves the mapping class group
is necessarily nearby.

We now turn to the work of Hempel in [17]. Let X be a simplex in C(S). The curves that are
determined by X are pairwise disjoint simple closed curves on S. One may then form a
compression body HX from S × [0, 1] by attaching 2-handles to S × {1} along X × {1} and
attaching 3-handles along any 2-sphere boundary components. As before, S × {0} is the outer
boundary of HX . Let Y be another simplex, with associated compresion body HY . Then (X, Y )
determine a Heegaard splitting of a 3-manifold. As before the splitting may be thought of as being
determined by an element in the mapping class group M of S, although Hempel does not do this.

We are interested mainly in the case when HX and HY are handlebodies. In this situation, using
our earlier notation, X is a collection of g pairwise disjoint non-separating curves on S which
decompose S into a sphere with 2g holes and Y = φ(X), where φ is the Heegaard gluing map.
There is an associated handlebody subcomplex HX of C(S), namely the subcomplex whose
vertices are simple closed curves on S which bound discs in HX . There is also a related
subcomplex HY whose vertices are simple closed curves on S which bound discs in HY . Again,
the latter are the image of the former under the Heegaard gluing map φ. Hempel’s distance of the
Heegaard splitting of a closed orientable 3-manifold M is the minimal distance in C(S) between
vertices in HX and vertices in HY . He calls it d(HX ,HY ). In [40] the same distance is called the
handlebody distance. It is clear that the distance is determined by the choice of the glueing map
φ, and since our focus has been on the mapping class group we will use the symbol d(φ) whenever
it is appropriate to do so, instead of Hempel’s symbol d(HX ,HY ).

What does Hempel’s distance have to do with the Cassson-Gordon machinery?

♦9 Hempel had defined the distance to be a deliberate extension of the Casson-Gordon
machinery. In particular, he observed that the triplet (S, HX ,HY ) determines an
equivalence class of Heegaard splittings of the underlying 3-manifold, and that:

The splitting is reducible if and only if d(HX ,HY ) = 0
The splitting is irreducible if and only if d(HX ,HY ) ≥ 1.
The splitting is weakly reducible if and only if d(HX ,HY ) ≤ 1.
The splitting is strongly irreducible if and only if d(HX ,HY )) ≥ 2.

♦10 In [17], Hempel shows that if M is either Seifert fibered or contains an essential torus, then
every splitting of M has distance at most 2. There is also related work by Thompson [48],
who defined a Heegaard splitting to have the disjoint curve property if there is a disc pair
(D,D′) and a simple closed curve c on the Heegaard surface such that ∂D ∩ c = ∅ and
∂D′ ∩ c = ∅. Using this concept she then proved that if a Heegaard splitting does not have
the disjoint curve property, then the manifold defined by the splitting has no embedded
essential tori. Also, if the splitting is assumed to be strongly irreducible, then an essential
torus forces it to have the disjoint curve property. The work in [17] and the work in [48]
were done simultaneously and independently. There is some overlap in content, although

2actually, Ivanov was missing certain special cases which were later settled by Korkmaz and by Luo, however we
are only interested in the case g ≥ 2 so this is irrelevant.
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Thompson was not thinking in terms of the curve complex and the results in [48] are more
limited than those in [17].

♦11 There is an important consequence. From the results that we just referenced, it follows that
a 3-manifold which has a splitting of distance at least 3 is irreducible, not Seifert fibered
and has no embedded essential tori. Modulo the geometrization conjecture, one then
concludes that M is hyperbolic if d(φ) ≥ 3.

♦12 In [17] Hempel proved that there are distance n splittings for arbitrarily large n.

As it turned out, Hempel’s beautiful insight suddenly brought a whole new set of tools to
3-manifold topologists. The reason was that, at the same time that Hempel’s ideas were being
formulated, there were ongoing studies of the metric geometry of the curve complex that turned
out to be highly relevant. The article [31] is a fine survey article that gives a good account of the
history of the mathematics of the curve complex (which dates back to the early 1970’s),
continuing up to the recent contributions of Minsky, Masur, Brock, Canary and others, leading in
particular to the proof of the ‘Ending Lamination Conjecture’.

♦13 The complex C(S) can be made into a complete, geodesic metric space by making each
simplex into a regular Euclidean simplex of side length 1. In [32] Howard Masur and Yair
Minsky initiated studies of the intrinsic geometry of C(S). In particular, they showed that
C(S) is a δ-hyperbolic metric space.

♦14 A subset V of a metric space C is said to be k-quasiconvex if for any points p1, p2 ∈ V the
gedesic in C that joins them stays in a k-neighborhood of V. The main result in [33] is that
the handlebody subcomplex of C(S) is k-quasiconvex, where the constant k depends only
on the genus of S.

♦15 Here is an example of how these ideas were used in 3-manifold topology: Appealing to the
quasiconvexity result of [33] H. Namazi proved in [40] that if a 3-manifold which is defined
by a Heegaard splitting has sufficiently large distance, then the subgroup of M of surface
mappings that extends to both Heegaard handlebodies, Hg and H ′

g, is finite. As a corollary,
he proved that the mapping class group of the 3-manifold determined by the Heegaard
splitting H ∪φ H ′, i.e the group π0(Diff+M3), where M3 is the 3-manifold defined by the
Heegaard splitting H ∪φ H ′, is finite.

2 Some open problems

We begin with two problems that may not be either deep or interesting, although we were not
sure exactly how to approach them:

Problem 2 Assume, for this problem, that M is a 3-manifold with non-empty boundary. Then,
on one side of the double coset HφH the handlebody subgroup needs to be modified to a
‘compression body subgroup’. Make this precise, by describing how to modify the double coset to
take account of the handle decomposition of the compression body. What happens in the case of a
knot space?
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Problem 3 How is the Nielsen-Thurston trichotomy related to the question of whether the
distance is 0, 1, 2 or ≥ 3?

The next 3 problems concern the very non-constructive nature of the definition of d(φ):

Problem 4 Find an algorithm to compute the distance d(φ) of an arbitrary element φ ∈M. We
note that an algorithm to compute shortest paths between fixed vertices v, w in the curve complex
has been presented by Shackleton in [45]. That problem is a small piece of the problem of
computing the distance.

Problem 5 Knowing that d(φ) ≤ 1, can we decide whether d(φ) = 0? Geometrically, if a
Heegaard splitting is weakly reducible, can you decide if it’s reducible?

Problem 6 Knowing that d(φ) ≥ 1, can we decide whether it is ≥ 2? Knowing that it’s ≥ 2, can
we decide whether it is ≥ 3?

Problem 7 Schleimer has proved in [42] that each fixed 3-manifold M has a bound on the
distances of its Heegaard splittings. Study this bound, with the goal of developing an algorithm for
computing it.

Understanding the handlebody subgroup Hg of the mapping class group is a problem that is
obviously of central importance in understanding Heegaard splittings. A finite presentation for
Hg was given by Wajnryb in [51]. To the best of our knowledge, this presentation has not been
simplified, except in the special case g = 2. Very little is known about the structure of Hg, apart
from its induced action on H1(2g, Z), which is a rather transparent subgroup of the symplectic
group Sp(2g, Z). We pose the problem:

Problem 8 Study the handlebody subgroup of Mg. A simplified presentation which would reveal
new things about its structure, and/or anything new about its coset representatives in Mg would
be of great interest.

Problem 9 Recall that we noted, earlier, that every genus g Heegaard splitting of every homology
3-sphere is obtained by allowing ϕ to range over Ig. We also noted that Morita proved in [36] that
every genus g Heegaard splitting of every homology 3-sphere is obtained by allowing ϕ to range
over Kg. For these reasons it might be very useful to find generators for Hg ∩ Ig and/or Hg ∩ Kg.

Our next problem is in a different direction. It concerns the classification of Heegaard splittings of
graph manifolds:

Problem 10 Uncover the structure in the mapping class group that relates to the classification
theorem for the Heegaard splittings of graph manifolds in [44].

Several other complexes of curves have played a role in work on the mapping class group after
2002. We pause to describe some of them, and the role they played in recent work on the
mapping class group.

9



♦16 The complex of non-separating curves NC(S) is the subcomplex of C(S) whose vertices are
all non-separating simple closed curves on S. It was proved by Irmak in [18] that for closed
surfaces of genus g ≥ 3 its automorphism group is also isomorphic to M±, whereas if g = 2
it is isomorphic to M± mod its center.

♦17 The pants complex P(S) is next. Its vertices represent pants decompositions of S, with
edges connecting vertices whose associated pants decompositions differ by an elementary
move and its 2-cells representing certain relations between elementary moves. In [30] D.
Margalit proved a theorem which was much like the theorem proved by Ivanov in [20],
namely that M± is naturally isomorphic to Aut(P(S)).

♦18 Next, there is the Hatcher-Thurston complex HT(S). Its vertices are are collections of g
pairwise disjoint non-separating curves on S. Vertices are joined by an edge when they
differ by a single ‘elementary move’. Its 2-cells represent certain relations between
elementary moves. The complex HT(S) was constructed by Hatcher and Thurston in order
to find a finite presentation for the mapping class group, and used by Wajnryb [52] to find
the very simple presentation that we will need later in this article. It was proved by Irmak
and Korkmaz in [19] that M± is also naturally isomorphic to Aut(HT(S)).

♦19 The Torelli Complex T(Sg) is a simplicial complex whose vertices are either the isotopy
class of a single separating curve on Sg or the isotopy class of a ‘bounding pair’, i.e. a pair
of non-separating curves whose union separates. A collection of k ≥ 2 vertices forms a
k − 1-simplex if these vertices have representatives which are mutually non-isotopic and
disjoint. It was first proved by Farb and Ivanov, in [13], that the automorphism group of the
Torelli subgroup Ig of Mg is naturally isomorphic to Aut(T(S)). As it happens,
Mg

∼= Aut(T(Sg)), so that Aut (Ig) ∼= M±
g . Their proof used additional structure on the

vertices in the form of markings, but a subsequent proof of the same result by Brendle and
Margalit in [10] did not need the markings.

♦20 The separating curve complex SC(Sg) was used by Brendle and Margalit in [10] in their
study of Kg. It’s a subcomplex of C(Sg), with vertices in one-to-one correspondence with
separating simple closed curves on Sg. Brendle and Margalit used it to prove that
Aut(SC(S)) ∼= AutKg ∼= M±

g when g ≥ 4. This result was recently extended to the case
g = 3 by McCarthy and Vautau [34].

Aside: having defined all these complexes, we have a question which has little to do with the main
focus of this article, but has to be asked:

Problem 11 Given a normal subgroup Gg of Mg, what basic properties are needed in a complex
G(Sg) of curves on Sg so that Mg will turn out to be naturally isomorphic to Aut(G(S))?

We return to the central theme of this article:

Problem 12 Hempel’s distance function was chosen so that it would capture the geometry, and
indeed it does that very well, yet in some ways it feels unnatural. The Hatcher-Thurston complex
HT(S) seems much more natural to us, since and pairs of vertices in the latter determine a
Heegaard diagram, and one gets every genus g Heegaard diagram this way. One wonders whether
it is possible to redefine Heegaard distance, using HT(S), or perhaps even P(S) or one of the
other complexes that has proved to be so useful in studying subgroups of M, and whether new
things will be learned that way?
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We have focussed our discussion, up to now, on the 3-manifold that is determined by a choice of
an element φ in the group M via the Heegaard splitting construction. A very different
construction which also starts with the choice of an element in the mapping class group, say
α ∈Mg, produces the mapping torus of α, i.e. the surface bundle (S × [0, 1])/α, defined by
setting (p, 0) = (α(p), 1). Surface bundle structures on 3-manifolds, when they exist, are also not
unique. Two surface bundles (S × I)/α, (S × I)/α′ are equivalent if and only if α, α′ are in the
same conjugacy class in Mg.

In [1] an interesting description is given of a natural way to produce, for each (S × I)/α, a related
Heegaard splitting H ∪β H ′. Choose a fiber S of (S × I)/α, say S × {0} and choose points
p, q ∈ S, p 6= q, p 6= α(q). Let P and Q be disjoint closures of regular neighborhoods of
p× [0, 1/2] and q × [1/2, 1] respectively. Set

H = (S × ([0, 1/2]−Q) ∪ P , H ′ = (S × [1/2, 1]− P ) ∪Q.

Note that H and H ′ are homeomorphic handlebodies of genus 2g + 1 which are embedded in
(S × I)/α and identified along their boundaries, so they give a Heegaard decomposition of
(S × I)/α. We call it the bundle-related Heegaard splitting of (S × I)/α. It is H ∪β H ′ for some
β ∈M2g+1. We have several problems that relate to this construction:

Problem 13 This one is a warm-up. Given α ∈Mg, say as a product of Dehn twists, express
β ∈M2g+1 as a related product of Dehn twists. With that in hand, observe that if α, α′ are
equivalent in the mapping class group Mg then the Heegaard splittings associated to β, β′ appear
to be equivalent. What about the converse? And how can we tell whether an arbitrary Heegaard
splitting of a 3-manifold is the bundle-related splitting of a fibered 3-manifold? What restrictions
must we place on β in order to be able to reverse the construction, and produce a surface bundle
from a Heegaard splitting?

Problem 14 In [43] it is proved that in the case of the trivial genus g surface bundle, i.e. Sg ×S1

the bundle-related splitting is unique, up to equivalence. Are there other cases when it is unique?

Problem 15 A 3-manifold is fibered if it admits a surface bundle structure. It is virtually fibered
if it has a finite-sheeted cover that admits a surface bundle structure. In [49] Thurston asked
whether every finite-volume hyperbolic 3-manifold is virtually fibered. This question has turned out
to be one of the outstanding open problems of the post-Thurston period in 3-manifold topology.
We ask a vague question: does the distance and the very special nature of the Heegaard splitting
that’s associated to a 3-manifold which has a surface bundle structure give any hint about the
possibility of a 3-manifold which is not fibered being virtually fibered?

With regard to Problem 15, we remark that the first examples of hyperbolic knots which are
virtually fibered but not fibered were discovered 20 years after the question was posed, by
Leininger [28] even though it seems to us that fibered knots should have been one of the easiest
cases to understand. As we write this, in February 2005, there seems to be lots to learn about
virtually fibered 3-manifolds.
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3 Potential new tools, via the representations of mapping class
groups

In this section we use the notation Mg,b,n for the mapping class group of a surface with b
boundary components and n punctures, simplifying to Mg when we are thinking of Mg,0,0.

Knowing accessible quotients of Mg is important, because accessible quotients have the potential
to be new tools for studying aspects of Mg. For this reason, we begin with a problem that seems
very likely to tell us something new, even though it has the danger that it could be
time-consuming and the new results might not even be very interesting. We note that by the
main result in [14], Mg is residually finite, that is for every φ ∈Mg there is a homomorphism τ
mapping Mg to a finite group such that τ(φ) 6= the identity. Therefore there is no shortage of
finite quotients. Yet we are hard-pressed to describe any explicitly except for the finite quotients
of Sp(2g, Z) which arise by passing from Sp(2g, Z) to Sp(2g, Z/pZ). We are asking for data that
will give substance to our knowledge that M} is residually finite:

Problem 16 Study, systematically, with the help of computers, the finite quotients of Mg which
do not factor through Sp(2g, Z).

We remark that Problem 16 would simply have been impossible in the days before high-speed
computers, but it is within reach now. A fairly simple set of defining relations for Mg can be
found in [52]. As for checking whether any homomophism so-obtained factors through Sp(2g, Z),
there is are two additional relations to check, namely the Dehn twist on a genus 1 separating
curve for g ≥ 2, and the Dehn twist on a genus 1 bounding pair (see [23]) for g ≥ 3. One method
of organization is to systematically study homomorphisms of Mg (maybe starting with g = 3)
into the symmetric group Σn, beginning with low values of n and gradually increasing n. One
must check all possible images of the generators of Mg in Σn, asking (for each choice) whether
the defining relations in Mg and Sp(2g, Z) are satisfied. Note that if one uses Dehn twists on
non-separating curves as generators, then they must all be conjugate, which places a big
restriction. There are additional restrictions that arise from the orders of various generating sets,
for example in [7] it is proved that Mg is generated by 6 involutions. Of course, as one proceeds
with such an investigation, tools will present themselves and the calculation will organize itself,
willy-nilly.

We do not mean to suggest that non-finite quotients are without interest, so for completeness we
pose a related problem:

Problem 17 Construct any representations of Mg, finite or infinite, which do not factor through
Sp(2g, Z).

In a very different direction, every mathematician would do well to have in his or her pile of
future projects, in addition to the usual mix, a problem to dream about. In this category I put:

Problem 18 Is there a faithful finite dimensional matrix representation of Mg,b,n for any value
of the triplet (g, b, n) other than (1, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, n), (0, 0, n) or (2, 0, 0)?

We have mentioned Problem 18 because we believe it has relevance for Problems 16 and 17, for
reasons that relate to the existing literature. To the best of our knowledge there isn’t even a
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known candidate for a faithful representation of Mg,0,0 for g ≥ 3, even though many experts feel
that Mg,0,0 is linear. This leads us to ask a question:

Problem 19 Find a candidate for a faithful finite-dimensional matrix representation of Mg or
Mg,0,1.

♦21 The cases (g, b, n) = (1, 0, 0) and (1,1,0) are classical results which are closely related to the
fact that the Burau representation of B3 is faithful [29]. Problem 18 received new impetus
when Bigelow [2] and Krammer ([26] and [27]) discovered, in a related series of papers, that
the braid groups Bn are all linear. Of course the braid groups are mapping class groups,
namely Bn is the mapping class group M0,1,n, where admissible isotopies are required to fix
the boundary of the surface S0,1,n pointwise. Passing from Bn to Bn/center, and thence to
the mapping class group of the sphere M0,0,n. Korkmaz [25] and also Bigelow and Budney
[3] proved that M0,0,n is linear. Using a classical result of the author and Hilden [6], which
relates M0,0,n to the so-called hyperelliptic mapping class groups, Korkmaz, Bigelow and
Budney all then went on to prove that M2,0,0 is also linear. More generally the centralizers
of all elements of finite order in Mg,0,0 are linear. So essentially all of the known cases are
closely related to the linearity of the braid groups Bn.

♦22 A few words are in order about the dimensions of the known faithful representations. The
mapping class group M1,0,0 and also M1,1,0 have faithful matrix representations of
dimension 2. The faithful representation of M2,0,0 that was discovered by Bigelow and
Budney has dimension 64, which suggests that if we hope to find a faithful representation of
Mg,0,0 or Mg,1,0 for g > 2 it might turn out to have very large dimension.

♦23 A 5-dimensional non-faithful representation of M2,0,0 over the ring of Laurent polynomials
in a single variable with integer coefficients, was constructed in [24]. It arises from braid
group representations and does not generalize to genus g > 2, It is not faithful, but its
kernel has not been identified.

♦24 We review what we know about infinite quotients of M. The mapping class group acts
naturally on H1(Sg,b,n), giving rise to the symplectic representations from Mg,1,0 and Mg,0,0

to Sp(2g, Z). In [46] Sipe (and independently Trapp [50]), studied an extension of the
symplectic representation. Trapp interpreted the new information explicitly as detecting the
action of Mg,1,0 on winding numbers of curves on surfaces. Much more generally, Morita
[39] studied an infinite family of representations ρk : Mg,1,0 → Gk onto a group Gk, where
Gk is an extension of Sp(2g, Z). Here k ≥ 2, and G2 = Sp(2g, Z) is our old friend Sp(2g, Z).
He gives a description of G3 as a semi-direct product of Sp(2g, Z) with a group that is
closely related to Johnson’s representations τ1, τ2 of Kg, discussed earlier. He calls the
infinite sequence of groups Gk, k = 2, 3, 4, . . . a sequence of ‘approximations’ to Mg,1,0.
Morita also has related results for the case Mg,0,0.

In Problem 16 we suggested a crude way to look for interesting new quotients of the group Mg

that don’t factor through Sp(2g, Z). In closing we note that there might be a different approach
which would be more natural and geometric (but could be impossible for reasons that are
unknown to us at this time). We ask:

Problem 20 Is there a natural quotient complex of any one of the complexes discussed in §1
which might be useful for the construction of non-faithful representations of Mg?
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Let’s suppose that we have some answers to either Problem 16 or 17 or 20. At that moment, our
instincts would lead us right back to a line of investigation that was successful many years ago
when, in [4], we used the symplectic representation and found an invariant which distinguished
inequivalent minimal Heegaard splittings. In the intervening years we suggested that our students
try to do something similar with other representations, but that project failed. We propose it
anew. Recall that a 3-manifold M may have one or more distinct equivalence classes of Heegaard
splittings. It is known that any two become equivalent after some number of stabilizations. There
are many interesting unanswered questions about the collection of all equivalence classes of
Heegaard splittings of a 3-manifold, of every genus. Recall that the equivalence class of the
Heegaard splitting H ∪φ H ′ is the double coset HφH in M.

Problem 21 Study the double coset HφH in M, using new finite or infinite quotients of M. In
this regard we stress finite, because a principle difficulty when this project was attempted earlier
was in recognizing the image of H in infinite quotients of M, however if the quotient is finite and
not too big, it suffices to know generators of H ⊂M. Since a presentation for H was found by
Waynryb in [51], we can compute the associated subgroup. Some of the open questions which
might be revealed in a new light are:

1. How many times must one stabilize before two inequivalent Heegaard splittings become
equivalent?

2. How can we tell whether a Heegaard splitting is not of minimal genus?

3. How can we tell whether a Heegaard splitting is stabilized?

4. Are any of the representations that we noted earlier useful in answering (1), (2) or (3)
above ?

While we have stressed the search for good working quotients of Mg, we should not forget that in
the case of homology spheres, we have already pointed out that any homology sphere may be
defined by a Heegaard splitting with the Heegaard glueing map (now redefined with a new ‘base
point’ ) ranging over Ig. Even more, as was proved earlier, Morita has shown in [36] that it
suffices to let the glueing map range over Kg. This leads us to ask:

Problem 22 Are there quotients of Ig or Kg in which the intersection of either Ig or Kg with the
handlebody group Hg is sufficiently tractible to allow one to study the double cosets:

(Ig ∩Hg)(φ)(Ig ∩Hg), where φ ∈ Ig, or (Kg ∩Hg)(φ)(Kg ∩Hg), where φ ∈ Kg?

In regard to Problem 22 we note that in [36] Morita was seeking to understand how topological
invariants of 3-manifolds might lead him to a better understanding of the representations of Ig
and Kg, but he did not ask about the potential invariants of Heegaard splittings that might, at
the same time, be lurking there.
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18


