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Summary

Stochastic Portfolio Theory is a flexible framework for analyzing portfolio behavior and
equity market structure. This theory was introduced by E.R. Fernholz in the papers (Journal of
Mathematical Economics, 1999; Finance & Stochastics, 2001) and in the monograph Stochastic
Portfolio Theory (Springer 2002). It was further developed in the papers Fernholz, Karatzas
& Kardaras (Finance & Stochastics, 2005), Fernholz & Karatzas (Annals of Finance, 2005),
Banner, Fernholz & Karatzas (Annals of Applied Probability, 2005), and Karatzas & Kardaras
(2006). This theory is descriptive, as opposed to normative; it is consistent with observable
characteristics of actual portfolios and markets; and it provides a theoretical tool which is
useful for practical applications.

As a theoretical tool, this framework offers fresh insights into questions of stock market
structure and arbitrage, and can be used to construct portfolios with controlled behavior. As
a practical tool, Stochastic Portfolio Theory has been applied to the analysis and optimization
of portfolio performance and has been the basis of successful investment strategies for over a
decade.
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Introduction

Stochastic Portfolio Theory (SPT), as we currently think of it, began in 1995 with the manuscript
“On the diversity of equity markets”, which eventually appeared as Fernholz (1999) in the Journal
of Mathematical Economics. Since then SPT has evolved into a flexible framework for analyzing
portfolio behavior and equity market structure that has both theoretical and practical applications.
As a theoretical methodology, this framework provides insight into questions of market behavior
and arbitrage, and can be used to construct portfolios with controlled behavior under quite general
conditions. As a practical tool, SPT has been applied to the analysis and optimization of portfolio
performance and has been the basis of successful equity investment strategies for over a decade.

SPT is a descriptive theory, which studies and attempts to explain observable phenomena that
take place in equity markets. This orientation is quite different from that of the well-known Modern
Portfolio Theory of Dynamic Asset Pricing (DAP), in which market structure is analyzed under
strong normative assumptions regarding the behavior of market participants. It has long been
suggested that the distinction between descriptive and normative theories separates the natural
sciences from the social sciences; if this dichotomy is valid, then one might argue that SPT resides
with the natural sciences.

SPT descends from the “classical portfolio theory” of Harry Markowitz (1952), as does much
of mathematical finance. At the same time, it represents a rather significant departure from some
important aspects of the current theory of Dynamic Asset Pricing. DAP is a normative theory that
grew out of the general equilibrium model of mathematical economics for financial markets, evolved
through the capital asset pricing models, and is currently predicated on the absence of arbitrage
and on the existence of equivalent martingale measure(s). SPT, by contrast, is applicable under a
wide range of assumptions and conditions that may hold in actual equity markets. Unlike dynamic
asset pricing, it is consistent with either equilibrium or disequilibrium, with either arbitrage or
no-arbitrage, and is not predicated on the existence of equivalent martingale measure(s).

While SPT has been developed with equity markets in mind, a reasonable portion of the theory
is valid for general financial assets, as long as the asset values remain positive. For such general
assets, the “market” can be replaced by an arbitrary passive portfolio with positive holdings in each
of the assets. Although some concepts related to equity markets may not be meaningful in these
general applications, others would appear to carry over without significant modification.

This survey reviews the central ideas of SPT and presents examples of portfolios and markets
with a wide variety of different properties. SPT is a fast-evolving field, so we also present a number
of research problems that remain open, at least at the time of this writing. Proofs for some of the
results are included here, but at other times simply a reference is given.

The survey is separated into four chapters. Chapter I, Basics, introduces the concepts of mar-
kets and portfolios, in particular, the market portfolio, that most important portfolio of them all. In
this first chapter we also encounter the excess growth rate process, a quantity that pervades SPT.
Chapter II, Diversity & Arbitrage, introduces market diversity and shows how diversity can lead to
relative arbitrage in an equity market. Historically, these were among the first phenomena analyzed
using SPT. Portfolio generating functions are versatile tools for constructing portfolios with partic-
ular properties, and these functions are discussed in Chapter III, Functionally Generated Portfolios.
Here we also consider stocks identified by rank, as opposed to by name, and discuss implications
regarding the size effect. Roughly speaking, these first three chapters of the survey outline the
techniques that historically have comprised SPT; the fourth chapter looks toward the future.

Part IV, Abstract Markets, is devoted to the area of much of the current research in SPT. Abstract
markets are models of equity markets that exhibit certain characteristics of real stock markets, but
for which the precise mathematical structure is known (since we can define them as we wish!). Here
we see volatility-stabilized markets that are not diverse but nevertheless allow arbitrage, and we
also look at rank-based markets that have stability properties similar to those of real stock markets.
Several problems regarding these abstract markets are proposed.
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Chapter I

Basics
SPT uses the logarithmic representation for stocks and portfolios rather than the arithmetic repre-
sentation used in “classical” mathematical finance. In the logarithmic representation, the classical
rate of return is replaced by the growth rate, sometimes referred to as the geometric rate of return
or the logarithmic rate of return. The logarithmic and arithmetic representations are equivalent, but
nevertheless the different perspectives bring to light distinct aspects of portfolio behavior. The use
of the logarithmic representation in no way implies the use of a logarithmic utility function: indeed,
SPT is not concerned with expected utility maximization at all.

We introduce here the basic structures of SPT, stocks and portfolios, and discuss that most
important portfolio of them all: the market portfolio. We show that the growth rate of a portfolio
depends not only on the growth rates of the component stocks, but also on the excess growth rate,
which is determined by the stocks’ variances and covariances. Finally, we consider a few optimization
problems in the logarithmic setting.

Most of the material in this chapter can be found in Fernholz (2002).

1 Markets and Portfolios

We shall place ourselves in a model M for a financial market of the form

dB(t) = B(t)r(t) dt, B(0) = 1,

dXi(t) = Xi(t)
(
bi(t)dt +

d∑
ν=1

σiν(t) dWν(t)
)
, Xi(0) = xi > 0, i = 1, . . . , n,

(1.1)

consisting of a money-market B(·) and of n stocks, whose prices X1(·), · · · , Xn(·) are driven by
the d−dimensional Brownian motion W (·) =

(
W1(·), · · · ,Wd(·)

)′ with d ≥ n. Contrary to a usual
assumption imposed on such models, here it is not crucial that the filtration F = {F(t)}0≤t<∞ , which
represents the “flow of information” in the market, be the one generated by the Brownian motion
itself. Thus, and until further notice, we shall take F to contain (possibly strictly) this Brownian
filtration FW = {FW (t)}0≤t<∞ , where FW (t) := σ(W (s), 0 ≤ s ≤ t) ⊆ F(t) , ∀ t ∈ [0,∞) .

We shall assume that the interest-rate process r(·) for the money-market, the vector-valued pro-
cess b(·) =

(
b1(·), . . . , bn(·))′ of rates of return for the various stocks, and the (n×d)−matrix-valued

process σ(·) =
(
σiν(·))

1≤i≤n, 1≤ν≤d
of stock-price volatilities, are all F−progressively measurable and

satisfy for every T ∈ (0,∞) the integrability conditions

∫ T

0

|r(t)| dt +
n∑

i=1

∫ T

0

(∣∣bi(t)
∣∣ +

d∑
ν=1

(
σiν(t)

)2
)

dt < ∞ , a.s. (1.2)

This setting admits a rich class of continuous-path Itô processes, with very general distributions: in
particular, no Markovian or Gaussian assumption is imposed. In fact, it is possible to extend the
scope of the theory to very general semimartingale settings; see Kardaras (2003) for details.

We shall introduce the notation

aij(t) :=
d∑

ν=1

σiν(t)σjν(t) =
(
σ(t)σ′(t)

)
ij

=
d

dt
〈log Xi, log Xj〉(t) (1.3)

for the non-negative definite matrix-valued covariance process a(·) =
(
aij(·)

)
1≤i,j≤n

of the stocks in
the market, as well as

γi(t) := bi(t)− 1
2
aii(t), i = 1, . . . , n . (1.4)
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Then we may use Itô’s rule to solve (1.1) in the form

d log Xi(t) = γi(t) dt +
d∑

ν=1

σiν(t) dWν(t), i = 1, . . . , n, (1.5)

or equivalently:

Xi(t) = xi exp
{ ∫ t

0

γi(u) du +
d∑

ν=1

∫ t

0

σiν(u) dWν(u)
}

, 0 ≤ t < ∞.

Equation (1.5) is called the logarithmic representation of the stock price process, and we shall refer
to the quantity of (1.4) as the growth rate of the ith stock, because of the a.s. relationship

lim
T→∞

1
T

(
log Xi(T )−

∫ T

0

γi(t) dt
)

= 0 . (1.6)

This is valid when the individual stock variances aii(·) do not increase too quickly, e.g., if we have

lim
T→∞

(
log log T

T 2

∫ T

0

aii(t) dt

)
= 0 , a.s.; (1.7)

then (1.6) follows from the the iterated logarithm and from the representation of (local) martingales
as time-changed Brownian motions.

Definition 1.1. A portfolio π(·) =
(
π1(·), . . . , πn(·))′ is an F−progressively measurable process,

bounded uniformly in (t, ω), with values in the set
⋃

κ∈N

{
(π1, . . . , πn) ∈ Rn

∣∣ π2
1 + . . . + π2

n ≤ κ2 , π1 + · · ·+ πn = 1
}
.

A long-only portfolio π(·) =
(
π1(·), . . . , πn(·))′ is a portfolio that takes values in the set

∆n :=
{
(π1, . . . , πn) ∈ Rn

∣∣ π1 ≥ 0, . . . , πn ≥ 0 and π1 + · · ·+ πn = 1
}
.

For future reference, we shall introduce also the notation

∆n
+ :=

{
(π1, . . . , πn) ∈ ∆n |π1 > 0, . . . , πn > 0

}
. ¤

Thus, a portfolio can sell one or more stocks short (though certainly not all) but is never allowed
to borrow from, or invest in, the money market; whereas a long-only portfolio sells no stocks short
at all. The interpretation is that πi(t) represents the proportion of wealth V w,π(t) invested at time
t in the ith stock, so the quantities

hi(t) = πi(t)V w,π(t), i = 1, · · · , n (1.8)

are the dollar amounts invested at any given time t in the individual stocks.
The wealth process V w,π(·) , that corresponds to a portfolio π(·) and initial capital w > 0 ,

satisfies the stochastic equation

dV w,π(t)
V w,π(t)

=
n∑

i=1

πi(t)
dXi(t)
Xi(t)

= π′(t)
[
b(t)dt + σ(t) dW (t)

]

= bπ(t) dt +
d∑

ν=1

σπν(t) dWν(t), V w,π(0) = w,

(1.9)
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where

bπ(t) :=
n∑

i=1

πi(t)bi(t), σπν(t) :=
n∑

i=1

πi(t)σiν(t) for ν = 1, . . . , d . (1.10)

These quantities are, respectively, the rate-of-return and the volatility coëfficients associated with
the portfolio π(·).

By analogy with (1.5) we can write the solution of the equation (1.9) as

d log V w,π(t) = γπ(t) dt +
d∑

ν=1

σπν(t) dWν(t), V w,π(0) = w , (1.11)

or equivalently

V w,π(t) = w exp
{ ∫ t

0

γπ(u) du +
d∑

ν=1

∫ t

0

σπν(u) dWν(u)
}

, 0 ≤ t < ∞ .

Here

γπ(t) :=
n∑

i=1

πi(t)γi(t) + γ∗π(t) (1.12)

is the growth rate of the portfolio π(·), and

γ∗π(t) :=
1
2

( n∑

i=1

πi(t)aii(t)−
n∑

i=1

n∑

j=1

πi(t)aij(t)πj(t)
)

(1.13)

the excess growth rate of the portfolio π(·). As we shall see in Lemma 3.3 below, for a long-only
portfolio this excess growth rate is always non-negative – and is strictly positive for such portfolios
that do not concentrate their holdings in just one stock.

Again, the terminology “growth rate” is justified by the a.s. property

lim
T→∞

1
T

(
log V w,π(T )−

∫ T

0

γπ(t) dt
)

= 0, (1.14)

valid under the analogue

lim
T→∞

(
log log T

T 2

∫ T

0

||a(t)|| dt

)
= 0 , a.s.; (1.15)

of condition (1.7). Clearly, this condition is satisfied when all eigenvalues of the covariance matrix
process a(·) of (1.3) are uniformly bounded away from infinity: i.e., when

ξ′a(t)ξ = ξ′σ(t)σ′(t)ξ ≤ K‖ξ‖2, ∀ t ∈ [0,∞) and ξ ∈ Rn (1.16)

holds almost surely, for some constant K ∈ (0,∞). We shall refer to (1.16) as the uniform bounded-
ness condition on the volatility structure of M.

Without further comment we shall write V π(·) ≡ V 1,π(·) for initial wealth w =$1. Let us also
note the following analogue of (1.11), namely

d log V π(t) = γ∗π(t) dt +
n∑

i=1

πi(t) d log Xi(t). (1.17)

Definition 1.2. We shall use the reverse-order-statistics notation for the weights of a portfolio π(·),
ranked at time t in decreasing order, from largest down to smallest:

max
1≤i≤n

πi(t) =: π(1)(t) ≥ π(2)(t) ≥ . . . ≥ π(n−1)(t) ≥ π(n)(t) := min
1≤i≤n

πi(t). (1.18)
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For an arbitrary portfolio π(·), and with ei denoting the ith unit vector in Rn, let us introduce
the quantities

τπ
ij(t) :=

d∑
ν=1

(
σiν(t)− σπν(t)

)(
σjν(t)− σπν(t)

)
(1.19)

=
(
π(t)− ei

)′
a(t)

(
π(t)− ej

)
= aij(t)− aπi(t)− aπj(t) + aππ(t)

for 1 ≤ i, j ≤ n, and set

aπi(t) :=
n∑

j=1

πj(t)aij(t), aππ(t) :=
n∑

i=1

n∑

j=1

πi(t)aij(t)πj(t) =
d∑

ν=1

(
σπν(t)

)2
. (1.20)

It is seen from (1.11) that this last quantity is the variance of the portfolio π(·) .
We shall call the matrix-valued process τπ(·) =

(
τπ
ij(·)

)
1≤i,j≤n

of (1.19) the process of individual
stocks’ covariances relative to the portfolio π(·). It satisfies the elementary property

n∑

j=1

τπ
ij(t)πj(t) = 0, i = 1, · · · , n. (1.21)

Trading Strategies: For completeness of exposition and for later use in this survey, let us go
briefly beyond portfolios and recall the notion of trading strategies: these are allowed to invest in
(or borrow from) the money market. Formally, they are F−progressively measurable, Rn−valued
processes h(·) =

(
h1(·), · · ·hn(·))′ that satisfy the integrability condition

n∑

i=1

∫ T

0

(∣∣hi(t)
∣∣∣∣bi(t)− r(t)

∣∣ + h2
i (t)aii(t)

)
dt < ∞, a.s.

for every T ∈ (0,∞). The interpretation is that the real-valued, F(t)−measurable random variable
hi(t) stands for the dollar amount invested by the strategy h(·) at time t in the ith stock. If we
denote by Vw,h(t) the wealth at time t corresponding to this strategy h(·) and to an initial capital
w > 0, then Vw,h(t)−∑n

i=1 hi(t) is the amount invested in the money market, and we have

dVw,h(t) =
(
Vw,h(t)−

n∑

i=1

hi(t)
)
r(t) dt +

n∑

i=1

hi(t)
(
bi(t) dt +

d∑
ν=1

σiν(t) dWν(t)
)
,

or equivalently,

Vw,h(t)
B(t)

= w +
∫ t

0

h′(s)
B(s)

((
b(s)− r(s)I

)
ds + σ(s) dW (s)

)
, 0 ≤ t < ∞ . (1.22)

Here I = (1, · · · , 1)′ is the n−dimensional column vector with 1 in all entries. Again without further
comment, we shall write Vh(·) ≡ V1,h(·) for initial wealth w =$1.

As mentioned already, all quantities hi(·), 1 ≤ i ≤ n and Vw,h(t) − h′(·)I are allowed to take
negative values. This possibility opens the door to the notorious doubling strategies of martingale
theory (e.g. [KS] (1998), Chapter 1). In order to rule these out on a given time-horizon [0, T ] , we
shall confine ourselves here to trading strategies h(·) that satisfy

P
(Vw,h(t) ≥ 0, ∀ 0 ≤ t ≤ T

)
= 1 . (1.23)

Such strategies will be called admissible for the initial capital w > 0 on the time horizon [0,T ]; their
collection will be denoted H(w;T ), and we shall set H(w) :=

⋂
T >0

H(w; T ) .

We shall also find useful to look at the collection H+(w;T ) ⊂ H(w; T ) of strongly admissible
strategies, with P

(Vw,h(t) > 0, ∀ 0 ≤ t ≤ T
)

= 1. Similarly, we shall set H+(w) :=
⋂

T >0
H+(w;T ) .

Each portfolio π(·) generates, via (1.8), a trading strategy h(·) ∈ H+(w); and we have Vw,h(·) ≡
V w,π(·). It is not difficult to see from (1.9) that the trading strategy generated by a portfolio π(·)
is self-financing (see, e.g., Duffie (1992) for a discussion).
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2 The Market Portfolio

Suppose we normalize so that each stock has always just one share outstanding; then the stock price
Xi(t) can be interpreted as the capitalization of the ith company at time t, and the quantities

X(t) := X1(t) + . . . + Xn(t) and µi(t) :=
Xi(t)
X(t)

, i = 1, . . . , n (2.1)

as the total capitalization of the market and the relative capitalizations of the individual companies,
respectively. Clearly 0 < µi(t) < 1, ∀ i = 1, . . . , n and

∑n
i=1 µi(t) = 1, so we may think of the

vector process µ(·) =
(
µ1(·), . . . , µn(·))′ as a portfolio that invests the proportion µi(t) of current

wealth in the ith asset at all times. Equivalently, this portfolio holds the same, constant number of
shares in all assets, at all times. The resulting wealth process V w,µ(·) satisfies

dV w,µ(t)
V w,µ(t)

=
n∑

i=1

µi(t)
dXi(t)
Xi(t)

=
n∑

i=1

dXi(t)
X(t)

=
dX(t)
X(t)

,

in accordance with (2.1) and (1.9). In other words,

V w,µ(·) ≡ w

X(0)
X(·) ; (2.2)

investing in the portfolio µ(·) is tantamount to ownership of the entire market, in proportion of
course to the initial investment. For this reason, we shall call µ(·) of (2.1) the market portfolio, and
the processes µi the market weight processes.

By analogy with (1.11), we have

d log V w,µ(t) = γµ(t) dt +
d∑

ν=1

σµν(t) dWν(t), V w,µ(0) = w, (2.3)

and comparison of this last equation (2.3) with (1.5) gives the dynamics of the market-weights

d log µi(t) =
(
γi(t)− γµ(t)

)
dt +

d∑
ν=1

(
σiν(t)− σµν(t)

)
dWν(t) (2.4)

in (2.1) for all stocks i = 1, . . . , n in the notation of (1.10), (1.12); equivalently,

dµi(t)
µi(t)

=
(
γi(t)− γµ(t) +

1
2
τµ
ii(t)

)
dt +

d∑
ν=1

(
σiν(t)− σµν(t)

)
dWν(t) . (2.5)

We are recalling here the quantities

τµ
ij(t) :=

d∑
ν=1

(
σiν(t)− σµν(t)

)(
σjν(t)− σµν(t)

)
=

d〈µi, µj〉(t)
µi(t)µj(t)dt

, 1 ≤ i, j ≤ n (2.6)

of (1.19) for the market portfolio π(·) ≡ µ(·), namely, the covariances of the individual stocks relative
to the entire market.

Remark 2.1. Coherence: We say that the market model M of (1.1), (1.2) is coherent, if the
relative capitalizations of (2.1) satisfy

lim
T→∞

1
T

log µi(T ) = 0 almost surely, for each i = 1, · · · , n (2.7)
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(i.e., if none of the stocks declines too rapidly with respect to the market as a whole). Under the
condition (1.15) on the covariance structure, it can be shown that coherence is equivalent to each of
the following two conditions:

lim
T→∞

1
T

∫ T

0

(
γi(t)− γµ(t)

)
dt = 0 a.s., for each i = 1, · · · , n; (2.8)

lim
T→∞

1
T

∫ T

0

(
γi(t)− γj(t)

)
dt = 0 a.s., for each pair 1 ≤ i, j ≤ n. (2.9)

See Fernholz (2002), pp. 26-27 for details.

3 Some Useful Properties

In this section we collect together some useful properties of the relative covariance process in (1.19),
for ease of reference in future usage. For any given stock i and portfolio π(·), the relative return
process of the ith stock versus π(·) is the process

Rπ
i (t) := log

(
Xi(t)

V w,π(t)

)∣∣∣∣
w=Xi(0)

, 0 ≤ t < ∞. (3.1)

Lemma 3.1. For any portfolio π(·), and for all 1 ≤ i, j ≤ n and t ∈ [0,∞), we have almost surely

τπ
ij(t) =

d

dt
〈Rπ

i , Rπ
j 〉(t), in particular, τπ

ii(t) =
d

dt
〈Rπ

i 〉(t) ≥ 0, (3.2)

for the relative covariances of (1.19); and the matrix τπ(t) =
(
τπ
ij(t)

)
1≤i,j≤n

is a.s. nonnegative
definite. Furthermore, if the covariance matrix a(t) is positive definite, then the relative covariance
matrix τπ(t) has rank n− 1, and its null space is spanned by the vector π(t), almost surely.

Proof. Comparing (1.5) with (1.11) we get the analogue

dRπ
i (t) =

(
γi(t)− γπ(t)

)
dt +

d∑
ν=1

(
σiν(t)− σπν(t)

)
dWν(t),

of (2.4), from which the first two claims follow.
Now suppose that a(t) is positive definite. For any x ∈ Rn \ {0} and with η :=

∑n
i=1 xi, we

compute from (2.4):

x′τπ(t)x = x′a(t)x− 2ηx′a(t)π(t) + η2π′(t)a(t)π(t).

If
∑n

i=1 xi = 0, then x′τπ(t)x = x′a(t)x > 0. If on the other hand η :=
∑n

i=1 xi 6= 0, we consider
the vector y := x/η that satisfies

∑n
i=1 yi = 1, and observe that η−2x′τπ(t)x is equal to

y′τπ(t)y = y′a(t)y − 2y′a(t)π(t) + π′(t)a(t)π(t) =
(
y − π(t)

)′
a(t)

(
y − π(t)

)
,

thus zero if and only if y = π(t), or equivalently x = ηπ(t).

Lemma 3.2. For any two portfolios π(·), ρ(·) we have

d log
(

V π(t)
V ρ(t)

)
= γ∗π(t) dt +

n∑

i=1

πi(t) d log
(

Xi(t)
V ρ(t)

)
. (3.3)

9



In particular, we get the dynamics

d log
(

V π(t)
V µ(t)

)
= γ∗π(t) dt +

n∑

i=1

πi(t) d log µi(t) (3.4)

=
(
γ∗π(t)− γ∗µ(t)

)
dt +

n∑

i=1

(
πi(t)− µi(t)

)
d log µi(t)

for the relative return of an arbitrary portfolio π(·) with respect to the market.

Proof. The equation (3.3) follows from (1.17), and the first equality in (3.4) is the special case of
(3.3) with ρ(·) ≡ µ(·). The second equality in (3.4) follows upon observing from (2.4) that

n∑

i=1

µi(t) d log µi(t) =
n∑

i=1

µi(t)
(
γi(t)− γµ(t)

)
dt = −γ∗µ(t) dt.

Lemma 3.3. For any two portfolios π(·), ρ(·) we have the numéraire-invariance property

γ∗π(t) =
1
2

( n∑

i=1

πi(t)τ
ρ
ii(t)−

n∑

i=1

n∑

j=1

πi(t)πj(t)τ
ρ
ij(t)

)
. (3.5)

In particular, recalling (1.21), we obtain the representation

γ∗π(t) =
1
2

n∑

i=1

πi(t)τπ
ii(t) (3.6)

for the excess growth rate, as a weighted average of the individual stocks’ variances τπ
ii(·) relative

to the portfolio π(·) , as in (1.19). Whereas from (3.6), (3.2) and Definition 1.1, we get for any
long-only portfolio π(·) the property:

γ∗π(t) ≥ 0 . (3.7)

Proof. From (1.19) we obtain

n∑

i=1

πi(t)τ
ρ
ii(t) =

n∑

i=1

πi(t)aii(t)− 2
n∑

i=1

πi(t)aρi(t) + aρρ(t)

as well as
n∑

i=1

n∑

j=1

πi(t)τ
ρ
ij(t)πj(t) =

n∑

i=1

n∑

j=1

πi(t)aij(t)πj(t)− 2
n∑

i=1

πi(t)aρi(t) + aρρ(t),

and (3.5) follows from (1.13).

For the market portfolio, equation (3.6) becomes

γ∗µ(t) =
1
2

n∑

i=1

µi(t)τ
µ
ii(t) ; (3.8)

the summation on the right-hand-side is the average, according to the market weights of individual
stocks, of these stocks’ variances relative to the market. Thus, (3.8) gives an interpretation of the
excess growth rate of the market portfolio, as a measure of the market’s “intrinsic” volatility.
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Remark 3.1. Note that (3.4), in conjunction with (2.4), (2.5) and the numéraire-invariance property
(3.5), implies that for any portfolio π(·) we have the relative return formula d (V π(t)/V µ(t)) =
(V π(t)/V µ(t))

∑n
i=1(πi(t)/µi(t)) dµi(t) , or equivalently, in conjunction with (2.6):

d log
(

V π(t)
V µ(t)

)
=

n∑

i=1

πi(t)
µi(t)

dµi(t)− 1
2




n∑

i=1

n∑

j=1

πi(t)πj(t)τ
µ
ij(t)


 dt . (3.9)

Lemma 3.4. Assume that the covariance process a(·) of (1.3) satisfies the following strong non-
degeneracy condition: there exists a constant ε ∈ (0,∞) such that

ξ′a(t)ξ = ξ′σ(t)σ′(t)ξ ≥ ε‖ξ‖2, ∀ t ∈ [0,∞) and ξ ∈ Rn (3.10)

holds almost surely (all eigenvalues are bounded away from zero). Then for every portfolio π(·) and
all 0 ≤ t < ∞, we have in the notation of (1.18) the inequalities

ε
(
1− πi(t)

)2 ≤ τπ
ii(t), i = 1, · · · , n , (3.11)

almost surely. If the portfolio π(·) is long-only, we have also

ε

2
(
1− π(1)(t)

) ≤ γ∗π(t). (3.12)

Proof. With ei denoting the ith unit vector in Rn, we have

τπ
ii(t) = (π(t)− ei)′a(t)(π(t)− ei) ≥ ε‖π(t)− ei‖2 = ε

((
1− πi(t)

)2 +
∑

j 6=i

π2
j (t)

)

from (1.19) and (3.10), thus (3.11) follows. Back into (3.6), and with πi(t) ≥ 0 valid for all i =
1, · · · , n, this lower estimate gives

γπ
∗ (t) ≥ ε

2

n∑

i=1

πi(t)
((

1− πi(t)
)2 +

∑

j 6=i

π2
j (t)

)

=
ε

2

( n∑

i=1

πi(t)
(
1− πi(t)

)2 +
n∑

j=1

π2
j (t)

(
1− πj(t)

))

=
ε

2

n∑

i=1

πi(t)
(
1− πi(t)

) ≥ ε

2
(
1− π(1)(t)

)
.

Lemma 3.5. Assume that the uniform boundedness condition (1.16) holds; then for every long-only
portfolio π(·) and for 0 ≤ t < ∞, we have in the notation of (1.18) the a.s. inequalities

τπ
ii(t) ≤ K

(
1− πi(t)

)(
2− πi(t)

)
, i = 1, · · · , n (3.13)

γ∗π(t) ≤ 2K
(
1− π(1)(t)

)
. (3.14)

Proof. By analogy with the previous proof, we get

τπ
ii(t) ≤ K

((
1− πi(t)

)2 +
∑

j 6=i

π2
j (t)

)
≤ K

((
1− πi(t)

)2 +
∑

j 6=i

πj(t)
)

= K(1− πi(t))(2− πi(t))

11



as claimed in (3.13), and bringing this estimate into (3.6) leads to

γπ
∗ (t) ≤ K

n∑

i=1

πi(t)
(
1− πi(t)

)
= K

(
π(1)(t)

(
1− π(1)(t)

)
+

n∑

k=2

π(k)(t)
(
1− π(k)(t)

))

≤ K
((

1− π(1)(t)
)

+
n∑

k=2

π(k)(t)
)

= 2K
(
1− π(1)(t)

)
.

Remark 3.2. Portfolio Diversification and Market Volatility as drivers of Growth: Sup-
pose that the market M of (1.1), (1.2) satisfies the strong-nondegeneracy condition (3.10). Consider
a long-only portfolio π(·) for which π(1)(t) := max1≤i≤n πi(t) < 1 holds for all t ≥ 0 ; i.e., which
never concentrates its holdings in just one asset. The growth rate of such a portfolio will dominate
strictly the average of the individual assets’ growth rates: we have almost surely

γπ(t)−
n∑

i=1

πi(t) γi(t) = γ∗π(t) ≥ ε

2
(
1− π(1)(t)

)
> 0 , 0 ≤ t < ∞ , (3.15)

thanks to (1.12) and (3.12). (In particular, if all growth rates γi(·) ≡ γ(·) , i = 1, · · · , n are the
same, then the growth rate of such a portfolio will dominate strictly this common growth rate.)
The more volatile the market (i.e., the higher the ε > 0 in (3.10)), and the more diversified the
portfolio (to wit, the higher the lower-bound η > 0 in 1 − π(1)(t) ≥ η , 0 ≤ t < ∞ ), the bigger
the lower bound of (3.15). In other words, as Fernholz & Shay (1982) were the first to observe: in
the presence of sufficient market volatility, even minimal portfolio diversification can significantly
enhance growth.

To see how significant such an enhancement can be, let us consider any fixed-proportion, long-
only portfolio π(·) ≡ π , for some vector π ∈ ∆n with 1− π(1) = 1−max1≤i≤n πi =: η > 0 .
(i) From (3.4) and (3.15) we have the a.s. comparisons

1
T

log
(

V π(T )
V µ(T )

)
−

n∑

i=1

πi

T
log µi(T ) =

1
T

∫ T

0

γ∗π(t) dt ≥ εη

2
> 0 , ∀ T ∈ (0,∞) .

If the market is coherent as in Remark 2.1, we conclude from these comparisons that the wealth
corresponding to any such fixed-proportion, long-only portfolio, grows exponentially and at a rate
strictly higher than that of the overall market:

lim inf
T→∞

1
T

log
(

V π(T )
V µ(T )

)
≥ εη

2
> 0 , a.s. (3.16)

(ii) Similarly, if the long-term growth rates limT→∞(1/T ) log Xi(T ) = γi exist a.s. for every i =
1, · · · , n , then (1.17) gives the a.s. comparisons

lim inf
T→∞

1
T

log V π(T ) ≥
n∑

i=1

πiγi +
εη

2
>

n∑

i=1

πiγi .

4 Portfolio Optimization

We can formulate already some fairly interesting optimization problems.

Problem 4.1 (Quadratic criterion, linear constraint (Markowitz, 1952)). Minimize the
portfolio variance aππ(t) =

∑n
i=1

∑n
j=1 πi(t)aij(t)πj(t), among all portfolios π(·) with rate-of-return

bπ(t) =
∑n

i=1 πi(t)bi(t) ≥ b0 greater than, or equal to, a given constant b0 ∈ R .

12



Problem 4.2 (Quadratic criterion, quadratic constraint). Minimize the portfolio variance

aππ(t) =
n∑

i=1

n∑

j=1

πi(t)aij(t)πj(t)

among all portfolios π(·) with growth rate at least equal to a given constant γ0 , namely:

n∑

i=1

πi(t)
(

γi(t) +
1
2
aii(t)

)
≥ γ0 +

1
2

n∑

i=1

n∑

j=1

πi(t)aij(t)πj(t).

Problem 4.3. Maximize, over long-only portfolios π(·), the probability of reaching a given “ceiling”
c before reaching a given “floor” f, with 0 < f < w < c < ∞. More specifically, maximize the
probability P[Tπ

c < Tπ
f ] , with the notation Tπ

ξ := inf{t ≥ 0 |V w,π(t) = ξ} for ξ ∈ (0,∞).
In the case of constant coëfficients γi and aij , the solution to this problem comes in the following

simple form: one looks at the mean-variance, or signal-to-noise, ratio

γπ

aππ
=

∑n
i=1 πi(γi + 1

2aii)∑n
i=1

∑n
j=1 πiaijπj

− 1
2
,

and finds a vector π ∈ ∆n that maximizes it (Pestien & Sudderth, 1985).

Problem 4.4. Minimize, over long-only portfolios π(·), the expected time E(Tπ
c ) until a given

“ceiling” c ∈ (w,∞) is reached.
Again with constant coëfficients, it turns out that it is enough to maximize the drift in the

equation for log V w,π(·), namely

γπ =
∑n

i=1 πi

(
γi + 1

2aii

)− 1
2

∑n
i=1

∑n
j=1 πiaijπj ,

the portfolio growth rate (Heath, Orey, Pestien & Sudderth, 1987), over vectors π ∈ ∆n.

Problem 4.5. Maximize, over portfolios π(·), the probability P [ Tπ
c < T ∧Tπ

f ] of reaching a given
“ceiling” c before reaching a given “floor” f with 0 < f < w < c < ∞, by a given “deadline”
T ∈ (0,∞).

Always with constant coëfficients, suppose there is a vector π̂ = (π̂1, . . . , π̂n)′ that maximizes
both the signal-to-noise ratio and the variance,

γπ

aππ
=

∑n
i=1 πi(γi + 1

2aii)∑n
i=1

∑n
j=1 πiaijπj

− 1
2

and aππ =
n∑

i=1

n∑

j=1

πiaijπj ,

respectively, over all vectors (π1, · · · , πn) that satisfy
∑n

i=1 πi = 1 ( as well as π1 ≥ 0, . . . , πn ≥ 0
if we restrict ourselves to long-only portfolios). Then the resulting constant-proportion portfolio
π̂(·) ≡ π̂ is optimal for the above criterion (Sudderth & Weerasinghe, 1989).

This is a big assumption; it is satisfied, for instance, under the (very stringent, and unnatural...)
condition that, for some real number b ≤ 0, we have

bi = γi +
1
2
aii = b , for all i = 1, . . . , n .

As far as the authors are aware, nobody seems to have solved this problem when such simultaneous
maximization is not possible.
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Problem 4.6 (The Growth-Optimal Portfolio). Suppose we can find a portfolio π̂(·) such
that, with probability one: for each t ∈ [0,∞), the vector π̂(t) maximizes the expression

n∑

i=1

xiγi(t) +
1
2




n∑

i=1

xiaii(t)−
n∑

i=1

n∑

j=1

xiaij(t)xj


 = x′b(t)− 1

2
x′a(t)x (4.1)

over all vectors (x1, · · · , xn) ∈ Rn with
∑n

i=1 xi = 1 . In particular, this vector has to satisfy the
first-order condition associated with this maximization, namely

(
x− π̂(t)

)′(
b(t)− a(t)π̂(t)

) ≤ 0 , for every vector (x1, · · · , xn) ∈ Rn with
n∑

i=1

xi = 1 . (4.2)

It is clear then that, for any portfolio π(·) , we have the a.s. comparison

γπ(t) ≤ γbπ(t) , ∀ 0 ≤ t < ∞ (4.3)

of growth rates. If (1.15) is satisfied (e.g., if (1.16) holds), then the consequence

d log
(

V π(t)
V bπ(t)

)
=

(
γπ(t)− γbπ(t)

)
dt +

d∑
ν=1

(
σπν(t)− σbπν(t)

)
dWν(t) (4.4)

of (1.11) leads to the growth-optimality property

lim sup
T→∞

1
T

log
(

V π(T )
V bπ(T )

)
≤ 0 a.s., for every portfolio π(·) ; (4.5)

and if for some F−stopping time T we have E
∫ T

0
||a(t)|| dt < ∞ , then (4.3) and (4.4) lead to the

log-optimality property

E
(
log V π(T)

) ≤ E
(
log V bπ(T)

)
, for every portfolio π(·) . (4.6)

There is more one can say: denoting by R̂π(·) := V π(·)/V bπ(·) the process of (4.4), an application
of Itô’s rule gives

d R̂π(t)

R̂π(t)
=

[
γπ(t)− γbπ(t) +

1
2

d∑
ν=1

(
σπν(t)− σbπν(t)

)2

]
dt +

d∑
ν=1

(
σπν(t)− σbπν(t)

)
dWν(t)

=
(
π(t)− π̂(t)

)′ [ (
b(t)− a(t)π̂(t)

)
dt + σ(t) dW (t)

]
.

In conjunction with the first-order condition of (4.2), this semimartingale decomposition shows that
R̂π(·) is a local supermartingale; because it is positive, this process is therefore a supermartingale,
by Fatou’s lemma. We obtain the muméraire property of the growth-optimal portfolio π̂(·) :

R̂π(·) = V π(·)/V bπ(·) is a supermartingale, for every portfolio π(·) . (4.7)

Chapter II

Diversity & Arbitrage
Roughly speaking, a market is diverse if it avoids concentrating all its capital into a single stock,
and the diversity of a market is a measure of how uniformly the capital is spread among the stocks.
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These concepts were introduced in Fernholz (1999); it was shown in Fernholz (2002), Section 3.3, and
in Fernholz, Karatzas & Kardaras (2005) that market diversity gives rise to arbitrage. Diversity is
a concept that is meaningful for equity markets, but probably not for more general classes of assets.
Nevertheless, some of the results in this chapter may be relevant for passive portfolios comprising
more general types of assets.

Unlike classical mathematical finance, SPT is not averse to the existence of arbitrage in markets,
but rather studies market characteristics that imply the existence of arbitrage. Moreover, it shows
that the existence of arbitrage does not preclude the development of option pricing theory or certain
types of utility maximization. These and other related ideas are presented in this chapter.

5 Diversity

The notion of diversity for a financial market corresponds to the intuitive (and descriptive) idea,
that no single company can ever be allowed to dominate the entire market in terms of relative
capitalization. To make this notion precise, let us say that the model M of (1.1), (1.2) is diverse
on the time-horizon [0, T ], with T > 0 a given real number, if there exists a number δ ∈ (0, 1) such
that the quantities of (2.1) satisfy almost surely

max
1≤i≤n

µi(t) =: µ(1)(t) < 1− δ, ∀ 0 ≤ t ≤ T (5.1)

in the order-statistics notation of (1.18). In a similar vein, we say that M is weakly diverse on the
time-horizon [0, T ], if for some δ ∈ (0, 1) we have

1
T

∫ T

0

µ(1)(t)dt < 1− δ , a.s. (5.2)

We say that M is uniformly weakly diverse on [T0,∞), for some real number T0 > 0 , if there exists
a number δ ∈ (0, 1) such that (5.2) holds for every T ∈ [T0,∞).

It follows directly from (3.14) of Lemma 3.5 that, under the uniform boundedness condition
(1.16), the model M of (1.1), (1.2) is diverse (respectively, weakly diverse) on the time-horizon
[0, T ], if there exists a number ζ > 0 such that

γ∗µ(t) ≥ ζ, ∀ 0 ≤ t ≤ T
(
respectively,

1
T

∫ T

0

γ∗µ(t) dt ≥ ζ
)

(5.3)

holds almost surely. And (3.12) of Lemma 3.4 shows that, under the strong non-degeneracy condition
(3.10), the first (respectively, the second) inequality of (5.3) is satisfied if diversity (respectively, weak
diversity) holds on the time interval [0, T ].

As we shall see in Section 9, diversity can be ensured by a strongly negative rate of growth for
the largest stock, resulting in a sufficiently strong repelling drift (e.g., a log-pole-type singularity)
away from an appropriate boundary, as well as non-negative growth rates for all the other stocks.

If all the stocks in M have the same growth rate (γi(·) ≡ γ(·), ∀ 1 ≤ i ≤ n) and (1.15) holds,
then we have almost surely:

lim
T→∞

1
T

∫ T

0

γ∗µ(t) dt = 0. (5.4)

In particular, such an equal-growth-rate market M cannot be diverse, even weakly, over long time
horizons, provided that (3.10) is also satisfied.

Here is a quick argument for these claims: recall that for X(·) = X1(·) + · · ·+ Xn(·) we have

lim
T→∞

1
T

(
log X(T )−

∫ T

0

γµ(t) dt
)

= 0, lim
T→∞

1
T

(
log Xi(T )−

∫ T

0

γ(t) dt
)

= 0

15



a.s., from (1.14), (1.6) and γi(·) ≡ γ(·) for all 1 ≤ i ≤ n. But then we have also

lim
T→∞

1
T

(
log X(1)(T )−

∫ T

0

γ(t) dt
)

= 0, a.s.

for the biggest stock X(1)(·) := max1≤i≤n Xi(·), and note the inequalities X(1)(·) ≤ X(·) ≤ nX(1)(·).
Therefore,

lim
T→∞

1
T

(
log X(1)(T )− log X(T )

)
= 0, thus lim

T→∞
1
T

∫ T

0

(
γµ(t)− γ(t)

)
dt = 0 ,

almost surely. But γµ(t) =
∑n

i=1 µi(t)γ(t)+γ∗µ(t) = γ(t)+γ∗µ(t) because of the assumption of equal
growth rates, and (5.4) follows. If (3.10) also holds, then (3.12) and (5.4) imply

lim
T→∞

1
T

∫ T

0

(
1− µ(1)(t)

)
dt = 0

almost surely, so weak diversity fails on long time horizons: once in a while a single stock dominates
the entire market, then recedes; sooner or later another stock takes its place as absolutely dominant
leader; and so on.

Remark 5.1. If all the stocks in the market M have constant (though not necessarily the same)
growth rates, and if (1.16), (3.10) hold, then M cannot be diverse, even weakly, over long time
horizons.

6 Relative Arbitrage and Its Consequences

The notion of arbitrage is of paramount importance in mathematical finance. We present in this
section an allied notion, that of relative arbitrage, and explore some of its consequences. In later
sections we shall encounter specific, descriptive conditions on market structure, that lead to this
form of arbitrage. Relative arbitrage, although discussed here in the context of equity markets, is a
concept that remains meaningful for general classes of assets.

Definition 6.1. Given any two portfolios π(·), ρ(·) with the same initial capital V π(0) = V ρ(0) = 1,
we shall say that π(·) represents an arbitrage opportunity (respectively, a strong arbitrage opportunity)
relative to ρ(·) over the time-horizon [0, T ], with T > 0 a given real number, if

P
(
V π(T ) ≥ V ρ(T )

)
= 1 and P

(
V π(T ) > V ρ(T )

)
> 0 (6.1)

(respectively, if P(V π(T ) > V ρ(T )) = 1 holds). We shall say that π(·) represents a superior long-
term growth opportunity relative to ρ(·), if

Lπ,ρ := lim inf
T→∞

1
T

log
(

V π(T )
V ρ(T )

)
> 0 holds a.s. (6.2)

(Recall here the comparison of (3.16).)

Remark 6.1. The definition of relative arbitrage has historically included the condition that there
exist a constant q = qπ,ρ,T > 0 such that

P
(
V π(t) ≥ qV ρ(t), ∀ 0 ≤ t ≤ T

)
= 1. (6.3)

However, if one can find a portfolio π(·) that satisfies the domination properties (6.1) relative to
some other portfolio ρ(·), then there exists another portfolio π̃(·) that satisfies both (6.3) and (6.1)
relative to the same ρ(·). The construction involves a strategy of investing a portion w ∈ (0, 1) of
the initial capital $1 in π(·), and the remaining proportion 1−w in ρ(·). This observation is due to
C. Kardaras (2006).
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6.1 Strict Local Martingales

Let us place ourselves now, and for the remainder of this section, within the market model M of
(1.1) under the conditions (1.2). We shall assume further that there exists a market price of risk (or
“relative risk”) θ : [0,∞)× Ω → Rd; namely, an F−progressively measurable process with

σ(t)θ(t) = b(t)− r(t)I, ∀ 0 ≤ t ≤ T and
∫ T

0

‖θ(t)‖2 dt < ∞ (6.4)

valid almost surely, for each T ∈ (0,∞). (If the volatility matrix σ(·) has full rank, namely n, we
can take, for instance, θ(t) = σ′(t)

(
σ(t)σ′(t)

)−1[ b(t)− r(t)I ] in (6.4).)
In terms of this process θ(·), we can define the exponential local martingale and supermartingale

Z(t) := exp
{
−

∫ t

0

θ′(s) dW (s)− 1
2

∫ t

0

‖θ(s)‖2 ds
}

, 0 ≤ t < ∞ (6.5)

(a martingale, if and only if E(Z(T )) = 1 , ∀ T ∈ (0,∞)), and the shifted Brownian Motion

Ŵ (t) := W (t) +
∫ t

0

θ(s) ds, 0 ≤ t < ∞ . (6.6)

Proposition 6.1. A Strict Local Martingale: Under the assumptions of this subsection, as well
as (1.16), suppose that for some real number T > 0 and for some portfolio ρ(·) there exists arbitrage
relative to ρ(·) on the time-horizon [0, T ]. Then the process Z(·) of (6.5) is a strict local martingale:
E(Z(T )) < 1.

Proof. Assume, by way of contradiction, that E(Z(T )) = 1. Then from the Girsanov theorem
(e.g. [KS], section 3.5) the recipe QT (A) := E[Z(T ) 1A] , A ∈ F(T ) defines a probability measure,
equivalent to P, under which the process Ŵ (t), 0 ≤ t ≤ T as in (6.6) is Brownian motion.

Under this probability measure QT , the discounted stock prices Xi(·)/B(·), i = 1, · · · , n are
positive martingales on [0, T ] , because of

d
(
Xi(t)/B(t)

)
=

(
Xi(t)/B(t)

) d∑
ν=1

σiν(t) dŴν(t)

and of the uniform boundedness condition (1.16). As usual, we express this by saying that QT is
then an equivalent martingale measure (EMM) for the model, on the given time-horizon [0, T ] .

More generally, for any portfolio π(·), we get then from (6.6) and (1.9):

d
(
V π(t)/B(t)

)
=

(
V π(t)/B(t)

)
π′(t)σ(t) dŴ (t), V π(0) = 1 ; (6.7)

and from (1.16), the discounted wealth process V π(t)/B(t) , 0 ≤ t ≤ T is a positive martingale under
QT . Thus, the difference ∆(t) := (V π(t)− V ρ(t))/B(t) , 0 ≤ t ≤ T is a martingale under QT , for
any other portfolio ρ(·) with V ρ(0) = 1; consequently, EQT

(
∆(T )

)
= ∆(0) = 0. But this conclusion

is inconsistent with (6.1), which mandates QT

(
∆(T ) ≥ 0

)
= 1 and QT

(
∆(T ) > 0

)
> 0.

Now let us consider the deflated stock-price and wealth processes

X̂i(t) :=
Z(t)
B(t)

Xi(t), i = 1, · · · , n , X̂(t) :=
Z(t)
B(t)

X(t) and V̂w,h(t) :=
Z(t)
B(t)

Vw,h(t)

(6.8)
for 0 ≤ t < ∞ , for an arbitrary trading strategy h(·) ∈ H(w) admissible for the initial capital
w > 0. These processes satisfy, respectively, the dynamics

dX̂i(t) = X̂i(t)
d∑

ν=1

(
σiν(t)− θν(t)

)
dWν(t), X̂i(0) = xi , (6.9)
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dX̂(t) = X̂(t)
d∑

ν=1

(
σµν(t)− θν(t)

)
dWν(t), X̂(0) =

n∑

i=1

xi ,

dV̂w,h(t) =
(

Z(t)h′(t)
B(t)

σ(t)− V̂w,h(t)θ′(t)
)

dW (t), V̂w,h(0) = w (6.10)

in conjunction with (1.1), (1.22) and (6.5). In particular, these processes are non-negative local
martingales (and supermartingales) under P.

In other words, the ratio Z(·)/B(·) continues to play its usual rôle as deflator of prices in such a
market, even when Z(·) is just a local martingale.

Remark 6.2. Strict Local Martingales Galore: In the setting of Proposition 6.1 with ρ(·) ≡
µ(·) the market portfolio, it can be shown from (6.9), (6.10) that the deflated stock-price processes
X̂i(t) , 0 ≤ t ≤ T of (6.8) are all strict local martingales and (strict) supermartingales:

E
(
X̂i(T )

)
< xi holds for every i = 1, · · · , n . (6.11)

We shall prove this property below, at the end of the section, based on a more general result:
Under the assumptions of this subsection, suppose that for some real number T > 0 and for some
portfolio ρ(·) there exists arbitrage relative to ρ(·) on the time-horizon [0, T ]. Then the process
V̂ w,ρ(t) := Z(t)V w,ρ(t)/B(t) , 0 ≤ t ≤ T , defined as in (6.8), is a strict local martingale and a strict
supermartingale, namely

E
(
V̂ w,ρ(T )

)
< w . (6.12)

Proposition 6.2. Non-Existence of Equivalent Martingale Measure: In the context of
Proposition 6.1, no Equivalent Martingale Measure can exist for the model M of (1.1) on [0, T ] ,
if the filtration is generated by the driving Brownian Motion W (·) : F = FW .

Proof. If F = FW , and if the probability measure Q is equivalent to P on F(T ) , the martingale
representation property of the Brownian filtration gives (dQ/dP)

∣∣
F(t)

= Z(t) , 0 ≤ t ≤ T for some

process Z(·) of the form (6.5) and some progressively measurable θ(·) with
∫ T

0
||θ(t)||2 dt < ∞ a.s.

Then Itô’s rule leads to the extension

dX̂i(t)

X̂i(t)
=

(
bi(t)− r(t)−

d∑
ν=1

σiν(t)θν(t)

)
dt +

d∑
ν=1

(
σiν(t)− θν(t)

)
dWν(t)

of (6.9) for the deflated stock-prices of (6.8).
But if Q is an equivalent martingale measure (that is, if all the Xi(·)/B(·) ’s are Q−martingales

on [0, T ] ), then the X̂i(·) ’s are all P−martingales on [0, T ] , and this leads to the first property
σ(t) θ(t) = b(t) − r(t)I , 0 ≤ t ≤ T in (6.4). We repeat now the argument of Proposition 6.1 and
arrive at a contradiction with (6.1), the existence of relative arbitrage on [0, T ] .

6.2 On “Beating the Market”

Let us introduce now the non-increasing, right-continuous function

f(t) :=
1

X(0)
· E

(
Z(t)
B(t)

X(t)
)

, 0 ≤ t < ∞ . (6.13)

If relative arbitrage exists on the time-horizon [0, T ] , with T > 0 a real number, then we know
f(0) = 1 > f(T ) > 0 from Remark 6.2.
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Remark 6.3. With Brownian filtration F = FW , with n = d (equal numbers of stocks and driving
Brownian motions), and with an invertible volatility matrix σ(·), consider the maximal relative
return

R(T ) := sup
{
r > 0 | ∃h(·) ∈ H(1; T ) s.t.

(Vh(T )/V µ(T )
) ≥ r, a.s.

}
(6.14)

in excess of the market, that can be obtained by trading strategies over the interval [0, T ]. It can be
shown that this quantity is computed in terms of the function of (6.13), as R(T ) = 1/f(T ) .

Remark 6.4. The shortest time to beat the market by a given amount: Let us place
ourselves again under the assumptions of Remark 6.3, and assume that relative arbitrage exists on
[0, T ] for every T ∈ (0,∞); see Section 8 for elaboration. For a given “exceedance level” r > 1,
consider the shortest length of time

T(r) := inf
{
T ∈ (0,∞) | ∃h(·) ∈ H(1; T ) s.t.

(Vh(T )/V µ(T )
) ≥ r, a.s.

}
(6.15)

required to guarantee a return of at least r times the market. It can be shown that this quantity is
given by the inverse of the decreasing function f(·) of (6.13) evaluated at 1/r :

T(r) = inf
{
T ∈ (0,∞) | f(T ) ≤ 1/r

}
. (6.16)

A detailed argument is presented at the end of subsection 10.1.

Question: Can the counterparts of (6.14), (6.15) be computed when one is not allowed to use general
strategies h(·) ∈ H(1; T ) , but rather long-only portfolios π(·) ?

Remark 6.5. It is not possible to construct arbitrage relative to the growth-optimal portfolio π̂(·)
of Problem 4.6 in Section 4, on any given time-horizon [0, T ] , with T > 0 a real number. For if
such relative arbitrage π(·) existed, we would have

P
[ R̂π(T ) ≥ 1

]
= 1 and P

[ R̂π(T ) > 1
]

> 0

in the notation of (4.7), thus also E
[ R̂π(T )

]
> 1 ; but this contradicts the numéraire property (4.7)

of the growth-optimal portfolio, which implies E
[ R̂π(T )

] ≤ 1 for every real number T > 0 . We
owe this observation to C. Kardaras (2006).

In a similar vein, suppose that u : [0,∞) → [0,∞) is a strictly increasing function and that, for
some real number T > 0 and some portfolio ρ(·) , we have the comparison

E
[
u
(
V π(T )

) ] ≤ E
[
u
(
V ρ(T )

) ]
for every portfolio π(·) . (6.17)

Then it is not possible to construct arbitrage relative to this ρ(·) on the given time-horizon [0, T ] ; for
otherwise there would exist a portfolio π̄(·) with the properties of (6.1), thus also with the property
E

[
u
(
V π̄(T )

) ]
> E

[
u
(
V ρ(T )

) ]
which contradicts (6.17).

Proof of (6.12). We shall employ the usual notation V w,ρ(·) = wV ρ(·) , V̂ w,ρ(·) for the wealth
and the deflated wealth, respectively, of our given portfolio ρ(·) with initial capital w > 0. Setting

h(·) := V w,ρ(·)ρ(·) and θρ(·) := σ′(·)ρ(·)− θ(·) ,

the equation (6.10) takes the form dV̂ w,ρ(t) = V̂ w,ρ(t)
(
θρ(t)

)′
dW (t), or equivalently

V̂ w,ρ(t) = w · V̂ ρ(t) = w · exp
{ ∫ t

0

(
θρ(s)

)′
dW (s)− 1

2

∫ t

0

‖θρ(s)‖2 ds
}

, 0 ≤ t ≤ T . (6.18)

On the other hand, introducing the process

W̃ (ρ)(t) := W (t)−
∫ t

0

θρ(s)ds = Ŵ (t)−
∫ t

0

σ′(s)ρ(s) ds , 0 ≤ t ≤ T , (6.19)
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we obtain

(
V̂ w,ρ(t)

)−1 = w−1 · exp
{
−

∫ t

0

(
θρ(s)

)′
dW̃ (ρ)(s)− 1

2

∫ t

0

‖θρ(s)‖2ds
}

. (6.20)

We shall argue (6.12) by contradiction: let us assume that it fails, namely, that V̂ w,ρ(·) of (6.18)
is a martingale. From (6.18) and the Girsanov theorem, the process W̃ (ρ)(·) of (6.19) is then a
Brownian motion under the probability measure P̃(ρ)

T (A) := E
(
V̂ w,ρ(T ) 1A

)
/w , A ∈ F(T ), which is

equivalent to P. Then Itô’s rule gives

d

(
V π(t)
V ρ(t)

)
=

(
V π(t)
V ρ(t)

)
·

n∑

k=1

d∑
ν=1

(
πk(t)− ρk(t)

)
σkν(t) dW̃ (ρ)

ν (t) (6.21)

for any portfolio π(·), in conjunction with (6.7), (6.20) and (6.19); and the ratio V π(·)/V ρ(·) is
seen to be a positive local martingale and supermartingale, under P̃(ρ)

T . In particular, we obtain
Ẽ(ρ)

T

(
V π(T )/V ρ(T )

) ≤ 1, where Ẽ(ρ)
T denotes expectation with respect to P̃(ρ)

T .
Now consider any portfolio π(·) that satisfies the conditions of (6.1) on the time-horizon [0, T ] ,

relative to ρ(·) ; such a portfolio exists by assumption. The first condition in (6.1) gives the com-
parison P̃(ρ)

T

(
V π(T ) ≥ V ρ(T )

)
= 1 . In conjunction with the inequality Ẽ(ρ)

T

(
V π(T )/V ρ(T )

) ≤ 1
just proved, we obtain the equality P̃(ρ)

T

(
V π(T ) = V ρ(T )

)
= 1 , or equivalently:

P
(
V π(T ) = V ρ(T )

)
= 1 for every portfolio π(·) that satisfies the first condition in (6.1) .

But this contradicts the second condition P
(
V π(T ) > V ρ(T )

)
> 0 of (6.1).

Proof of (6.11). From what has already been shown (for (6.12), now applied to the market port-
folio), the process V x,µ(·) ≡ X̂(·) = X̂1(·) + · · · + X̂n(·) is a strict local martingale and a strict
supermartingale. Now each X̂i(·) is a positive local (and super-) martingale, so there must exist at
least one j ∈ {1, · · · , n} for which X̂j(·) is a strict local martingale and a strict supermartingale.

We shall argue once again by contradiction: suppose that (6.11) fails, to wit, that X̂i(·) is a
martingale for some i 6= j . Then (6.21) with ρ(·) ≡ ei and π(·) ≡ ej gives

d

(
Xj(t)
Xi(t)

)
=

(
Xj(t)
Xi(t)

)
·

d∑
ν=1

(
σjν(t)− σiν(t)

)
dW̃ (ei)

ν (t) ,

so condition (1.16) implies that Xj(·)/Xi(·) is a P̃(ei)
T −martingale on [0, T ] . In particular, we get

xj

xi
= Ẽ(ei)

T

[
Xj(T )
Xi(T )

]
= E

[
Z(T )Xj(T )

B(T )xi

]
,

which contradicts the strict supermartingale property of X̂j(·) = Z(·)Xj(·)/B(·) and proves (6.11).

7 Diversity leads to Arbitrage

We provide now examples which demonstrate the following principle: If the model M of (1.1), (1.2)
is weakly diverse over the time-horizon [0, T ], and if (3.10) holds, then M contains strong arbitrage
opportunities relative to the market portfolio, at least for sufficiently large real numbers T > 0 .

The first such examples involve heavily the diversity-weighted portfolio µ(p)(·) =
(
µ

(p)
1 (·), . . . , µ(p)

n (·))′
defined, for some arbitrary but fixed p ∈ (0, 1) , in terms of the market portfolio µ(·) of (2.1) by

µ
(p)
i (t) :=

(
µi(t)

)p

∑n
j=1

(
µj(t)

)p , ∀ i = 1, . . . , n . (7.1)
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Compared to µ(·), the portfolio µ(p)(·) in (7.1) decreases the proportion(s) held in the largest stock(s)
and increases those placed in the smallest stock(s), while preserving the relative rankings of all stocks;
see (7.7) below. It does this in a systematic and ‘passive’ way, that involves neither parameter
estimation nor optimization. The actual performance of this portfolio relative to the S&P 500 index
over a 33-year period is discussed in detail in Fernholz (2002), Chapter 7.

We show below that if the model M is weakly diverse on a time horizon [0, T ], with T > 0 a
given real number, then the value process V µ(p)

(·) of the diversity-weighted portfolio in (7.1) satisfies

V µ(p)
(T ) > V µ(T )

(
n−1/p e εδT/2

)1−p

(7.2)

almost surely. In particular,

P
(
V µ(p)

(T ) > V µ(T )
)

= 1, provided that T ≥ 2
pεδ

log n , (7.3)

and µ(p)(·) is a strong arbitrage opportunity relative to the market µ(·), in the sense of (6.1). The
significance of such a result for practical long-term portfolio management cannot be overstated.

Proof of (7.3). Let us start by introducing the function

Gp(x) :=
( n∑

i=1

xp
i

)1/p

, x ∈ ∆n
+ , (7.4)

which we shall interpret as a “measure of diversity”; see below. An application of Itô’s rule to the
process {Gp(µ(t)), 0 ≤ t < ∞} leads after some computation, and in conjunction with (3.9) and
the numéraire-invariance property (3.5), to the expression

log

(
V µ(p)

(T )
V µ(T )

)
= log

(
Gp(µ(T ))
Gp(µ(0))

)
+ (1− p)

∫ T

0

γ∗µ(p)(t) dt , a.s. (7.5)

for the wealth V µ(p)
(·) of the diversity-weighted portfolio µ(p)(·) of (7.1); see also section 11 below,

particularly (11.2) and its proof. One big advantage of the expression (7.5) is that it is free of
stochastic integrals, and thus lends itself to pathwise (almost sure) comparisons.

For the function of (7.4), we have the simple bounds

1 =
n∑

i=1

µi(t) ≤
n∑

i=1

(
µi(t)

)p =
(
Gp(µ(t))

)p ≤ n1−p .

In other words, the minimum of Gp(µ(t)) occurs when the entire market is concentrated in one stock
(µj(t) = 1 for some j ∈ {1, · · · , n}), and its maximum when all stocks have the same capitalization
(µ1(t) = · · · = µn(t) = 1/n); this justifies considering the function of (7.4) as a measure of diversity.
We deduce the comparison

log
(

Gp(µ(T ))
Gp(µ(0))

)
≥ −1− p

p
log n , a.s. (7.6)

which, coupled with (7.5) and (3.7), shows that V µ(p)
(·)/V µ(·) is bounded from below by the constant

n−(1−p)/p. In particular, (6.3) is satisfied for ρ(·) ≡ µ(·) and π(·) ≡ µ(p)(·).
On the other hand, we have already remarked that the biggest weight of the portfolio µ(p)(·) in

(7.1) does not exceed the largest market weight:

µ
(p)
(1)(t) := max

1≤i≤n
µ

(p)
i (t) =

(
µ(1)(t)

)p

∑n
k=1

(
µ(k)(t)

)p ≤ µ(1)(t) . (7.7)

21



The reverse inequality holds for the smallest weights: µ
(p)
(n)(t) := min1≤i≤n µ

(p)
i (t) ≥ µ(n)(t).

We have assumed that the market is weakly diverse over [0, T ], namely, that there is some
0 < δ < 1 for which

∫ T

0

(
1−µ(1)(t)

)
dt > δT holds almost surely. From (3.12) and (7.7), this implies

∫ T

0

γ∗µ(p)(t) dt ≥ ε

2

∫ T

0

(
1− µ

(p)
(1)(t)

)
dt ≥ ε

2

∫ T

0

(
1− µ(1)(t)

)
dt >

ε

2
δT

a.s. In conjunction with (7.6), this leads to (7.2) and (7.3) via

log

(
V µ(p)

(T )
V µ(T )

)
> (1− p)

(
εT

2
δ − 1

p
log n

)
. (7.8)

If M is uniformly weakly diverse and strongly non-degenerate over an interval [T0,∞), then
(7.8) implies that the market portfolio will lag rather significantly behind the diversity-weighted
portfolio over long time horizons. To wit, that (6.2) will hold:

Lµ(p),µ = lim inf
T→∞

1
T

log
(
V µ(p)

(T )
/
V µ(T )

)
≥ (1− p)εδ/2 > 0, a.s.

In Figure 7.1 we see the cumulative changes in the diversity of the U.S. stock market over the
period from 1927 to 2004, measured by Gp(·) with p = 1/2. The chart shows the cumulative
changes in diversity due to capital gains and losses, rather than absolute diversity, which is affected
by changes in market composition and corporate actions. Considering only capital gains and losses
has the same effect as adjusting the “divisor” of an equity index. The values used in Figure 7.1 have
been normalized so that the average over the whole period is zero. We can observe from the chart
that diversity appears to be mean-reverting over the long term, with intermediate trends of 10 to 20
years. The extreme lows for diversity seem to accompany bubbles: the Great Depression, the “nifty
fifty” era of the early 1970’s, and the “irrational exuberance” period of the late 1990’s.

Remark 7.1. (Fernholz, 2002): Under the conditions of this section, consider the portfolio with
weights

πi(t) =
(

2− µi(t)
G(µ(t))

− 1
)

µi(t), 1 ≤ i ≤ n, where G(x) := 1− 1
2

n∑

i=1

x2
i

for x ∈ ∆n. It can be shown that this portfolio leads to arbitrage relative to the market, over
sufficiently long time horizons [0, T ], namely with T ≥ (2n/εδ2) log 2. In this case, we also have
πi(t) ≤ 3µi(t), for all t ∈ [0, T ], a.s., so, with appropriate initial conditions, there is no risk that this
π(·) will hold more of a stock than the market holds.

Remark 7.2. Statistical Arbitrage and Enhanced Indexing. With p = 1 , the portfolio
µ(p)(·) of (7.1) corresponds to the market portfolio; with p = 0 , it gives the equally weighted

portfolio, namely, ϕi(·) := µ
(0)
i (·) ≡ 1/n for all i = 1, · · · , n .

The market portfolio µ(·) buys at time t = 0 the same number of shares in all companies of the
market, and holds them until the end t = T of the investing horizon. It represents the quintessential
“buy-and-hold” strategy.

The equally weighted portfolio ϕ(·) maintains equal weights in all stocks at all times; it accom-
plishes this by selling those stocks whose price rises relative to the rest, and by buying stocks whose
price falls relative to the others. Because of this built-in aspect of “buying-low-and-selling-high”, the
equally weighted portfolio can be used as a simple prototype for studying systematically the perfor-
mance of statistical arbitrage strategies in equity markets; see Fernholz & Maguire (2006) for details.
Of course, implementing such a strategy necessitates very frequent trading and can incur substantial
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Figure 7.1: Cumulative change in market diversity, 1927–2004.

transaction costs for an investor who is not a broker/dealer. It can also involve considerable risk:
whereas the second term on the right-hand side of

log V ϕ(T ) =
1
n

log
(

X1(T ) · · ·Xn(T )
X1(0) · · ·Xn(0)

)
+

∫ T

0

γ∗ϕ(t) dt , (7.9)

or of

log
(

V ϕ(T )
V µ(T )

)
=

1
n

log
(

µ1(T ) · · ·µn(T )
µ1(0) · · ·µn(0)

)
+

∫ T

0

γ∗ϕ(t) dt , (7.10)

is increasing it T , the first terms on the right-hand sides of these expressions can fluctuate quite a
bit. These equations are obtained by reading (1.17), (1.13), (3.9) with πi(·) ≡ ϕi(·) ≡ 1/n for all
i = 1, · · · , n , thus with excess growth rate

γ∗ϕ(t) =
1
2n




n∑

i=1

aii(t)− 1
n

n∑

i=1

n∑

j=1

aij(t)


 . (7.11)

The diversity-weighted portfolios µ(p)(·) of (7.1) with 0 < p < 1 stand between these two
extremes, of capitalization weighting (as in S&P 500) and of equal weighting (as in the Value-Line
Index); they try to capture some of the “buy-low/sell-high” characteristics of equal weighting, but
without deviating too much from the market capitalizations and without incurring a lot of trading
costs or excessive risk. They can be viewed as “enhanced market portfolios” or “enhanced indices”,
in this sense.

8 Mirror Portfolios, Short-Horizon Arbitrage

In the previous section we saw that in weakly diverse markets which satisfy the strict non-degeneracy
condition (3.10), one can construct explicitly simple long-only portfolios that lead to strong arbi-
trages relative to the market over sufficiently long time horizons. The purpose of this section is
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to demonstrate that, under these same conditions, such arbitrages exist indeed over arbitrary time
horizons, no matter how small.

For any given portfolio π(·) and real number q 6= 0, define the q-mirror image of π(·) with respect
to the market portfolio, as

π̃[q](·) := qπ(·) + (1− q)µ(·).
This is clearly a portfolio; and it is long-only if π(·) itself is long-only and 0 < q < 1. If q = −1, we
call π̃[−1](·) = 2µ(·)− π(·) the “mirror image” of π(·) with respect to the market.

By analogy with (1.19), let us define the relative covariance of π(·) with respect to the market, as

τπ
µµ(t) :=

(
π(t)− µ(t)

)′
a(t)

(
π(t)− µ(t)

)
, 0 ≤ t ≤ T.

Remark 8.1. Recall from (1.21) the fact τµ(t)µ(t) ≡ 0, and establish the elementary properties
τπ
µµ(t) = π′(t)τµ(t)π(t) = τµ

ππ(t) and τµ
eπ[q]eπ[q](t) = q2τµ

ππ(t) .

Remark 8.2. The wealth of π̃[q](·) relative to the market, can be computed as

log

(
V eπ

[q]
(T )

V µ(T )

)
= q log

(
V π(T )
V µ(T )

)
+

q(1− q)
2

∫ T

0

τµ
ππ(t) dt.

Indeed, let us write the second equality in (3.4) with π(·) replaced by π̃[q](·), and recall π̃[q]−µ =
q(π−µ). From the resulting expression, let us subtract the second equality in (3.4), now multiplied
by q ; the result is

d

dt

(
log

V eπ
[q]

(t)
V µ(t)

− q log
V π(t)
V µ(t)

)
= (q − 1)γ∗µ(t) +

(
γ∗eπ[q](t)− qγ∗µ(t)

)
.

But from the equalities of Remark 8.1 and Lemma 3.3, we obtain

2
(
γ∗eπ[q](t)− qγ∗π(t)

)
=

n∑

i=1

(
π̃[q](t)− qπi(t)

)
τµ
ii(t)− τµ

eπ[q]eπ[q](t) + qτµ
ππ(t)

= (1− q)
n∑

i=1

µi(t)τ
µ
ii(t) + qτµ

ππ(t)− q2τµ
ππ(t) = (1− q)

(
2γ∗µ(t) + qτµ

ππ(t)
)
.

The desired equality now follows.

Remark 8.3. Suppose that the portfolio π(·) satisfies

P
(
V π(T )/V µ(T ) ≥ β

)
= 1 or P

(
V π(T )/V µ(T ) ≤ 1/β

)
= 1

and

P
(∫ T

0

τµ
ππ(t) dt ≥ η

)
= 1

for some real numbers T > 0, η > 0 and 0 < β < 1. Then there exists another portfolio π̂(·) with
P
(
V bπ(T ) < V µ(T )

)
= 1.

To see this, suppose first that we have P
(
V π(T )/V µ(T ) ≤ 1/β

)
= 1; then we can just take

π̂(·) ≡ π̃[q](·) with q > 1 + (2/η) log(1/β), for then Remark 8.2 gives

log

(
V eπ

[q]
(T )

V µ(T )

)
≤ q

(
log

(
1/β

)
+

1− q

2
η
)

< 0, a.s.

If, on the other hand, P
(
V π(T )/V µ(T ) ≥ β

)
= 1 holds, then similar reasoning shows that it suffices

to take π̂(·) ≡ π̃[q](·) with q ∈ (
0, 1− (2/η) log(1/β)

)
.
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8.1 A “Seed” Portfolio

Now let us consider π = e1 = (1, 0, · · · , 0)′ and the market portfolio µ(·); we shall fix a real number
q > 1 in a moment, and define the portfolio

π̂(t) := π̃[q](t) = qe1 + (1− q)µ(t), 0 ≤ t < ∞ (8.1)

which takes a long position in the first stock and a short position in the market. In particular,
π̂1(t) = q + (1− q)µ1(t) and π̂i(t) = (1− q)µi(t) for i = 2, · · · , n. Then we have

log
(

V bπ(T )
V µ(T )

)
= q log

(
µ1(T )
µ1(0)

)
− q(q − 1)

2

∫ T

0

τµ
11(t)dt (8.2)

from Remark 8.2. But taking β := µ1(0) we have (µ1(T )/µ1(0)) ≤ 1/β; and if the market is weakly
diverse on [0, T ] and satisfies the strict non-degeneracy condition (3.10), we obtain from (3.11) and
the Cauchy-Schwarz inequality

∫ T

0

τµ
11(t)dt ≥ ε

∫ T

0

(
1− µ(1)

)2
dt > εδ2T =: η . (8.3)

Recalling Remark 8.3, we see that the market portfolio represents then a strong arbitrage opportunity
with respect to the portfolio π̂(·) of (8.1), provided that for any given real number T > 0 we select

q > q(T ) := 1 + (2/εδ2T ) log
(
1/µ1(0)

)
. (8.4)

The portfolio π̂(·) of (8.1) can be used as a “seed”, to create long-only portfolios that outperform
the market portfolio µ(·), over any time-horizon [0, T ] with given real number T > 0 . The idea
is to immerse π̂(·) in a sea of market portfolio, swamping the short positions while retaining the
essential portfolio characteristics. Crucial in these constructions is following the a.s. comparison, a
consequence of (8.2):

V bπ(t) ≤
(

µ1(t)
µ1(0)

)q

V µ(t) , 0 ≤ t < ∞ . (8.5)

8.2 Relative Arbitrage on Arbitrary Time Horizons

To implement this idea, consider a strategy h(·) that, at time t = 0, invests q/(µ1(0))q dollars in the
market portfolio, goes one dollar short in the portfolio π̂(·) of (8.1), and makes no change thereafter.
The number q > 1 is chosen again as in (8.4). The wealth generated by this strategy, with initial
capital z := q/(µ1(0))q − 1 > 0, is

Vz,h(t) =
qV µ(t)
(µ1(0))q − V bπ(t) ≥ V µ(t)

(µ1(0))q

(
q − (µ1(t))

q )
> 0, 0 ≤ t < ∞, (8.6)

thanks to (8.5) and q > 1 > (µ1(t))
q. This process Vz,h(·) coincides with the wealth V z,η(·) generated

by a portfolio η(·) with weights

ηi(t) =
1

Vz,h(t)

(
qµi(t)

(µ1(0))q V µ(t)− π̂i(t)V bπ(t)
)

, i = 1, · · · , n (8.7)

that satisfy
∑n

i=1 ηi(t) = 1. Now we have π̂i(t) = −(q − 1)µi(t) < 0 for i = 2, · · · , n, so the
quantities η2(·), . . . , ηn(·) are strictly positive. To check that η(·) is a long-only portfolio, we have
to verify η1(t) ≥ 0; but the dollar amount invested by η(·) in the first stock at time t, namely

qµ1(t)
(µ1(0))q V µ(t)− [

q − (q − 1)µ1(t)
]
V bπ(t)
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dominates qµ1(t)
(µ1(0))

q V µ(t)− [
q − (q − 1)µ1(t)

] (
µ1(t)
µ1(0)

)q

V µ(t), or equivalently

V µ(t)µ1(t)
(µ1(0))q

(
(q − 1)(µ1(t))q + q

[
1− (µ1(t))q−1

])
> 0 ,

again thanks to (8.5) and q > 1 > (µ1(t))
q−1. Thus η(·) is indeed a long-only portfolio.

On the other hand, η(·) outperforms at t = T a market portfolio that starts with the same initial
capital at t = 0; this is because η(·) is long in the market µ(·) and short in the portfolio π̂(·), which
underperforms the market at t = T . Indeed, from Remark 8.3 we have

V z,η(T ) =
q

(µ1(0))q V µ(T )− V bπ(T ) > zV µ(T ) = V z,µ(T ) , a.s.

Note, however, that as T ↓ 0, the initial capital z(T ) = q(T )/(µ1(0))q(T ) − 1 required to do
all of this, increases without bound: It may take a huge amount of initial investment to realize the
extra basis point’s worth of relative arbitrage over a short time horizon — confirming of course, if
confirmation is needed, that time is money...

9 A Diverse Market Model

The careful reader might have been wondering whether the theory we have developed so far may
turn out to be vacuous. Do there exist market models of the form (1.1), (1.2) that are diverse, at
least weakly? This is of course a very legitimate question.

Let us mention then, rather briefly, an example of such a market model M which is diverse over
any given time horizon [0,T ] with real T > 0 . For the details of this construction we refer to [FKK]
(2005).

With given δ ∈ (1/2, 1), equal numbers of stocks and driving Brownian motions (that is, d = n),
constant volatility matrix σ that satisfies (3.10), and non-negative numbers g1, . . . , gn, we take a
model

d log Xi(t) = γi(t) dt +
n∑

ν=1

σiν dWν(t), 0 ≤ t ≤ T (9.1)

in the form (1.5) for the vector X(·) =
(
X1(·), · · · , Xn(·))′ of stock prices. With the usual notation

X(t) =
∑n

j=1 Xj(t), its growth rates are specified as

γi(t) := gi1Qc
i
(X(t))− M

δ

1Qi(X(t))
log

(
(1− δ)X(t)/Xi(t)

) . (9.2)

In other words, γi(t) = gi ≥ 0 if X(t) /∈ Qi (the ith stock does not have the largest capitalization);
and

γi(t) = −M

δ

1
log

(
(1− δ)/µi(t)

) , if X(t) ∈ Qi (9.3)

(the ith stock does have the largest capitalization). We are setting here

Q1 :=
{

x ∈ (0,∞)n
∣∣ x1 ≥ max

2≤j≤n
xj

}
, Qn :=

{
x ∈ (0,∞)n

∣∣ xn > max
1≤j≤m−1

xj

}
,

Qi :=
{

x ∈ (0,∞)n
∣∣ xi > max

1≤j≤i−1
xj , xi ≥ max

i+1≤j≤n
xj

}
for i = 2, . . . , n− 1.

With this specification (9.2), (9.3), all stocks but the largest behave like geometric Brownian motions
(with growth rates gi ≥ 0 and variances aii =

∑n
ν=1 σ2

iν), whereas the log-price of the largest stock
is subjected to a log-pole-type singularity in its drift, away from an appropriate right boundary.

26



One can then show that the resulting system of stochastic differential equations has a unique,
strong solution (so the filtration F is now the one generated by the driving n−dimensional Brownian
motion), and that the diversity requirement (5.1) is satisfied on any given time horizon. Such models
can be modified appropriately, to create ones that are weakly diverse but not diverse; see [FK] (2005)
for details.

Slightly more generally, in order to guarantee diversity it is enough to require

min
2≤k≤n

γ(k)(t) ≥ 0 ≥ γ(1)(t), min
2≤k≤n

γ(k)(t)− γ(1)(t) +
ε

2
≥ M

δ
F (Q(t)),

where Q(t) := log
(
(1− δ)/µ(1)(t)

)
.

Here the function F : (0,∞) → (0,∞) is taken to be continuous, and such that the associated
scale function

U(x) :=
∫ x

1

exp
{
−

∫ y

1

F (z) dz
}

dy, x ∈ (0,∞) satisfies U(0+) = −∞;

for instance, we have U(x) = log x when F (x) = 1/x as above. Under these conditions, it can
then be shown that the process Q(·) satisfies

∫ T

0
(Q(t))−2dt < ∞ a.s., and this leads to the a.s.

square-integrability
n∑

i=1

∫ T

0

(bi(t))2dt < ∞ (9.4)

of the induced rates of return of the individual stocks

bi(t) =
1
2
aii + gi1Qc

i
(X(t))− M

δ

1Qi(X(t))
log

(
(1− δ)X(t)/Xi(t)

) , i = 1, · · · , n.

The square-integrability property (9.4) is, of course, crucial: it guarantees that the market-price-of-
risk process θ(·) := σ−1b(·) is square-integrable a.s., exactly as posited in (6.4), so the exponential
local martingale Z(·) of (6.5) is well defined (we are assuming r(·) ≡ 0 in all this). Thus the results
of Propositions 6.1, 6.2 and Remark 6.2 are applicable to this model.

For additional examples, and for an interesting probabilistic construction of diverse markets that
leads to arbitrage, see Osterrieder & Rheinländer (2006).

10 Hedging and Optimization without EMM

Let us broach now the issue of hedging contingent claims in a market such as that of subsection 6.1,
and over a time-horizon [0, T ] with a real number T > 0 satisfying (6.1).

Consider first a European contingent claim, that is, an F(T )−measurable random variable Y :
Ω → [0,∞) with

0 < y := E
(
Y Z(T )/B(T )

)
< ∞ (10.1)

in the notation of (6.5). From the point of view of the seller of the contingent claim (e.g., stock
option), this random amount represents a liability that has to be covered with the right amount of
initial funds at time t = 0 and the right trading strategy during the interval [0, T ], so that at the end
of the time-horizon (time t = T ) the initial funds have grown enough, to cover the liability without
risk. Thus, the seller is interested in the so-called upper hedging price

UY (T ) := inf
{
w > 0 | ∃h(·) ∈ H(w; T ) s.t. Vw,h(T ) ≥ Y, a.s.

}
, (10.2)

the smallest amount of initial capital that makes such riskless hedging possible.
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The standard theory of mathematical finance assumes that M, the set of equivalent martingale
measures for the model M, is non-empty; then shows that UY (T ) can be computed as

UY (T ) = sup
Q∈M

EQ
(
Y/B(T )

)
, (10.3)

the supremum of the claim’s discounted expected values over this set of probability measures. In
our context no EMM exists (that is, M = ∅), so the approach breaks down and the problem seems
hopeless.

Not quite, though: there is still a long way one can go, simply by utilizing the availability of the
strict local martingale Z(·) (and of the associated “deflator” Z(·)/B(·)), as well as the properties
(6.9), (6.10) of the processes in (6.8). For instance, if the set on the right-hand side of (10.2) is not
empty, then for any w > 0 in this set and for any h(·) ∈ H(w; T ), the local martingale V̂w,h(·) of
(6.8) is non-negative, thus a supermartingale. This gives

w ≥ E(Vw,h(T )Z(T )/B(T )
) ≥ E(

Y Z(T )/B(T )
)

= y,

and because w > 0 is arbitrary we deduce UY (T ) ≥ y . This inequality holds trivially if the set on
the right-hand side of (10.2) is empty, since then we have UY (T ) = ∞ .

10.1 Completeness without EMM

To obtain the reverse inequality we shall assume that n = d, i.e., that we have exactly as many
sources of randomness as there are stocks in the market M, and that the filtration F is generated
by the driving Brownian Motion W (·) in (1.1): F = FW .

With these assumptions, one can represent the non-negative martingale

M(t) := E
(
Y Z(T )/B(T ) | F(t)

)
, 0 ≤ t ≤ T

as a stochastic integral

M(t) = y +
∫ t

0

ψ′(s)dW (s) , 0 ≤ t ≤ T (10.4)

for some progressively measurable and a.s. square-integrable process ψ : [0, T ] × Ω → Rd and with
the notation of (10.1). Setting

V∗(·) := M(·)B(·)/Z(·) and h∗(·) :=
(
B(·)/Z(·)) a−1(·)σ(·)(ψ(·) + M(·)θ(·)) ,

then comparing (6.10) with (10.4), we observe that V∗(0) = y, V∗(T ) = Y and V∗(·) ≡ Vy,h∗(·) ≥ 0
hold almost surely.

Therefore, the trading strategy h∗(·) is in H(y;T ) and satisfies the exact replication property
Vy,h∗(T ) = Y a.s. This implies that y belongs to the set on the right-hand side of (10.2), and
so y ≥ UY (T ). But we have already established the reverse inequality, actually in much greater
generality, so recalling (10.1) we get the Black-Scholes-type formula

UY (T ) = E
(
Y Z(T )/B(T )

)
(10.5)

for the upper hedging price of (10.2), under the assumptions of the first paragraph in this subsection.
In particular, we see that a market M which is weakly diverse – hence without an equivalent

probability measure under which discounted stock prices are (at least local) martingales – can
nevertheless be complete.

Similar observations have been made by Lowenstein & Willard (2000.a,b) and by Platen (2002,
2006).
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Remark 10.1. Put-Call Parity. In the context of this subsection, suppose L1(·) and L2(·)
are positive, continuous and adapted processes, representing the values of two different financial
instruments in the market. For instance, L1(·) = V w1,π1(·) and L2(·) = V w2,π2(·) for two different
portfolios π1(·) , π2(·) and real numbers w1 > 0 , w2 > 0 . Consider the contingent claims

Y1 :=
(
L1(T )− L2(T )

)+
, Y2 :=

(
L2(T )− L1(T )

)+
.

According to (10.5), the quantity U1 = E [ Z(T )Y1/B(T ) ] is the upper hedging price at t = 0
of a contingent claim that confers to its holder the right, thought not the obligation, to exchange
instrument 2 for instrument 1 at time t = T ; ditto for U2 = E [Z(T )Y2/B(T ) ] , with the rôles of
instruments 1 and 2 interchanged. Of course,

U1 − U2 = E
[
Z(T )

(
L1(T )− L2(T )

)
/B(T )

]
;

and we say that the two instruments are in Put-Call Parity, if U1 − U2 = L1(0)− L2(0) . This will
be the case, for instance, if Z(·)(L1(·)− L2(·)

)
/B(·) is a martingale.

Put-Call Parity can fail, when relative arbitrage of the type (6.1) exists. For example, take
L1(·) ≡ V π(·) , L2(·) ≡ V ρ(·) and observe that (6.1) leads to

U1 − U2 = E
[
Z(T )

(
V π(T )− V ρ(T )

)
/B(T )

]
> 0 = V π(0)− V ρ(0) .

Proof of (6.16). We can provide now a proof for the claim (6.16) in Remark 6.4. Let us denote
by T the right-hand side of this equation, and note that the inequality T ≤ T(r) is automatically
satisfied if the set in (6.15) is empty (its infimum is then +∞); if the set in (6.15) is not empty, pick
any element T ∈ (0,∞) and an arbitrary trading strategy h(·) ∈ H(1; T ) that satisfies Vh(T ) ≥
r · V µ(T ) a.s. The supermartingale property of Z(·)Vh(·)/B(·) gives then

1 ≥ E
[
Z(T )Vh(T )/B(T )

] ≥ r · E[
Z(T )V µ(T )/B(T )

]
= r · f(T ) ,

which means that this T ∈ (0,∞) belongs to the set of (6.16); thus the inequality T ≤ T(r) holds
again.

For the reverse inequality, consider the number y := f(T) and observe 0 < y ≤ 1/r (the right-
continuity of f(·)). From what we just proved, there exists a trading strategy h∗(·) ∈ H(1;T) with
which the contingent claim Y := X(T)/X(0) can be replicated exactly at time t = T , in the sense
y Vh∗(T) = Y a.s., since E

[
Z(T)Y/B(T)

]
= y . Therefore,

(1/r) · Vh∗(T) ≥ y · Vh∗(T) = Y = X(T)/X(0) = V µ(T) holds a.s.,

and this means that T belongs to the set of (6.16); thus the inequality T ≥ T(r) holds as well.

10.2 Ramifications and Open Problems

Example 10.1. A European Call Option. Consider the contingent claim Y =
(
X1(T ) − q

)+:
this is a European call option on the first stock, with strike q ∈ (0,∞) and expiration T ∈ (0,∞).
Let us assume also that the interest-rate process r(·) is bounded away from zero, namely that
P[ r(t) ≥ r, ∀ t ≥ 0 ] = 1 holds for some r > 0, and that the market M is weakly diverse on all
sufficiently large time horizons T ∈ (0,∞).

Then for the hedging price UY (T ) of this contingent claim we have from Remark 6.2, (10.5),
Jensen’s inequality, and E(Z(T )) < 1 :

X1(0) > E
(
Z(T )X1(T )/B(T )

) ≥ E(
Z(T )(X1(T )− q)+/B(T )

)
= UY (T )

≥
(
E

(
Z(T )X1(T )/B(T )

)− q E
(
Z(T )e−

R T
0 r(t)dt

))+

≥
(
E

(
Z(T )X1(T )/B(T )

)− q e−rT E[ Z(T ) ]
)+

≥
(
E

(
Z(T )X1(T )/B(T )

)− q e−rT
)+

,
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thus
0 ≤ UY (∞) := lim

T→∞
UY (T ) = lim

T→∞
↓ E(

Z(T )X1(T )/B(T )
)

< X1(0). (10.6)

The upper hedging price of the option is strictly less than the capitalization of the underlying stock
at time t = 0, and tends to UY (∞) ∈ [0, X1(0)) as the time-horizon increases without limit.

If M is weakly diverse uniformly over some [T0,∞), then the limit in (10.6) is actually zero:
The hedging price of a European call-option that can never be exercised, is equal to zero. Indeed, for
every fixed p ∈ (0, 1) and T ≥ (

2 log n
pεδ

) ∨ T0 , and with the normalization X(0) = 1, the quantity

E
(

Z(T )
B(T )

X1(T )
)
≤ E

(
Z(T )
B(T )

V µ(T )
)
≤ E

(
Z(T )
B(T )

V µ(p)
(T )

)
n

1−p
p e−εδ(1−p)T/2

is dominated by n
1−p

p e−εδ(1−p)T/2, from (7.2), (2.2) and the supermartingale property of the process
Z(·)V µ(p)

(·)/B(·). Letting T →∞ we obtain UY (∞) = 0.

Remark 10.2. Note the sharp difference between this case and the situation where an equivalent
martingale measure exists on every finite time horizon; namely, when both Z(·) and Z(·)X1(·)/B(·)
are martingales. Then we have E(Z(T )X1(T )/B(T )) = X1(0) for all T ∈ (0,∞), and UY (∞) =
X1(0): as the time horizon increases without limit, the hedging price of the call option approaches
the stock price at t = 0 (see [KS] (1998), p. 62).

Remark 10.3. The above theory extends to the case d > n of incomplete markets, and more
generally to closed, convex constraints on portfolio choice as in Chapter 5 of [KS] (1998), under the
conditions of (6.4). The paper [KK] (2006) can be consulted for a treatment of these issues in a
general semimartingale setting.

In particular, the Black-Scholes-type formula (10.5) can be generalized, in the spirit of (10.3),
to the case d > n and filtration F not necessarily equal to the Brownian filtration FW . Let Θ
be the set of F−progressively measurable processes θ(·) that satisfy the requirements of (6.4); for
each θ(·) ∈ Θ , let us denote by Zθ(·) the process of (6.5). Then the upper hedging price of (10.2)
is given as

UY (T ) = sup
θ(·)∈Θ

E
(
Y Zθ(T )/B(T )

)
. (10.7)

Remark 10.4. Open Question: Develop a theory for pricing American contingent claims under
the assumptions of the present section. As C. Kardaras (2006) observes, in the absence of an EMM
it is not optimal to exercise an American call option (written on a non-dividend-paying stock) only
at maturity t = T . Can one then characterize, or compute, the optimal exercise time?

10.3 Utility Maximization in the Absence of EMM

Suppose we are given initial capital w > 0, a time-horizon [0, T ] for some real T > 0, and a
utility function u : (0,∞) → R (strictly increasing, strictly concave, of class C1, with u′(0) :=
limx↓0 u′(x) = ∞, u′(∞) := limx→∞ u′(x) = 0 and u(0) := limx↓0 u(x)). The problem is to compute
the maximal expected utility from terminal wealth

U(w) := sup
h(·)∈H(w;T )

E
[
u
(Vw,h(T )

) ]
;

to decide whether the supremum is attained; and if so, to identify a strategy ĥ(·) ∈ H(w; T ) that
attains it. We place ourselves under the assumptions of the present section, including those of
subsection 10.1 (d = n, F = FW ).
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Remark 10.5. The solution to this question is given by the replicating strategy ĥ(·) ∈ H+(w; T )
for the contingent claim

Υ = I
(
Ξ(w)D(T )

)
, where D(t) := Z(t)/B(t) for 0 ≤ t ≤ T ,

in the sense Vw,bh(T ) = Υ a.s. Here Z(·) is the exponential local martingale of (6.5), I : (0,∞) →
(0,∞) is the inverse of the strictly decreasing marginal utility function u′ : (0,∞) → (0,∞), and
Ξ : (0,∞) → (0,∞) the inverse of the strictly decreasing function W(·) given by

W(ξ) := E
[
D(T ) I (ξD(T ))

]
, 0 < ξ < ∞,

which we are assuming to be (0,∞)−valued.

In the case of the logarithmic utility function u(x) = log x, x ∈ (0,∞), it is easily shown that the
“log-optimal” trading strategy h∗(·) ∈ H+(w;T ) and its associated wealth process V∗(·) ≡ Vw,h∗(·)
are given, respectively, by

h∗(t) = V∗(t)a−1(t)
[
b(t)− r(t)I

]
, V∗(t) = w/D(t) (10.8)

for 0 ≤ t ≤ T . The discounted log-optimal wealth process satisfies

d
(
V∗(t)/B(t)

)
=

(
V∗(t)/B(t)

)
θ′(t)

[
θ(t) dt + dW (t)

]
, (10.9)

an equation whose solution is readily seen to be V∗(t)/B(t) = w/Z(t) , 0 ≤ t ≤ T .
Note that no assumption is been made regarding the existence of an equivalent martingale mea-

sure (EMM); to wit, Z(·) does not have to be a martingale. See Karatzas, Lehoczky, Shreve & Xu
(1991) for more information on this problem and on its much more interesting incomplete market
version d > n, under the assumption that the volatility matrix σ(·) is of full (row) rank and without
assuming the existence of EMM.

Note also that the deflated optimal wealth process is constant: V̂∗(·) ≡ V∗(·)Z(·)/B(·) = w .
This should be contrasted to (6.12) of Remark 6.2, in the light of Remark 6.5.

The log-optimal trading strategy of (10.8) has some obviously desirable features, discussed in the
next remark. But unlike the diversity-weighted portfolio of (7.1) or, more generally, the functionally
generated portfolios of the next section, it needs for its implementation knowledge of the covariance
structure and of the mean rates of return; these are quite hard to estimate in practice.

Remark 10.6. The “Numéraire” Property: Assume that the log-optimal strategy h∗(·) ∈
H+(w) of (10.8) is defined for all 0 ≤ t < ∞; it has then the following numéraire property

Vw,h(·)/Vw,h∗(·) is a supermartingale, ∀ h(·) ∈ H+(w), (10.10)

and from this, one can derive the asymptotic growth optimality property

lim sup
T→∞

1
T

log
( Vw,h(T )
Vw,h∗(T )

)
≤ 0 a.s., ∀ h(·) ∈ H+(w) .

These are the same notions we encountered in Problem 6 of Section 4, in the setup of portfolios (as
opposed to trading strategies). For a detailed study of these issues in a far more general context,
see [KK] (2007).

Remark 10.7. (Platen 2006): The equation for Ψ(·) := V∗(·)/B(·) = w/Z(·) in (10.9) is

dΨ(t) = α(t) dt +
√

Ψ(t)α(t) dB(t), Ψ(0) = w

with B(·) a one-dimensional Brownian motion and α(t) := Ψ(·)‖θ(·)‖2.
Then Ψ(·) is a time-changed and scaled squared Bessel process in dimension 4 (sum of squares

of four independent Brownian motions); that is, Ψ(·) = X
(
A(·))/4, where

A(·) :=
∫ ·

0

α(s) ds and X(u) = 4(w + u) + 2
∫ u

0

√
X(v) db(v), u ≥ 0

in terms of yet another standard, one-dimensional Brownian motion b(·).
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Remark 10.8. It might be useful to note at this point that, just as for the optimization problems
of this subsection, no assumption regarding the existence of EMM was necessary for any of the
Problems 1-6 of Section 4.

Chapter III

Functionally Generated Portfolios
Functionally generated portfolios were introduced in Fernholz (1999.a), and generalize broadly the
diversity-weighted portfolios of Section 7. For this new class of portfolios one can derive a decom-
position of their relative return analogous to that of (7.5), and this proves useful in the construction
and study of arbitrages relative to the market. Just like (7.5), this new decomposition (11.2) does
not involve stochastic integrals, and opens the possibility for making probability-one comparisons
over given, fixed time-horizons. Functionally generated portfolios can be constructed for general
classes of assets, with the market portfolio replaced by an arbitrary passive portfolio of the assets
under consideration.

11 Portfolio generating functions

Certain real-valued functions of the market weights µ1(t), . . . , µn(t) can be used to construct dynamic
portfolios that behave in a controlled manner. The portfolio generating functions that interest us
most fall into two categories: smooth functions of the market weights, and smooth functions of
the ranked market weights. Those portfolio generating functions that are smooth functions of the
market weights can be used to create portfolios with returns that satisfy almost sure relationships
relative to the market portfolio, and, hence, can be applied to situations in which arbitrage might
be possible. Those functions that are smooth functions of the ranked market weights can be used
to analyze the role of company size in portfolio behavior.

Suppose we are given a function G : U → (0,∞) which is defined and of class C2 on some open
neighborhood U of ∆n

+, and such that the mapping x 7→ xiDi log G(x) is bounded on U for all
i = 1, · · · , n. Consider also the portfolio π(·) with weights

πi(t) =
(
Di log G(µ(t)) + 1−

n∑

j=1

µj(t)Dj log G(µ(t))
)
· µi(t) , 1 ≤ i ≤ n . (11.1)

We call this the portfolio generated by G(·). It can be shown that the relative wealth process of this
portfolio, with respect to the market, is given by the master formula

log
(

V π(T )
V µ(T )

)
= log

(
G(µ(T ))
G(µ(0))

)
+

∫ T

0

g(t) dt , 0 ≤ T < ∞ , (11.2)

where the so-called drift process g(·) is given by

g(t) :=
−1

2G(µ(t))

n∑

i=1

n∑

j=1

D2
ijG(µ(t)) µi(t)µj(t)τ

µ
ij(t) . (11.3)

The portfolio weights of (11.1) depend only on the market weights µ1(t), · · · , µn(t), not on the co-
variance structure of the market. Thus the portfolio of (11.1) can be implemented, and its associated
wealth process V π(·) observed through time, only in terms of the evolution of these market weights
over [0, T ].
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The covariance structure enters only in the computation of the drift term in (11.3). But the
remarkable thing is that, in order to compute the cumulative effect

∫ T

0
g(t) dt of this drift, there is

no need to know or estimate this covariance structure at all; (11.2) does this for us, in the form∫ T

0
g(t) dt = log

(
V π(T )G(µ(0))/V µ(T )G(µ(T ))

)
, and in terms of quantities that are observable.

The proof of the very important “master formula” (11.2) is given below, at the very end of the
present section. It can be skipped on first reading.

Remark 11.1. Suppose the function G(·) is concave, or, more precisely, its Hessian D2G(x) =(
D2

ijG(x)
)
1≤i,j≤n

has at most one positive eigenvalue for each x ∈ U and, if a positive eigenvalue
exists, the corresponding eigenvector is orthogonal to ∆n

+ . Then the portfolio π(·) generated by
G(·) as in (11.1) is long-only (i.e., each weight πi(·) is non-negative), and the drift term g(·) is
non-negative; if rank

(
D2G(x)

)
> 1 holds for each x ∈ U , then g(·) is positive.

For instance:

1. G(·) ≡ w, a positive constant, generates the market portfolio;

2. G(x) = w1x1+· · ·+wnxn generates the passive portfolio that buys at time t = 0, and holds up
until time t = T , a fixed number of shares wi in each stock i = 1, · · · , n (the market portfolio
corresponds to the special case w1 = · · · = wn = w of equal numbers of shares across assets);

3. G(x) ≡ Gp(x) :=
(
xp

1 + · · · + xp
n

)1/p, for some 0 < p < 1, generates the diversity-weighted
portfolio µ(p)(·) of (7.1), with drift-process g(·) ≡ (1− p)γ∗

µ(p)(·) ; and

4. G(x) ≡ F(x) :=
(
x1 · · ·xn

)1/n, generates the equally weighted portfolio ϕi(·) ≡ 1/n, i =
1, · · · , n introduced in Remark 7.2, with drift gϕ(·) ≡ γ∗ϕ(·) as in (7.11).

In a similar manner, Fc(x) := c + F(x) , for c ∈ (0,∞) , generates the convex combination

ϕc
i (t) :=

F(µ(t))
c + F(µ(t))

· 1
n

+
c

c + F(µ(t))
· µi(t) , i = 1, · · · , n (11.4)

of the equally weighted portfolio and the market, with associated drift-rate

gϕc

(t) =
F(µ(t))

c + F(µ(t))
γ∗ϕ(t) . (11.5)

5. Consider now the entropy function H(x) := −∑n
i=1 xi log xi, x ∈ ∆n

+ and, for any given
c ∈ (0,∞), its modification

Hc(x) := c + H(x), which satisfies: c < Hc(x) ≤ c + log n, x ∈ ∆n
+ . (11.6)

This modified entropy function generates an entropy-weighted portfolio πc(·) with weights and
drift-process given, respectively, as

πc
i (t) =

µi(t)
Hc(µ(t))

(
c− log µi(t)

)
, 1 ≤ i ≤ n and gc(t) =

γ∗µ(t)
Hc(µ(t))

. (11.7)

To obtain some idea about the behavior of one of these portfolios with actual stocks, we ran a
simulation of a diversity-weighted portfolio using the stock database from the Center for Research
in Securities Prices (CRSP) at the University of Chicago. The data included 50 years of monthly
values from 1956 to 2005 for exchange-traded stocks after the removal of closed-end funds, REITs,
and ADRs not included in the S&P 500 Index. From this universe, we considered a cap-weighted
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Figure 11.2: Simulation of a Gp-weighted portfolio, 1956–2005
1: generating function; 2: drift process; 3: relative return.

large-stock index consisting of the largest 1000 stocks in the database. Against this index, we
simulated the performance of the corresponding diversity-weighted portfolio, generated by Gp of
Remark 11.1, Example 3 above, with p = 1/2. No trading costs were included.

The results of the simulation are presented in Figure 11.2: Curve 1 is the change in the generating
function, Curve 2 is the cumulative drift process

∫ ·
0
g(t) dt , and Curve 3 is the relative return. Each

curve shows the cumulative value of the monthly changes induced in the corresponding process
by capital gains or losses in the stocks, so the curves are unaffected by monthly changes in the
composition of the database. As can be seen, Curve 3 is the sum of Curves 1 and 2. The cumulative
drift process

∫ ·
0
g(t) dt was the dominant term over the period, with a total contribution of about

40 percentage points to the relative return. The drift process g(·) was quite stable over the 50-
year period, with the possible exception of the period around 2000, when “irrational exuberance”
increased the volatility of the stocks as well as the intrinsic volatility of the entire market and, hence,
increased the value of g(·) ≡ (1 − p)γ∗

µ(p)(·). The cumulative drift process
∫ ·
0
g(t) dt here has been

adjusted to account for “leakage”; see Remark 11.9 below.

11.1 Sufficient Intrinsic Volatility leads to Arbitrage

Broadly accepted practitioner wisdom upholds that sufficient volatility creates growth opportunities
in a financial market.

We have already encountered an instance of this phenomenon in Remark 3.2; we saw there that,
in the presence of a strong non-degeneracy condition on the market’s covariance structure, “rea-
sonably diversified” long-only portfolios with constant weights represent superior long-term growth
opportunities relative to the overall market.

We shall examine in Example 11.1 below another instance of this phenomenon. We shall try
again to put the above intuition on a precise quantitative basis, by identifying now the excess growth
rate of the market portfolio – which also measures the market’s intrinsic volatility, according to (3.8)
and the discussion following it – as a driver of growth; to wit, as a quantity whose ‘availability’ or
‘sufficiency’ (boundedness away from zero) can lead to opportunities for strong arbitrage and for
superior long-term growth, relative to the market.
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Example 11.1. Suppose now that in the market M there exist real constants ζ > 0, T > 0 such
that

1
T

∫ T

0

γ∗µ(t) dt ≥ ζ (11.8)

holds almost surely. For instance, this is the case when the excess growth rate of the market portfolio
is bounded away from zero: that is, when we have almost surely

γ∗µ(t) ≥ ζ, ∀ 0 ≤ t ≤ T . (11.9)

Consider again the entropy-weighted portfolio πc(·) of (11.7), namely

πc
i (t) =

µi(t)
(
c− log µi(t)

)
∑n

j=1 µj(t)
(
c− log µj(t)

) , i = 1, · · · , n , (11.10)

now written in a form that makes plain its over-weighting of the small capitalization stocks, relative
to the market portfolio. From (11.2), (11.7) and the inequalities of (11.6), one sees that the portfolio
πc(·) in (11.7) satisfies

log
(

V πc

(T )
V µ(T )

)
= log

(
Hc(µ(T ))
Hc(µ(0))

)
+

∫ T

0

γ∗µ(t)
Hc(µ(t))

dt (11.11)

> − log

(
c + H

(
µ(0)

)

c

)
+

ζT

c + log n

almost surely. Thus, for every time horizon [0, T ] of length

T > T∗(c) :=
1
ζ

(
c + log n

)
log

(
c + H

(
µ(0)

)

c

)
,

or for that matter every

T > T∗ =
1
ζ

H
(
µ(0)

)
(11.12)

(since limc→∞ T∗(c) = T∗), and for c > 0 sufficiently large, the portfolio πc(·) of (11.7) satisfies the
condition P(V πc

> V µ(T )) = 1 for strong arbitrage relative to the market µ(·) , on the given time
horizon [0, T ]. It is straightforward that (6.3) is also satisfied, with q = c/(c + H(µ(0)).

In particular, with the notation of (6.2) we have almost surely Lπc,µ ≥ ζ/(c + log n) > 0 (the
condition for superior long-term growth for πc(·) relative to the market µ(·) ), provided that (11.9)
holds for all sufficiently long time-horizons T > 0 .

It should also be noted that we have not imposed in the discussion of Example 11.1 any assump-
tion on the volatility structure of the market (such as (1.15), (1.16) or (3.10)) beyond the absolutely
minimal condition of (1.2).

Figure 11.3 shows the cumulative excess growth
∫ ·
0
γ∗µ(t) dt for the U.S. equities market over most

of the twentieth century. Note the conspicuous bumps in the curve, first in the Great Depression
period in the early 1930s, then again in the “irrational exuberance” period at the end of the century.
The data used for this chart come from the monthly stock database of the Center for Research in
Securities Prices (CRSP) at the University of Chicago. The market we construct consists of the
stocks traded on the New York Stock Exchange (NYSE), the American Stock Exchange (AMEX)
and the NASDAQ Stock Market, after the removal of all REITs, all closed-end funds, and those
ADRs not included in the S&P 500 Index. Until 1962, the CRSP data included only NYSE stocks.
The AMEX stocks were included after July 1962, and the NASDAQ stocks were included at the
beginning of 1973. The number of stocks in this market varies from a few hundred in 1927 to about
7500 in 2005.
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Figure 11.3: Cumulative excess growth
∫ ·
0
γ∗µ(t)dt.

U.S. market, 1927–2005

This computation for Figure 11.3 does not need any estimation of covariance structure: from
(11.11) we can express this cumulative excess growth

∫ ·

0

γ∗µ(t) dt =
∫ ·

0

Hc

(
µ(t)

)
d log

(
V πc

(t)Hc(µ(0))
V µ(t)Hc(µ(t))

)
,

just in terms of quantities that are observable in the market. The plot suggests that the U.S. market
has exhibited a strictly increasing cumulative excess growth over this period.

Remark 11.2. Let us recall here our discussion of the conditions in (5.3): if the covariance matrix
a(·) has all its eigenvalues bounded away from both zero and infinity, then the condition (11.9)
(respectively, (11.8)) is equivalent to diversity (respectively, weak diversity) on [0,T ]. The point of
these conditions is that they guarantee the existence of strong arbitrage relative to the market, even
when volatilities are unbounded and diversity fails. In the next section we shall study a concrete
example of such a situation.

Remark 11.3. Open Question: From (11.11) it is not difficult to see that if we are allowed
to start with the market arbitrarily close to the “boundary”, i.e., if µ(0) can be chosen such that
H(µ(0)) is arbitrarily small, then condition (11.9) will assure the existence of short-term arbitrage
(as opposed to arbitrage over sufficiently long time intervals). Suppose now that the market can
reach a point arbitrarily close to the boundary in an arbitrarily short time with positive probability.
We could then use the strategy of holding the market portfolio until we arrive close enough to the
boundary—which will occur, at least with positive probability—and then switch to the arbitrage
portfolio, so short-term arbitrage will again be possible. However, strong arbitrage, in the sense that

P [V π(T ) > V µ(T ) ] = 1

in (6.1), cannot be assured by this argument. Indeed, it seems to be an open problem whether or not
condition (11.9) implies strong arbitrage relative to the market over arbitrarily short time periods.
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Remark 11.4. Example and Open Questions: For 0 < p ≤ 1 , the quantity

γ∗π,p(t) :=
1
2

n∑

i=1

(
πi(t)

)p
τπ
ii(t) (11.13)

generalizes the excess growth rate of a portfolio π(·) , in the sense that γ∗π,1(·) ≡ γ∗π(·) . With
0 < p < 1 , consider the a.s. requirement

Γ(T ) ≤
∫ T

0

γ∗p,µ(t) dt < ∞ , ∀ 0 ≤ T < ∞ , (11.14)

for some continuous, strictly increasing function Γ : [0,∞) → [0,∞) with Γ(0) = 0 , Γ(∞) = ∞ .
As shown in Proposition 3.8 of [FK] (2005), the condition (11.14) guarantees that the portfolio

πi(t) := p ·
(
µi(t)

)p

∑n
j=1

(
µj(t)

)p + (1− p) · µi(t) , i = 1, · · · , n (11.15)

is a strong arbitrage opportunity relative to the market, namely, that P [ V π(T ) > V µ(T ) ] = 1
holds over sufficiently long time-horizons: T > Γ−1

(
(1/p)n1−p log n

)
.

Note that the portfolio of (11.15) is a convex combination, with fixed weights 1− p and p, of the
market and of its diversity-weighted index µ(p)(·) in (7.1), respectively.

Some questions suggest themselves:
• Does (11.14) guarantee the existence of relative arbitrage opportunities over arbitrary time-
horizons?
• Is there a result on the existence of relative arbitrage, that generalizes both Example 11.1 and
the result outlined in (11.14), (11.15)?
• What quantity, or quantities, might then be involved, in place of the market excess growth or its
generalization (11.14)? Is there a “best” result of this type?

Example 11.2. Equal Weighting: Recall the computation (7.11) for the excess growth rate of
the equally weighted portfolio ϕi(·) ≡ 1/n , i = 1, · · · n , and suppose that

(
µ1(t) · · ·µn(t)

)1/n
γ∗ϕ(t) ≥ ζ , 0 ≤ t ≤ T (11.16)

holds a.s., for some real constant ζ > 0 .
Recall also the modification ϕc(·) of this portfolio, as in (11.4); this is generated by the function

Fc(x) = c + F(x) , with c > 0 and F(x) := (x1 · · ·xn)1/n ∈ (0, n−1/n] , x ∈ ∆n
+ . From (11.5) and

(11.2), we deduce the a.s. comparisons

log
(

V ϕc

(T )
V µ(T )

)
= log

(
c + F

(
µ(T )

)

c + F
(
µ(0)

)
)

+
∫ T

0

F
(
µ(t)

)
γ∗ϕ(t)

c + F
(
µ(t)

) dt

and

log
(

V ϕc

(T )
V µ(T )

)
≥ log

(
c

c + n−1/n

)
+

ζ T

c + n−1/n
(11.17)

for the portfolio ϕc(·) of (11.4). Therefore, we have P
(
V ϕc

(T ) > V µ(T )
)

= 1 , provided that
T > 1

ζ

(
c+n−1/n

) · log
(
c/(c+n−1/n)

)
. Consequently, if the time horizon is sufficiently long, to wit

T > T∗ :=
1
ζ

n−1/n ,

there exists a number c ∈ (0,∞) such that the market-modulated equally weighted portfolio ϕc(·)
of (11.4) is a strong arbitrage relative to the market.
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Remark 11.5. Open Question: We have presented a few portfolios that lead to arbitrage
relative to the market; they are all functionally generated. Is there a “best” such example within
that class? Are there similar examples of portfolios that are not functionally generated, nor trivial
modifications thereof? How representative (or “dense”) in this context is the class of functionally
generated portfolios?

Remark 11.6. Open Question: Generalize the theory of functionally generated portfolios to the
case of a market with a countable infinity (n = ∞) of assets, or to some other model with a variable,
unbounded number of assets.

Remark 11.7. Open Question: What, if any, is the connection of functionally generated port-
folios with the “universal portfolios” of Cover (1991) and Jamshidian (1992)?

11.2 Rank, Leakage, and the Size Effect

An important generalization of the ideas and methods in this section concerns generating functions
that record market weights not according to their name (or index) i, but according to their rank.
To present this generalization, let us start by recalling the order statistics notation of (1.18), and
consider for each 0 ≤ t < ∞ the random permutation

(
pt(1), · · · , pt(n)

)
of (1, · · · , n) with

µpt(k)(t) = µ(k)(t), and pt(k) < pt(k + 1) if µ(k)(t) = µ(k+1)(t) (11.18)

for k = 1, . . . , n. In words: pt(k) is the name (index) of the stock that occupies the kth rank in
terms of relative capitalization at time t; ties are resolved by resorting to the lowest index.

Using Itô’s rule for convex functions of semimartingales (e.g. [KS] (1991), section 3.7), one can
obtain the following analogue of (2.5) for the ranked market-weights

dµ(k)(t)
µ(k)(t)

=
(
γpt(k)(t)− γµ(t) +

1
2
τµ
(kk)(t)

)
dt +

1
2

(
dLk,k+1(t)− dLk−1,k(t)

)

+
d∑

ν=1

(
σpt(k)ν(t)− σµ

ν (t)
)
dWν(t)

(11.19)

for each k = 1, . . . , n− 1. Here the quantity Lk,k+1(t) ≡ ΛΞk
(t) is the semimartingale local time at

the origin, accumulated by the non-negative process

Ξk(t) := log
(
µ(k)/µ(k+1)

)
(t), 0 ≤ t < ∞ (11.20)

up to the calendar time t ; it measures the cumulative effect of the changes that have occurred during
the time-interval [0, t] between ranks k and k + 1. We are also setting L0,1(·) ≡ 0, Lm,m+1(·) ≡ 0
and τµ

(k`)(·) := τµ
pt(k)pt(`)

(·).
A derivation of this result, under appropriate conditions that we choose not to broach here, can

be found on pp. 76-79 of Fernholz (2002); see also Banner & Ghomrasni (2007) for generalizations.

With this setup, we have then the following generalization of the “master equation” (11.2):
Consider a function G : U → (0,∞) exactly as assumed there, written in the form

G(x1, · · · , xn) = G
(
x(1), · · · , x(n)

)
, ∀ x ∈ U

for some G ∈ C2(U) and U an open neighborhood of ∆n
+ . Introduce the shorthand

x(·) :=
(
x(1), · · · , x(n)

)′
, µ(·)(t) :=

(
µ(1)(t), · · · , µ(n)(t)

)′
, τµ

(k`)(t) := τµ
pt(k)pt(`)

(t)
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as well as the notation

Γ(T ) := −
∫ T

0

1
2G

(
µ(·)(t)

)
n∑

k=1

n∑

`=1

D2
k` G

(
µ(·)(t)

)
µ(k)(t)µ(`)(t) τµ

(k`)(t) dt

+
1
2

n−1∑

k=1

(
πpt(k+1)(t)− πpt(k)(t)

)
dLk,k+1(t) .

(11.21)

Then it can be shown that the performance of the portfolio π(·) given as

πpt(k)(t) =
(

Dk log G
(
µ(·)(t)

)
+ 1−

n∑

`=1

µ(`)(t)D` log G
(
µ(·)(t)

))
µ(k)(t) (11.22)

for 1 ≤ k ≤ n, relative to the market, is

log
(

V π(T )
V µ(T )

)
= log

(
G

(
µ(·)(T )

)

G
(
µ(·)(0)

)
)

+ Γ(T ) , 0 ≤ T < ∞ . (11.23)

We say that π(·) is the portfolio generated by the function G(·). The detailed proof can be found
in Fernholz (2002), pp. 79-83.

For instance, G(x(·)) = x(1) generates the portfolio πpt(k)(t) = δ1k , k = 1, · · · , n , 0 ≤ t < ∞
that invests only in the largest stock, at all times. The relative performance

log
(

V π(T )
V µ(T )

)
= log

(
µ(1)(T )
µ(1)(0)

)
− 1

2
L1,2(T ), 0 ≤ T < ∞

of this portfolio will suffer in the long run, if there are many changes in leadership: in order for the
biggest stock to do well relative to the market, it must crush all competition!

Example 11.3. The Size Effect: This is the tendency of small stocks to have higher long-term
returns relative to their larger brethren. The formula of (11.23) offers a simple, structural explanation
of this observed phenomenon, as follows.

Fix an integer m ∈ {2, · · · , n − 1} and consider the functions GL(x) = x(1) + · · · + x(m) and
GS(x) = x(m+1) + · · ·+ x(n). These generate, respectively, a large-stock portfolio

ζpt(k)(t) =
µ(k)(t)
GL(µ(t))

, k = 1, · · · ,m and ζpt(k)(t) = 0, k = m + 1, · · · , n (11.24)

and a small-stock portfolio

ηpt(k)(t) =
µ(k)(t)
GS(µ(t))

, k = m + 1, · · · , n and ηpt(k)(t) = 0, k = 1, · · · ,m. (11.25)

According to (11.23) and (11.22), the performances of these portfolios, relative to the market, are
given by

log
(

V ζ(T )
V µ(T )

)
= log

(GL(µ(T ))
GL(µ(0))

)
− 1

2

∫ T

0

ζ(m)(t) dLm,m+1(t), (11.26)

log
(

V η(T )
V µ(T )

)
= log

(GS(µ(T ))
GS(µ(0))

)
+

1
2

∫ T

0

η(m)(t) dLm,m+1(t), (11.27)

respectively. Therefore,

log
(

V η(T )
V ζ(T )

)
= log

( GS(µ(T ))GL(µ(0))
GL(µ(T ))GS(µ(0))

)
+

∫ T

0

ζ(m)(t) + η(m)(t)
2

dLm,m+1(t). (11.28)
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If there is “stability” in the market, in the sense that the ratio of the relative capitalization of small
to large stocks remains stable over time, then the first term on the right-hand side of (11.28) does
not change much, whereas the second term keeps increasing and accounts for the better relative
performance of the small stocks. Note that this argument does not need to invoke any assumption
about the putative greater riskiness of the smaller stocks at all.

The paper Fernholz & Karatzas (2006) studies conditions under which such stability in rela-
tive capitalizations prevails, and contains further discussion related to the “liquidity premium” for
equities.

Remark 11.8. Estimation of Local Times: Hard as this might be to have guessed from the
outset, the local times Lk,k+1(·) ≡ ΛΞk

(·) appearing in (11.19), (11.21) can be estimated in practice
quite accurately; indeed, (11.26) gives

Lm,m+1(·) =
∫ ·

0

2
ζ(m)(t)

d log
( GL(µ(t))
GL(µ(0))

V µ(t)
V ζ(t)

)
, m = 1, · · · , n− 1, (11.29)

and the quantity on the right-hand side is completely observable.

Remark 11.9. Leakage in a Diversity-Weighted Index of Large Stocks: With the integer
m and the large-stock portfolio ζ(·) as in Example 11.3, and a fixed number r ∈ (0, 1), consider the
diversity-weighted, large-stock portfolio

µ]
pt(k)(t) =

(
µ(k)(t)

)r

∑m
`=1

(
µ(`)(t)

)r , 1 ≤ k ≤ m and µ]
pt(k)(t) = 0, m + 1 ≤ k ≤ n (11.30)

generated by the function Gr(x) =
( ∑m

`=1

(
x(`)

)r
)1/r

, by analogy with (7.4), (7.1). Then

log

(
V µ]

(T )
V µ(T )

)
= log

(
Gr(µ(T ))
Gr(µ(0))

)
+ (1− r)

∫ T

0

γ∗µ](t) dt−
∫ T

0

µ]
(m)(t)

2
dLm,m+1(t)

gives the performance of the portfolio in (11.30) relative to the market, and

log

(
V µ]

(T )
V ζ(T )

)
= log

(
Gr

(
ζ(1)(T ), · · · , ζ(m)(T )

)

Gr

(
ζ(1)(0), · · · , ζ(m)(0)

)
)

+ (1− r)
∫ T

0

γ∗µ](t) dt

− 1
2

∫ T

0

(
µ]

(m)(t)− ζ(m)(t)
)
dLm,m+1(t)

(11.31)

gives the performance of (11.30) relative to the large-stock portfolio ζ(·) of (11.24). We have used
here the scale-invariance property

Gr(x1, · · · , xn)
x1 + · · ·+ xn

= Gr

(
x1

x1 + · · ·+ xn
, · · · ,

xn

x1 + · · ·+ xn

)

of the diversity function Gr(·) in (7.4) for 0 < r < 1 , which implies the reduction

Gr(µ(t))
GL(µ(t))

= Gr

(
ζ(1)(t), · · · , ζ(m)(t)

)
.

Since µ]
(m)(·) ≥ ζ(m)(·) from (7.7) and the remark following it, the last term in (11.31) is mono-

tonically increasing in T . It measures the “leakage” that occurs, when a capitalization-weighted
portfolio is contained inside a larger market, and stocks cross-over (“leak”) from the cap-weighted
to the market portfolio. For details of these derivations, see Fernholz (2002), pp. 84-88.
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Proof of the “Master Equation” (11.2). To ease notation we set

gi(t) := Di log G(µ(t)) and N(t) := 1−
n∑

j=1

µj(t)gj(t) ,

so (11.1) reads: πi(t) =
(
gi(t) + N(t)

)
µi(t), i = 1, · · ·n. Then the terms on the right-hand side of

(3.9) become
n∑

i=1

πi(t)
µi(t)

dµi(t) =
n∑

i=1

gi(t) dµi(t) + N(t) · d
( n∑

i=1

µi(t)
)

=
n∑

i=1

gi(t) dµi(t)

and
n∑

i=1

n∑

j=1

πi(t)πj(t)τ
µ
ij(t) =

n∑

i=1

n∑

j=1

(
gi(t) + N(t)

)(
gj(t) + N(t)

)
µi(t)µj(t)τ

µ
ij(t)

=
n∑

i=1

n∑

j=1

gi(t)gj(t)µi(t)µj(t)τ
µ
ij(t),

the latter thanks to (1.21) and Lemma 3.1. Thus, (3.9) gives

d log
(

V π(t)
V µ(t)

)
=

n∑

i=1

gi(t) dµi(t)− 1
2

n∑

i=1

n∑

j=1

gi(t)gj(t)µi(t)µj(t)τ
µ
ij(t) dt. (11.32)

On the other hand, we have

D2
ij log G(x) =

(
D2

ijG(x)/G(x)
)−Di log G(x) ·Dj log G(x) ,

so we get

d log G(µ(t) =
n∑

i=1

gi(t) dµi(t) +
1
2

n∑

i=1

n∑

j=1

D2
ij log G(µ(t)) d〈µi, µj〉(t)

=
n∑

i=1

gi(t) dµi(t) +
1
2

n∑

i=1

n∑

j=1

(D2
ijG(µ(t))
G(µ(t))

− gi(t)gj(t)
)
µi(t)µj(t)τ

µ
ij(t) dt

by Itô’s rule in conjunction with (2.6). Comparing this last expression with (11.32) and recalling
(11.3), we deduce (11.2), namely d log G(µ(t) = d log (V π(t)/V µ(t))− g(t)dt .

Chapter IV

Abstract Markets
The basic market model in (1.1) is too general for us to be able to draw many interesting conclu-
sions. Hence, we would like to consider a more restricted class of models that still capture certain
aspects of real equity markets, but are more analytically tractable than the general model (1.1).
Abstract markets are relatively simple stochastic equity market models that exhibit selected charac-
teristics of real equity markets, so that an understanding of these models will provide some insight
into the behavior of actual markets. In particular, there are two classes of abstract markets that
we shall discuss here: volatility-stabilized markets introduced in Fernholz & Karatzas (2005), and
rank-based models exemplified by Atlas models and their generalizations, which first appeared in
Fernholz (2002), with further development in Banner, Fernholz & Karatzas (2005).
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12 Volatility-Stabilized Markets

Volatility-stabilized market models are remarkable, because in these models the market itself behaves
in a rather sedate fashion, viz., (exponential) Brownian motion with drift, while the individual stocks
are going all over the place (in a rigorously defined manner, of course). These models reflect the
fact that in real markets, the smaller stocks tend to have greater volatility than the larger stocks.

Let us consider the abstract market model M with

d log Xi(t) =
α

2µi(t)
dt +

1√
µi(t)

dWi(t), i = 1, · · · , n, (12.1)

where α ≥ 0 is a given real constant. The theory developed by Bass & Perkins (2002) shows that
the resulting system of stochastic differential equations, for i = 1, . . . , n,

dXi(t) =
1 + α

2
(
X1(t) + . . . + Xn(t)

)
dt +

√
Xi(t)

(
X1(t) + . . . + Xn(t)

)
dWi(t), (12.2)

determines the distribution of the ∆n
+−valued diffusion process X(·) =

(
X1(·), · · · , Xn(·))′ uniquely;

and that the conditions of (1.2), (6.4) are satisfied by the processes

bi(·) = (1 + α)/2µi(·) , σiν(t) = (µi(t))−1/2δiν , r(·) ≡ 0 and θν(·) = (1 + α)/2
√

µν(·)
for 1 ≤ i, ν ≤ n . The reader might wish to remark that condition (3.10) is satisfied in this case, in
fact with ε = 1; but (1.16) fails.

The model of (12.1) assigns to all stocks log-drifts γi(t) = α/2µi(t) , covariances aij(t) = 0 for
j 6= i , and variances aii(t) = 1/µi(t) , i = 1, · · · , n that are largest for the smallest stocks and
smallest for the largest stocks. Not surprisingly then, individual stocks fluctuate rather widely in a
market of this type; in particular, diversity fails on every [0, T ]; see Remarks 12.2 and 12.3.

Yet despite these fluctuations, the overall market has quite stable behavior. We call this phe-
nomenon stabilization by volatility in the case α = 0; and stabilization by both volatility and drift in
the case α > 0.

Indeed, the quantities aµµ(·), γ∗µ(·), γµ(·) are computed from (1.20), (1.13), (1.12) as

aµµ(·) ≡ 1, γ∗µ(·) ≡ γ∗ :=
n− 1

2
> 0, γµ(·) ≡ γ :=

(1 + α)n− 1
2

> 0. (12.3)

This, in conjunction with (2.2), computes the total market capitalization

X(t) = X1(t) + . . . + Xn(t) = X(0) e γt+W(t) , 0 ≤ t < ∞ (12.4)

as the exponential of the standard, one-dimensional Brownian motionW(·) :=
∑n

ν=1

∫ ·
0

√
µν(s) dWν(s),

plus drift γt > 0. In particular, the overall market and the largest stock X(1)(·) = max1≤i≤n Xi(·)
grow at the same, constant rate:

lim
T→∞

1
T

log X(T ) = lim
T→∞

1
T

log X(1)(T ) = γ, a.s. (12.5)

On the other hand, according to Example 11.1 there exist in this model portfolios that lead to strong
arbitrage opportunities relative to the market, at least on time horizons [0, T ] with T ∈ (T∗,∞),
where

T∗ :=
2H(µ(0))

n− 1
≤ 2 log n

n− 1
. (12.6)

To wit: strong relative arbitrage can exist in non-diverse markets with unbounded volatilities.
The last upper-bound in the above expression (12.6) becomes small as the number of stocks in

the market increases. In fact, Banner & Fernholz (2007) provided recently an elaborate construction
which shows that strong arbitrage exists, relative to the market described by (12.1), over arbitrary
time-horizons.
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12.1 Bessel Processes

The crucial observation now, is that the solution of the system (12.1) can be expressed in terms of
the squares of independent Bessel processes R1(·), . . . , Rn(·) in dimension κ := 2(1 + α) ≥ 2, and
of an appropriate time change:

Xi(t) = R2
i

(
Λ(t)

)
, 0 ≤ t < ∞, i = 1, . . . , n, (12.7)

where

Λ(t) :=
1
4

∫ t

0

X(u) du =
X(0)

4

∫ t

0

eγs+W(s) ds, 0 ≤ t < ∞ (12.8)

and
Ri(u) =

√
Xi(0) +

κ− 1
2

∫ u

0

dξ

Ri(ξ)
+ Wi(u), 0 ≤ u < ∞. (12.9)

Here, the driving processes Wi(·) :=
∫ Λ−1(·)
0

√
Λ′(t) dWi(t) are independent, standard one-dimensional

Brownian motions (e.g. [KS] (1991), pp. 157-162). In a similar vein, we have the representation

X(t) = R2
(
Λ(t)

)
, 0 ≤ t < ∞

of the total market capitalization, in terms of the Bessel process

R(u) =
√

X(0) +
nκ− 1

2

∫ u

0

dξ

R(ξ)
+ W(u), 0 ≤ u < ∞ (12.10)

in dimension nκ, and of yet another one-dimensional Brownian motion W(·).
This observation provides a wealth of structure, which can be used then to study the asymptotic

properties of the model (12.1).

Remark 12.1. For the case α > 0 (κ > 2), we have the ergodic property

lim
u→∞

1
log u

∫ u

0

dξ

R2
i (ξ)

=
1

κ− 2
=

1
2α

, a.s.

(a consequence of the Birkhoff ergodic theorem and of the strong Markov property of the Bessel
process), as well as the Lamperti representation

Ri(u) =
√

xi eαθ+Bi(θ)

∣∣∣∣
θ=
R u
0 R−2

i (ξ)dξ

, 0 ≤ u < ∞

for the Bessel process Ri(·) in terms of the exponential of a standard Brownian motion Bi(·) with
positive drift α > 0. From these considerations, one can deduce the a.s. properties

lim
u→∞

log Ri(u)
log u

=
1
2

, lim
t→∞

1
t

log Xi(t) = γ , (12.11)

lim
T→∞

1
T

∫ T

0

aii(t) dt = lim
T→∞

1
T

∫ T

0

dt

µi(t)
=

2γ

α
= n +

n− 1
α

, (12.12)

for each i = 1, . . . , n ; see pp. 174-175 in [FK] (2005) for details. In particular, all stocks grow at the
same asymptotic rate γ > 0 of (12.3), as does the entire market; the model of (12.1) is coherent in
the sense of Remark 2.1; and the conditions (1.6), (1.7) hold.

Remark 12.2. In the case α = 0 (κ = 2), it can be shown that

lim
u→∞

log Ri(u)
log u

=
1
2

holds in probability , (12.13)
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but that we have almost surely:

lim sup
u→∞

log Ri(u)
log u

=
1
2

, lim inf
u→∞

log Ri(u)
log u

= −∞. (12.14)

It follows from this and (12.5) that

lim
t→∞

1
t

log Xi(t) = γ holds in probability, (12.15)

and also that
lim sup

t→∞
1
t

log Xi(t) = γ , lim inf
t→∞

1
t

log Xi(t) = −∞ (12.16)

hold almost surely. To wit, individual stocks can “crash” in this case, despite the overall stability
of the market; and coherence now fails, as does the condition (1.6).
(Note: The claim (12.13) comes form the observation

Ri(u) = ||Ri(0) + bi(u) || =
√

u || (Ri(0)/
√

u ) + bi(1) || in distribution,

where Ri(·) and bi(·) are Brownian motions on the plane and on the real line, respectively; thus,
we have limu→∞

(
log Ri(u)− (1/2) log u

)
= log ||bi(1)|| in distribution, and (12.13) follows.

As for (12.14), its fist claim follows from the law of the iterated logarithm for Brownian motion
on the real line; whereas the second claim is obtained from the following result:

For a decreasing function h(·) we have

P
(
Ri(u) ≥ u1/2h(u) for all u > 0 sufficiently large

)
= 1 or 0 ,

depending on whether the series
∑

k∈N
(
k | log h(k) |)−1 converges or diverges.

This zero-one law is due to Spitzer (1958); details of the argument can be found on pp. 176-177
of [FK] (2005).)

Remark 12.3. In the case α = 0 (κ = 2), it can be shown that

lim
u→∞

P
(
µi

(
Λ−1(u)

)
> 1− δ

)
= δn−1

holds for every i = 1, . . . , n and δ ∈ (0, 1); here Λ−1(·) = 4
∫ ·
0
R−2(ξ) dξ is the inverse of the time

change Λ(·) in (12.8), and R(·) is the Bessel process in (12.10). It follows that this model is not
diverse on [0,∞).

Remark 12.4. The exponential strict local martingale of (6.5) can be computed as

Z(T ) = exp

{
α2 − 1

8

n∑

i=1

∫ T

0

X1(t) + · · ·+ Xn(t)
Xi(t)

dt

}
·
(

X1(0) · · ·Xn(0)
X1(T ) · · ·Xn(T )

)(1+α)/2

.

Thus, the log-optimal trading strategy h∗(·) and its associated wealth process V∗(·) ≡ V1,h∗(·) of
Remark 10.5, are given as V∗(·) = 1/Z(·) and h∗i (·) = (1 + α)V∗(·)/2 , i = 1, · · · , n .

For α > 0 , we deduce from this and (12.11), (12.12) that we have the following a.s. growth
rates:

lim
T→∞

1
T

log V∗(T ) = nγ(1 + α)2/4α

and therefore

lim
T→∞

1
T

log
(

V∗(T )
V µ(T )

)
=

(
n(1 + α)2

4α
− 1

)
γ =

(
n(1 + α)2

4α
− 1

)
(1 + α)n− 1

2
. (12.17)
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Example 12.1. Diversity Weighting: In the context of the volatility-stabilized model of this
section with p = 1/2 , the diversity-weighted portfolio

µ
(p)
i (t) =

√
µi(t)∑n

j=1

√
µj(t)

, i = 1, · · · , n

of (7.1) represents a strong arbitrage relative to the market portfolio, namely

P
[
V π(p)

(T ) > V µ(T )
]

= 1 , at least on time-horizons [0, T ] with T >
8 log n

n− 1
.

Furthermore, this diversity-weighted portfolio outperforms considerably the market over long time-
horizons:

Lµ(p),µ := lim inf
T→∞

1
T

log

(
V µ(p)

(T )
V µ(T )

)
= lim inf

T→∞
1

2T

∫ T

0

γ∗µ(p)(t) dt ≥ n− 1
8

, a.s.

Question: Do the indicated limits exist? Can they be computed in closed form?

Example 12.2. Equal Weighting: With a covariance structure of the form aij(t) =
(
1/µi(t)

)
δij ,

as in the volatility-stabilized model of the present section, the excess growth rate γ∗ϕ(·) in (7.11) for
the equally weighted portfolio ϕ(·) of Remark 7.2 takes the form

γ∗ϕ(·) =
n− 1
2n2

n∑

i=1

1
µi(t)

.

The geometric-mean/harmonic-mean inequality now implies that the condition (11.16) is satisfied
by the constant ζ = (n − 1)/2n ; thus, according to Example 11.2, the market-modulated, equally
weighted portfolio ϕc(·) of (11.4) is a strong arbitrage opportunity relative to the market, over
time-horizons [0, T ] with T > 2 n 1−(1/n)/(n − 1) , provided that c > 0 is chosen sufficiently large
in (11.4).

How much better is equal weighting, relative to the volatility-stabilized market of this section
with α > 0 , over very large time-horizons? In conjunction with (7.10) and the coherence property
of this market, the strong law of large numbers (12.12) implies that the limit

Lϕ,µ := lim
T→∞

1
T

log
(

V ϕ(T )
V µ(T )

)
= lim

T→∞
1
T

∫ T

0

γ∗ϕ(t) dt

of (6.2) exists a.s., and equals

Lϕ,µ =
n− 1

2

(
1 +

n− 1
nα

)
. (12.18)

In other words: equal weighting, with its built-in “buying low and selling high” features, outperforms
considerably this drift- and volatility-stabilized market, over long time-horizons.

Example 12.3. Growth Optimality: For the volatility-stabilized model of this section with
0 < α < 1 and λ := γ + (1/2) = n(1 + α)/2 ≥ 1 , the portfolio

π̂i(t) :=
1 + α

2
−

( n

2
(1 + α)− 1

)
µi(t) = λϕi(t)− (λ− 1)µi(t) , i = 1, · · · , n (12.19)

maximizes pointwise the growth rate as in (4.1) of Problem 4.6, section 4: it is the growth-optimal
portfolio for this model. Its excess growth rate is computed as

γ∗bπ(t) =
λ(n− λ)

2n2

n∑

i=1

1
µi(t)

− λ− 1
2

(
n− λ− 1

)
.
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Note that π̂(·) is long in the equally weighted portfolio ϕ(·) of Example 12.2, and short in the market
portfolio µ(·) . Using the structure of these two simple portfolios, it is relatively straightforward to
compute the performance of π̂(·) relative to the market, namely

log
(

V bπ(T )
V µ(T )

)
=

λ

n
log

(
µ1(T ) · · ·µn(T )
µ1(0) · · ·µn(0)

)
+

∫ T

0

(
γ∗bπ(t) + (λ− 1) γ∗µ(t)

)
dt .

Recalling the coherence of this model, the asymptotic property (12.12), and the computation γ∗µ(t) =
(n− 1)/2 , we deduce

L bπ,µ := lim
T→∞

1
T

log
(

V bπ(T )
V µ(T )

)
=

λ(n− λ)
n

· γ

α
+

λ(λ− 1)
2

(12.20)

=
n2

8
(1 + α)

[
1 + α +

1
2n

+ (1− α)
(

1 +
n− 1
αn

)]
.

A comparison with (12.18) shows that shorting the market portfolio as in (12.19), improves the
performance of equal weighting by an entire order of magnitude in terms of market-size n ; whilst
the quantity of (12.20) is smaller than that of (12.17), as of course it should be, but has the same
order of magnitude in terms of market-size.

Remark 12.5. Open Question: For the entropy-weighted portfolio πc
i (·) of (11.10), compute in

the context of the volatility-stabilized model the expression

Lπc,µ := lim inf
T→∞

1
T

log
(

V πc

(T )
V µ(T )

)
= lim inf

T→∞
γ∗

T

∫ T

0

dt

c + H(µ(t))

of (6.2), using (11.10) and (12.3). But note already from these expressions that

Lπc,µ ≥ n− 1
2(c + log n)

> 0 a.s. ,

suggesting again a significant outperforming of the market over long time-horizons. Do the indicated
limits exist, as one would expect?

Remark 12.6. Open Questions: For fixed t ∈ (0,∞), determine the distributions of µi(t),
i = 1, · · · , n and of the largest µ(1)(t) := max1≤i≤n µi(t) and smallest µ(n)(t) := min1≤i≤n µi(t)
market weights.

What can be said about the behavior of the averages 1
T

∫ T

0
µ(k)(t)dt, particularly for the largest

(k = 1) and the smallest (k = n) stocks?

13 Rank-Based Models

Size is one of the most important descriptive characteristics of financial assets. One can understand
a lot about equity markets by observing, and trying to make sense of, the continual ebb and flow
of small-, medium- and large-capitalization stocks in their midst. A particularly convenient way to
study this feature is by looking at the evolution of the capital distribution curve log k 7→ log µ(k)(t);
that is, the logarithms of the market weights arranged in descending order, versus the logarithms
of their respective ranks (see also (13.14) below for a steady-state counterpart of this quantity).
As shown in Figure 5.1 of Fernholz (2002), reproduced here as Figure 13.4, this log-log plot has
exhibited remarkable stability over the decades of the last century.

It is of considerable importance, then, to have available models which describe this flow of capital
and exhibit stability properties for capital distribution that are in at least broad agreement with
these observations.
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Figure 13.4: Capital distribution curves: 1929–1999.
The later the period, the longer the curve.

The simplest model of this type assigns growth rates and volatilities to the various stocks, not
according to their names (the indices i) but according to their ranks within the market’s capital-
ization. More precisely, let us pick real numbers γ, g1, . . . , gn and σ1 > 0, . . . , σn > 0 , satisfying
conditions that will be specified in a moment, and prescribe growth rates γi(·) and volatilities σiν(·)

γi(t) = γ +
n∑

k=1

gk1{Xi(t)=Xpt(k)(t)} σiν(t) = δiν ·
n∑

k=1

σk 1{Xi(t)=Xpt(k)(t)} (13.1)

for 1 ≤ i, ν ≤ n with d = n. We are using here the random permutation notation of (11.18), and we
shall denote again by X(·) =

(
X1(·), · · · , Xn(·))′ the vector of stock-capitalizations.

It is intuitively clear that if such a model is to have some stability properties, it has to assign
considerably higher growth rates to the smallest stocks than to the biggest ones. It turns out that
the right conditions for stability are

g1 < 0 , g1 + g2 < 0 , . . . , g1 + · · ·+ gn−1 < 0 , g1 + · · ·+ gn = 0 . (13.2)

These conditions are satisfied in the simplest model of this type, the Atlas model that assigns

γ = g > 0 , gk = −g for k = 1, . . . , n− 1 and gn = (n− 1)g , (13.3)

thus γi(t) = ng 1{Xi(t)=Xpt(n)(t)} in (13.1): zero growth rate goes to all the stocks but the smallest,
which then becomes responsible for supporting the entire growth of the market.

In addition to the drift condition (13.2), we shall impose a condition on the variances of the
model:

n∑

k=1

σ2
k > 2 · max

1≤k≤n
σ2

k , 0 ≤ σ2
2 − σ2

1 ≤ σ2
3 − σ2

2 ≤ · · · ≤ σ2
n − σ2

n−1 .

Making these specifications amounts to postulating that the log-capitalizations Yi(·) := log Xi(·)
i = 1, · · · , n satisfy the system of stochastic differential equations

dYi(t) =
(
γ +

n∑

k=1

gk1Q(k)
i

(Y(t))
)
dt +

n∑

k=1

σk1Q(k)
i

(Y(t)) dWi(t) , (13.4)

47



with Yi(0) = yi = log xi. Here
{Q(k)

i

}
1≤i,k≤n

is a collection of polyhedral domains in Rn, with the
properties {Q(k)

i

}
1≤i≤n

is a partition of Rn, for each fixed k ,

{Q(k)
i

}
1≤k≤n

is a partition of Rn, for each fixed i ,

and the interpretation

Y = (Y1, . . . , Yn) ∈ Q(k)
i means that Yi is ranked kth among Y1, . . . , Yn .

As long as the vector of log-capitalizations Y(·) =
(
Y1(·), · · · , Yn(·))′ is in the polyhedron Q(k)

i , the
equation (13.3) posits that the coördinate process Yi(·) evolves like a Brownian motion with drift
γ + gk and variance σ2

k. (Ties are resolved by resorting to the lowest index i; for instance, Q(1)
i ,

1 ≤ i ≤ n corresponds to the partition Qi of (0,∞)n of section 9, right below (9.3); and so on.)
The theory of Bass & Pardoux (1987) guarantees that this system has a weak solution, which is

unique in distribution; once this solution has been constructed, we obtain stock capitalizations as
Xi(·) = eYi(·) that satisfy (1.4) with the specifications of (13.1).

Remark 13.1. Research Problem: There is a natural generalization of (13.4) to

dYi(t) =
(
γi +

n∑

k=1

gk1Q(k)
i

(Y(t))
)
dt +

n∑

k=1

σk1Q(k)
i

(Y(t)) dWi(t) + ρi dBi(t), (13.5)

where (B1(·), . . . , Bn(·)) is a Brownian motion independent of (W1(·), . . . ,Wn(·)), and the γi and ρi

are constants. In this case, it can be shown that the system is stable if and only if, besides (13.2),
we have γ1 + · · ·+ γn = 0 and

∑̀

k=1

(
gk + γπ(k)

)
< 0 , ` = 1, · · · , n− 1 ,

for any permutation π of {1, 2, . . . , n}. The model (13.5) is known as the hybrid model , since the
growth rates and variances depend of both rank and name, i.e., index. These models provide a
simplification of the general market model of (1.1), but nevertheless one that may be both tractable
enough and ample enough to allow meaningful insight into the behavior of real equity markets. Be
that as it may, at this writing, there remain many open research questions regarding these hybrid
models.

An immediate observation from (13.3) is that the sum Y (·) :=
∑n

i=1 Yi(·) of log-capitalizations
satisfies

Y (t) = y + nγt +
n∑

k=1

σkBk(t) , 0 ≤ t < ∞

with y :=
∑n

i=1 yi, and Bk(·) :=
∑n

i=1

∫ ·
0
1Q(k)

i

(Y(s))dWi(s) , k = 1, . . . n independent scalar Brow-
nian motions. Thus, the strong law of large numbers implies

lim
T→∞

1
T

n∑

i=1

Yi(T ) = nγ , a.s.

Then it takes a considerable amount of work (see Appendix in [BFK] 2005), in order to strengthen
this result to

lim
T→∞

1
T

log Xi(T ) = lim
T→∞

Yi(T )
T

= γ a.s., for every i = 1, . . . , n ; (13.6)

to wit, all the stocks have the same asymptotic growth-rate γ in this model. Using (13.6), it can be
shown that the model specified by (1.5), (13.1) is coherent in the sense of Remark 2.1.
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Remark 13.2. Taking Turns in the Various Ranks. From (13.4), (13.6) and the strong law of
large numbers for Brownian motion, we deduce that the quantity

∑n
k=1 gk

(
1
T

∫ T

0
1Q(k)

i
(Y(t)) dt

)

converges a.s. to zero, as T → ∞. For the Atlas model in (13.3), this expression becomes
g

(
n
T

∫ T

0
1Q(n)

i
(Y(t)) dt− 1

)
, and we obtain

lim
T→∞

1
T

∫ T

0

1Q(n)
i

(Y(t)) dt =
1
n

a.s., for every i = 1, . . . , n.

Namely, each stock spends roughly (1/n)th of the time, acting as “Atlas”.
Again with considerable work, this is strengthened in [BFK] (2005) to the statement

lim
T→∞

1
T

∫ T

0

1Q(k)
i

(
Y(t)

)
dt =

1
n

, a.s., for every 1 ≤ i, k ≤ n, (13.7)

valid not just for the Atlas model, but under the more general conditions of (13.2). Thanks to the
symmetry inherent in this model, each stock spends roughly (1/n)th of the time in any given rank;
see Proposition 2.3 in [BFK] (2005).

13.1 Ranked Capitalization Processes

For many purposes in the study of these models, it makes sense to look at the ranked log-capitalization
processes

Zk(t) :=
n∑

i=1

Yi(t) · 1Q(k)
i

(Y(t)), 0 ≤ t < ∞ (13.8)

for 1 ≤ k ≤ n. From these, we get the ranked capitalizations via X(k)(t) = eZk(t), with notation
similar to (1.18). Using an extended Tanaka-type formula, as we did in (11.19), it can be seen that
the processes of (13.8) satisfy

Zk(t) = Zk(0) + (gk + γ)t + σkBk(t) +
1
2

(
Lk,k+1(t)− Lk−1,k(t)

)
, 0 ≤ t < ∞ (13.9)

in that notation. Here, as in subsection 11.2, the continuous and increasing process Lk,k+1(·) :=
ΛΞk

(·) is the semimartingale local time at the origin of the continuous, non-negative process

Ξk(·) = Zk(·)− Zk+1(·) = log
(
µ(k)(·)/µ(k+1)(·)

)

of (11.20) for k = 1, · · · , n− 1; and we make again the convention L0,1(·) ≡ Ln,n+1(·) ≡ 0.
These local times play a big rôle in the analysis of this model. The quantity Lk,k+1(T ) represents

again the cumulative amount of change between ranks k and k+1 that occurs over the time interval
[0, T ]. Of course, in a model such as the one studied here, the intensity of changes for the smaller
stocks should be higher than for the larger stocks.

This is borne out by experiment: as we saw in Remark 11.8 it turns out, somewhat surprisingly,
that these local times can be estimated based only on observations of relative market weights and of
the performance of simple portfolios over [0, T ]; and that they exhibit a remarkably linear increase,
with positive rates that grow with k, as we see in Figure 13.5, reproduced from Fernholz (2002),
Figure 5.2.

The analysis of the present model agrees with these observations: it follows from (13.6) and the
dynamics of (13.9) that, for k = 1, . . . , n− 1, we have

lim
T→∞

1
T

Lk,k+1(T ) = λk,k+1 := −2
(
g1 + . . . + gk) > 0, a.s. (13.10)

Our stability condition guarantees that these partial sums are positive – as indeed the limits on the
right-hand side of (13.10) ought to be; and in typical examples, such as the Atlas model of (13.3)
where λk,k+1 = kg, they do increase with k, as suggested by Figure 13.5.
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Figure 13.5: Lk,k+1(·), k = 10, 20, 40, · · · , 5120.

13.2 Some Asymptotics

A slightly more careful analysis of these local times reveals that the non-negative semimartingale
Ξk(·) of (11.20) can be cast in the form of a Skorohod problem

Ξk(t) = Ξk(0) + Θk(t) + ΛΞk
(t), 0 ≤ t < ∞,

as the reflection, at the origin, of the semimartingale

Θk(t) = (gk − gk+1) t− 1
2

(
Lk−1,k(t) + Lk+1,k+2(t)

)
+ skW̃ (k)(t),

where sk :=
(
σ2

k + σ2
k+1

)1/2 and W̃ (k)(·) :=
(
σkBk(·) − σk+1Bk+1(·)

)
/sk is standard Brownian

Motion.
As a result of these observations and of (13.10), we conclude that the process Ξk(·) behaves

asymptotically like Brownian motion with drift gk − gk+1 − 1
2 (λk−1,k + λk,k+1) = −λk,k+1 < 0 ,

variance s2
k, and reflection at the origin. Consequently,

lim
t→∞

log
(

µ(k)(t)
µ(k+1)(t)

)
= lim

t→∞
Ξk(t) = ξk , in distribution (13.11)

where, for each k = 1, . . . , n− 1 the random variable ξk has an exponential distribution

P(ξk > x) = e−rkx, x ≥ 0 with parameter rk :=
2λk,k+1

s2
k

= −4(g1 + · · ·+ gk)
σ2

k + σ2
k+1

> 0 . (13.12)

As T. Ichiba (2006) observes, the theory of Harrison & Williams (1987)(a,b) implies that the random
variables ξ1, · · · , ξn are independent when the variances are of the form σ2

k = σ2 + ks2 for some
real numbers σ2 > 0 and s2 ≥ 0 ; that is, are either constant, or grow linearly with rank.
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13.3 The Steady-State Capital Distribution Curve

We also have from (13.11) the strong law of large numbers

lim
T→∞

1
T

∫ T

0

g
(
Ξk(t)

)
dt = E

(
g(ξk)

)
, a.s.

for every rank k, and every measurable function g : [0,∞) → R with
∫∞
0
|g(x)|e−rkxdx < ∞; see

Khas’minskii (1960). In particular,

lim
T→∞

1
T

∫ T

0

log
(

µ(k)(t)
µ(k+1)(t)

)
dt = E

(
ξk

)
=

1
rk

=
s2
k

2λk,k+1
, a.s. (13.13)

This observation provides a tool for studying the steady-state capital distribution curve

log k 7−→ lim
T→∞

1
T

∫ T

0

log µ(k)(t) dt =: m(k), k = 1, · · · , n− 1 (13.14)

alluded to at the beginning of this section (more on the existence of this limit in the next subsection).
To estimate the slope q(k) of this curve at the point log k, we use (13.13) and the estimate log(k +
1)− log k ≈ 1/k, to obtain in the notation of (13.12):

q(k) ≈ m(k)−m(k + 1)
log k − log(k + 1)

= − k

rk
=

k
(
σ2

k + σ2
k+1

)

4(g1 + · · ·+ gk)
< 0 . (13.15)

Consider now an Atlas model as in (13.3). With equal variances σ2
k = σ2 > 0, this slope is the

constant q(k) ≈ −σ2/2g, and the steady-state capital distribution curve can be approximated by a
straight Pareto line.

On the other hand, with variances of the form σ2
k = σ2 + ks2 for some s2 > 0, growing linearly

with rank, we get for large k the approximate slope

q(k) ≈ − 1
2g

(
σ2 + ks2

)
, k = 1 , · · · , n− 1 .

Such linear growth is suggested by Figure 5.5 in Fernholz (2002), which is reproduced here as
Figure 13.6. This would imply a decreasing and concave steady-state capital distribution curve,
whose (negative) slope becomes more and more pronounced in magnitude with increasing rank,
much in accord with the features of Figure 13.4.

We see, in other words, that even such a simplistic model as that of (1.5), (13.1) – which has
features such as (13.6), (13.7) that are not particularly realistic – is able to capture asymptotic
stability properties observed in real markets, such as those exhibited in Figures 4, 5 and 6. It is
possible to modify the model of the present section in ways that remove the ‘simplistic’ features
(13.6), (13.7), while at the same time retaining the good asymptotic properties already mentioned.
One is thus led to the “hybrid” models of Remark 13.1, that prescribe growth rates and covariances
based on both name (the index i) and rank; as already mentioned, such models are the subject of
very active current research.

Remark 13.3. Estimation of Parameters in this Model. Let us remark that (13.10) provides
a method for obtaining estimates λ̂k,k+1 of the parameters λk,k+1, from the observable random
variables Lk,k+1(T ) that measure cumulative change between ranks k and k +1 ; recall Remark 11.8
once again. Then estimates of the parameters gk follow, as ĝk =

(
λ̂k−1,k − λ̂k,k+1

)
/2 ; and the

parameters s2
k = σ2

k +σ2
k+1 can be estimated from (13.13) and from the increments of the observable

capital distribution curve of (13.14), namely ŝ2
k = 2λ̂k,k+1

(
m(k)−m(k+1)

)
. For the decade 1990-99,

these estimates are presented in Figure 13.6.
Finally, we make the following selections for estimating the variances:

σ̂2
k =

1
4

(
ŝ2
k−1 + ŝ2

k

)
, k = 2, · · · , n− 1 , and σ̂2

1 =
1
2

ŝ2
1 , σ̂2

n =
1
2

ŝ2
n−1 .
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Figure 13.6: Smoothed annualized values of ŝ2
k for k = 1, . . . , 5119.

Calculated from 1990–1999 data.

13.4 Stability of the Capital Distribution

Let us now go back to (13.11); it can be seen that this leads to the convergence of the ranked market
weights

lim
t→∞

(
µ(1)(t), . . . , µ(n)(t)

)
= (M1, . . . ,Mn), in distribution (13.16)

to the random variables

Mn :=
(
1 + e ξn−1 + · · ·+ e ξ1+···+ξn−1

)−1
, and Mk := Mn e ξk+···+ξn−1 (13.17)

for k = 1, . . . , n− 1. These are the long-term (steady-state) relative weights of the various stocks in
the market, ranked from largest, M1, to smallest, Mn. Again, we have from (13.16) the strong law
of large numbers

lim
T→∞

1
T

∫ T

0

f
(
µ(1)(t), . . . , µ(n)(t)

)
dt = E

(
f(M1, . . . ,Mn)

)
, a.s. (13.18)

for every bounded and measurable f : ∆n
+ → R. Note that (13.13) is a special case of this result,

and that the function m(·) of (13.14) takes the form

m(k) = E
(
log(Mk)

)
=

n−1∑

`=k

1
r`
− E

(
log(1 + e ξn−1 + · · ·+ e ξ1+···+ξn−1)

)
. (13.19)

This is the good news; the bad news is that we do not know, in general, the joint distribution
of the exponential random variables ξ1, · · · , ξn−1 in (13.11), so we cannot find that of M1, · · · , Mn

either. In particular, we cannot pin down the steady-state capital distribution function of (13.19),
though we do know precisely its increments m(k+1)−m(k) = −(1/rk) and thus are able to estimate
the slope of the steady-state capital distribution curve, as indeed we did in (13.15). In [BFK] (2005)
a simple, certainty-equivalent approximation of the steady-state ranked market weights of (13.17) is
carried out, and is used to study in detail the behavior of simple portfolios in such a model.
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Remark 13.4. Open Question: What can be said about the joint distribution of the long-
term (steady-state) relative market weights of (13.17)? Can it be characterized, computed, or
approximated in a good way? What can be said about the fluctuations of the random variables
log(Mk) with respect to their means m(k) in (13.19)?

For answers to some of these questions for equal variances and large numbers of assets (in the
limit as n → ∞), see the important recent work of Pal & Pitman (2007) and Chatterjee & Pal
(2007).

Remark 13.5. Research Question and Conjecture: Study the steady-state capital distribution
curve of the volatility-stabilized model in (12.1). With α > 0, check the validity of the following
conjecture: the slope

q(k) ≈ m(k)−m(k + 1)
log k − log(k + 1)

of the capital distribution m(·) at log k , should be given as

q(k) ≈ −4γkhk , hk := E
(

log Q(k) − log Q(k+1)

Q(1) + · · ·+ Q(n)

)
,

where Q(1) ≥ · · · ≥ Q(n) are the order statistics of a random sample from the chi-square distribution
with κ = 2(1 + α) degrees of freedom.

If this conjecture is correct, does khk increase with k ?

14 Some Concluding Remarks

We have surveyed a framework, called Stochastic Portfolio Theory, for studying the behavior of
portfolio rules and for modeling and analyzing equity market structure. We have also exhibited
simple conditions, such as “diversity” and “availability of intrinsic volatility”, which can lead to
arbitrages relative to the market.

These conditions are descriptive in nature, and can be tested from the predictable characteristics
of the model posited for the market. In contrast, familiar assumptions, such as the existence of
an equivalent martingale measure (EMM), are normative in nature; they cannot be decided on the
basis of predictable characteristics in the model. In this vein, the Example 4.7, pp. 469-470 of [KK]
(2007) is quite instructive.

The existence of such relative arbitrage is not the end of the world. Under reasonably general
conditions, one can still work with appropriate “deflators” for the purposes of hedging contingent
claims and of portfolio optimization, as we have tried to illustrate in Section 10.

Considerable computational tractability is lost, as the marvelous tool that is the EMM goes out
the window. Nevertheless, big swaths of the field of Mathematical Finance remain totally or mostly
intact; and completely new areas and issues, such as those of the “Abstract Markets” in Part IV of
this survey, thrust themselves onto the scene.
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