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SPRING 2009 
 
 

Professor  Hans FOELLMER   
 

Humboldt University, Berlin 
 

 
  Convex Risk Measures and Their Dynamics   

  
 

Lectures at Columbia University,  February - April  2009                Room 1025 
School of Social Work, 1255 Amsterdam Ave. 

 
Tuesdays and Thursdays, 10:00 – 12:00 

First Lecture: Tuesday February 17th 
  
 
Abstract: We discuss recent advances in the mathematical quantification of financial 
risk. The standard approach in terms of Value at Risk has serious deficiencies. This has 
motivated a systematic analysis of risk measures which satisfy some minimal require-
ments of coherence and consistency. Our focus will be on the basic structure theorems 
for convex risk measures, on the role of law-invariance, and on the dynamics of risk 
measures as new information comes in. We shall also describe the connections with 
recent developments in the microeconomic theory of preferences in the face of 
uncertainty and model ambiguity. 



 
 
 
 

SPRING 2009 
 
 

Professor  Sara BIAGINI   
 

University of Pisa 
 

 
Topics in Portfolio Optimization with general 

underlying Assets 
  

  
Lectures at Columbia University, January 2009                Room 1025 SSW 

 
Lecture 1: Tuesday Jan 20, 9:30AM-11AM  
Lecture 2: Wednesday Jan 21, 9:30AM-11AM  
Lecture 3: Thursday Jan 22, 9:30AM-11AM  
Lecture 4: Friday Jan 23, 9:30AM-11AM  
Lecture 5: Tuesday Jan 27, 9:30AM-11AM  

 
 

Aim of the Lectures and Prerequisites:  We provide a theoretical framework for portfolio 
optimization with general, possibly non-locally bounded, processes. Some familiarity is 
assumed with:  1) the basic concepts of stochastic calculus, such as predicable processes, 
(super, local) martingales, semimartingales and stochastic integration;  2) functional and 
convex analysis, especially for Lecture 5.  However we will try to be as self-contained as 
possible. 
 
Lecture 1: The market model and absence of arbitrage.  The increasing complexity of 
financial instruments requires more general models for the underlying assets, which can 
be non-locally bounded. We give some examples, including Levy models. In such genera-
lity, the notion of No Arbitrage must be replaced by No Free Lunch with Vanishing Risk. 
In the Fundamental Theorem of Asset Pricing for non-locally bounded processes, Del-
baen and Schachermayer 1998 showed that the pricing measures in this context are the 
sigma-martingale measures instead of (local) martingale measures. The mathematical 
concept of sigma-martingale process was introduced by Chou and Emery in the '70s and 
it is a generalization of the martingale concept. We illustrate it in a variety of examples. 
 
Lecture 2: Which set of admissible strategies?  The choice of a good set of admissible 
strategies is a fundamental and highly non-trivial issue. Harrison and Kreps noted that a 
certain type of strategy, "the doubling" strategy, starting with zero money generates a 



positive net return with probability one and within a finite time. Such strategies violate 
with their inconsistency the foundations of Mathematical Finance and the No-Arbitrage 
Pricing Theory. Therefore, since Harrison and Kreps a wide variety of constraints has 
been proposed in order to rule out the doubling strategy. The class of strategies widely 
used in the applications, like portfolio selection, are the uniformly bounded-from-below 
strategies H which have nice mathematical properties (an application of the Ansel-
Stricker Lemma gives that these processes are local martingales and supermartingales ) 
and a clear financial interpretation (finite credit line during the trading). But if one 
wants to account for unbounded stock prices, the set H is not enough, as it may reduce to 
the trivial zero strategy: H = {0}. There have been so far some proposals (e.g. Delbaen 
and Schachermayer 1998 in the super-replication price problem, Biagini and Frittelli for 
utility maximization) in order to define a good set of strategies in such a way to account 
for general asset prices and still preserve the features of the Ansel-Stricker lemma. We 
focus on the Biagini-Frittelli definition of admissible set H^W, consisting of strategies 
which are bounded from below by a random control W. 
 
Lecture 3: Utility Maximization (A).  The set of strategies HW performs well in applica-
tions, the case study here analyzed being expected utility maximization from terminal 
wealth. After giving some precise mathematical definitions, we point out how the pro-
blems of maximizing utility with restrictions on the wealth (say, the utility U(x) = log x) 
and of maximizing unrestricted utility (say U(x) = 1-e^{-x}) can be unified by the use of 
Orlicz spaces. We will see that these spaces, generalizations of the classic Lp spaces, are 
naturally induced by the utility function U itself and thus provide a natural framework 
for the problem.  
 
Lecture 4: Utility Maximization (B). We go into the details of the proofs of the optimiza-
tion problem, solved via duality methods. The dual problem has the nice feature of being 
defined over the sigma-martingale measures. Also, the optimal investment H^* satisfies 
some nice properties. We show how these results can be extended to cover the problem 
of utility maximization with random endowment. 
 
Lecture 5: The indifference price as a risk measure. This new Orlicz formulation enables 
several key properties of the indiference price p(B) of a claim B satisfying conditions 
weaker than those assumed in the current literature. In particular, the indiference price 
functional  turns out to be, apart from a sign, a convex risk measure on the Orlicz space   
 induced by the utility function U. 
 
We conclude the lectures by pointing out some open problems. 
  

 

 
 
 
 
 
 
 
 



FALL 2008 
 
 

Professor  Shige PENG   
 

Institute of Mathematics 
 Sandong University, China   

 

 
Coherent and Convex Risk Measures, and the 
Related Time-Consistent Nonlinear Expectations 

  
 

Lectures at Columbia University, October-November 2008 

 
 
Abstract: In this series of lectures we present some recent research results on discrete and 
continuous-time coherent risk measures in finance, under mean and variance uncertainty. We 
shall give a systematic analysis on mean, variance and dependence uncertainties. For discrete-
time situations, we consider financial products underlying a large sum of relatively small risk 
exposures under mean and variance uncertainty, as well as dependence uncertainty. The notion of 
sublinear expectation (also called coherent risk measure, upper expectation, coherent prevision), 
of which the well-known relation   E[X] +  E[Y ] =  E[X + Y ]  in classical probability theory 
becomes the following sublinear one  ˆE[X] + ˆE[Y ]  \le ˆE[X + Y ] ,  is shown to be a basic tool 
for superhedging, for superpricing, and for measures of risk. The related notions of ‘robust’ 
independence and identical distribution (iid) will lead us to derive a new type of law of large 
numbers and central limit theorem (LLN & CLT), under a space of sublinear expectation 
(\Omega, F, ^E) instead of the well-known framework of probability space (\Omega, F, P), with a 
limiting distribution that replaces the classical normal N(µ, s^2). This new distribution is stable 
under ˆE  and is called  G-normal distribution. 
 
This is also the starting point a new theory of random processes and stochastic calculus, which 
gives us a new insight to characterize and calculate varies kinds of financial risk. A G-Brownian 
motion   B(t), t \ge 0, is a path-wise continuous stochastic process defined in a sublinear 
expectation space (\Omega, F, ^E)  with stationary and independent increments. We present the 
related random and stochastic calculus, as well as their applications to option pricing and to 
measures of risk in finance, under drift and volatility uncertainty, and discuss the related data 
analysis. A path-interpretation for the related fully nonlinear PDE also plays an important role in 
our lectures. 
 
A broad survey will be given on: 
• Nonlinear expectation, nonlinear distributions and the related notion of independence; 
• Backward stochastic differential equations and the related g-expectations and g-risk measures; 
• Stochastic Hamiltonian system and stochastic PDE 
• G-Brownian motion and related stochastic analysis of Itˆo’s type; 
• Quasi-linear and fully nonlinear PDEs and the corresponding path interpretations. 

 
 



 
 
 
 

SPRING 2008 
 
 

Professor  Michel EMERY  (University of Strasbourg) 
 

 

"Five Lectures on Manifold-Valued Semimartingales” 
 
 

Tentative Times and Location   
 
 
 

    Conference Room 1025 SSW, 1:00 – 2:30      Thursday April 10th, 17th  
 

    Conference Room 1025 SSW, 9:00 – 10:30      Thursday April 24th 
 

Conference Room 1025 SSW, 1:00 – 2:30       Tuesday April 15th, 22nd  
 

  
Prerequisites: Some familiarity with the basic definitions of continuous stochastic calculus will be 
assumed: previsible process, continuous martingale, continuous local martingale, continuous 
semimartingale, stochastic integration. No knowledge of differential geometry will be needed: the 
basic notions will be recalled, and connections, the only geometric tool that will be used, will 
appear only at the end. 
 
Lecture 1:  The notion of a  formal semimartingale  will be introduced and explained. The space 
of formal semimartingales contains the space of semimartingales; if  $S$  is a semimartingale and 
$H$ a previsible process, the stochastic integral  $\int H  dS$  can always be defined as a formal 
semimartingale. This possibility of performing stochastic calculus with no integrability 
constraints on $H$ gives much freedom, just as distributions liberate ordinary calculus from 
differentiability constraints.  (By the way, the inventor of formal semimartingales is the same 
Laurent Schwartz whose name is associated to distributions.)  Interesting fallouts of this notion: 
three definitions are made much simpler and more tractable, that of the space $L(S)$ of all 
previsible processes integrable with respect to a given semimartingale $S$, that of stochastic 
integration of vector-valued processes, and that of a $\sigma$-martingale. 
 
We shall also recall some basic notions from (ordinary) differential geometry: differentiable 
manifolds, tangent and cotangent spaces and bundles. 
 
 
 Lecture 2:   Second order differential geometry will be presented. It was devised by L.Schwartz 
to describe intrinsically the infinitesimal behavior of manifold-valued semimartingales, but can 
be understood in a non-probabilistic framework. The tangent space to a manifold at a point $x$ 
consists of the speeds of all possible curves passing at $x$; similarly, the second-order counter-



part to the tangent space contains the accelerations of all those curves. Second-order tangent and 
cotangent spaces and bundles will be introduced, as well as Schwartz morphisms (the natural 
morphisms between second-order tangent spaces). Purely geometric as they are, these objects 
will not be found in any textbook on differential geometry. 
 
Then   manifold-valued semimartingales are introduced, at last! Schwartz' principle says that if 
$X$ is such a process, then $dX$ (which, as everyone knows, is a convenient notation but does 
not exist) belongs to the realm of second-order geometry. 
 
  
Lecture 3:  Schwartz' principle will be illustrated by second-order stochastic integration, 
that is, integration of second-order covectors against a (manifold-valued) semimartingale. 
We shall then turn to a general (hence useful) theory of intrinsic second-order stochastic 
differential equations in manifolds. This concept will be made clearer by analogy with ordinary 
differential equations between manifolds: given two manifolds $M$ and $N$, an ODE  is a 
machine that transforms $M$-valued curves into $N$-valued ones, and similarly a SDE 
transforms $M$-valued semimartingales into $N$-valued ones. 
 
By far, the most important examples and applications of this theory belong to Stratonovich 
intrinsic stochastic calculus, which was already known and practiced in the sixties, long before 
Schwartz pondered over second-order calculus around 1980. We shall see how purely geometric 
operations can transform ordinary 1-forms or ODEs into second-order forms or SDEs, giving rise 
to the ubiquitous Stratonovich transfer principle: geometric constructions on curves extend 
canonically to semimartingales. 
 
 
Lecture 4:   We shall elaborate on Stratonovich calculus considered as a particular case of  
Schwartz' calculus, and derive the theory of Stratonovich SDEs from the theory of second-order 
SDEs as presented in the previous lecture. We shall also describe a general approximation scheme 
by time-discretization, which yields Stratonovich objects. 
 
A very important example consists of  stochastic lifts and stochastic transport of vectors or 
tensors, of fundamental importance in practice. This will need the definition of a connection,  
a most fundamental tool in differential geometry. 
 
 
Lecture 5:  Much less well known than Stratonovich calculus, an Ito intrinsic stochastic calculus 
is also possible in manifolds. It requires some additional geometric structure, namely, a 
connection, but needs less smoothness than Stratonovich calculus. We shall introduce Ito 
stochastic integrals, Ito stochastic differential equations, the \Ito transfer principle, and an 
approximation scheme of Ito objects by time-discretization. 
 
A few words will be said about manifold-valued martingales. 
 
 
 

Lecture notes are available at   http://hal.archives-ouvertes.fr/hal-00145073/fr/ 

 
 
 
  
 
 
 



 
 

MINERVA RESEARCH FOUNDATION LECTURES  
 
 

FALL 2007 
 
 

Professor  Alison ETHERIDGE  (Oxford University) 
 
 

 
 

"Some mathematical models from population genetics" 
 
 

   Tentative Times and Location:   
 

  Conference Room 1025 SSW 
 

Wednesday    5 Sept    4:30 - 5:45 
 Thursday        6 Sept   4:30 - 5:45 
 Friday             7 Sept    2:00 - 3:15 
Monday         10 Sept   4:30 - 5:45 
Thursday      13 Sept    4:30 - 5:45 

 
 
 
 
Lecture 1:  Classical models 
 
We introduce some terminology and review some established models from mathematical 
population genetics.  This includes Wright-Fisher, Moran and stepping stone models for the 
(forwards in time) evolution of gene frequencies and Kingman's coalescent and its extensions for 
modeling the genealogical relationship (found by tracing backwards in time) between  
individuals in a sample from a population. 
 
 
Lecture 2: Recombination 
 
In sexually reproducing organisms such as our own, in which chromosomes are carried in pairs, 
each individual will inherit one chromosome of each pair from their mother and one from their 
father.  But their chromosomes are not faithful copies of parental chromosomes.  One reason for 
this is recombination.  We describe the action of recombination and explain the resulting mathe-
matical complications in our models.  Backwards in time analytic results are hard to find.  Here 
we consider the simpler problem of the descent of a block of genome forwards in time.  Our 
model, based on branching processes, predicts the probability of survival of any genetic material 
from a single block of genome $t$ generations in the future. 
 
 
Lecture 3: Selection 



 
If a selectively advantageous mutation appears in a population, then with some probability it will 
increase in frequency until everyone in the population carries it.  We then say that a selective 
sweep has occurred.How can we detect selective sweeps in data?  The key is an effect known as 
genetic hitchhiking which we discuss here.  We then turn to another form of selection, balancing 
selection, which contrives to maintain different forms of the same gene at non-trivial frequencies 
in the population. Examination of the effect on gene frequencies at a neutral locus on the same 
chromosome has important ramifications for the classical models introduced in the first lecture. 
 
 
Lecture 4: Spatial models 
 
An important conclusion from the work on selection described in lecture 3 is that we cannot 
disentangle the effects of demography and genetics.  In this lecture we describe some of the 
challenges of demographic modeling and investigate which features of a demographic model  
must be understood if we are to feed demographic information into our genetic models. 
 
 
Lecture 5: Muller's ratchet and the rate of adaptation 
 
The evolutionary force of recombination is lacking in an asexually reproducing population.  As a 
consequence, the population can suffer an irreversible accumulation of deleterious mutations, a 
phenomenon known as Muller's ratchet.  Since recombination can overcome this effect, it is 
sometimes used as an explanation for the evolution of sex.  But other forces can overcome the 
ratchet too; for example the presence of some beneficial mutations.  A mathematical model for 
the ratchet was formulated by Haigh (1978), but in spite of the apparent simplicity of the 
formulation  
the model has proved to be remarkably resistant to analytic study. We investigate variants of 
Haigh's model in two settings: first when there are only deleterious mutations and second when a 
small proportion of mutations are beneficial.  In the latter case we discover that large enough 
populations increase in mean fitness and we establish a lower bound on this ‘rate of adaptation’. 
 
      

Lecture notes are available at the site   http://www.stats.ox.ac.uk/~etheridg 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 



 
MINERVA RESEARCH FOUNDATION LECTURES  

 
Spring 2007 

 
 

Professor  Willliam SUDDERTH  (University of Minnesota) 
 

Stochastic Dynamic Programming 
 

 

 

Wednesday 2 May, Monday 7 May, Wednesday 9 May, Friday 11 May: 10:30-12:00 AM 
10th Floor Conference Room, SSW Bldg, Department of Statistics 

 
 

Synopsis 
 
 
Stochastic dynamic programming is the theory of how to “control” a stochastic process 
so as to maximize the chance, or the expected value, of some objective. For example, a 
player might try to choose bets (investments) to maximize the chance of winning $1000 
while playing roulette (the stock market). The subject is also known as stochastic control, 
Markov decision theory, or even gambling theory. The multitude of names is due in part 
to the many fields of application, which include statistics, economics, operations 
research, and mathematical finance.  The lectures will cover the basic theory of discrete-
time dynamic programming including, as time permits, backward induction, discounted 
dynamic programming, positive, and negative dynamic programming. Several examples 
will be treated in detail. 
 
 
Prerequisites:  Some knowledge of Probability Theory.  
 
Some References:  R. Bellman (1957) Dynamic Programming.  
D. Bertsekas & S.E. Shreve (1978) Stochastic Optimal Control. 
S. Ross (1983) Stochastic Dynamic Programming. 
N. Stokey & R. Lucas (1989) Recursive Methods in Economic Dynamics.  
M. Puterman (1994) Markov Decision Processes. 
A. Maitra & W. Sudderth (1996) Discrete Gambling and Stochastic Games.  
 
 
 
 
 


