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HERVÉ JACQUET

Abstract
We establish the existence of smooth transfer between absolute Kloosterman integrals
and Kloosterman integrals relative to a quadratic extension.
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1. Introduction
Let E/F be a quadratic extension of local non-Archimedean fields, letη : F× →
{±1} be the corresponding quadratic character, and letψ : F → C× be a nontriv-
ial character. LetNm be the subgroup of upper triangular matrices in GL(m) with
unit diagonal, and letAm be the group of diagonal matrices. We define a character
θ : Nm(F) → C× by θ(n) = ψ

( ∑
ni,i+1

)
. The groupNm(F) × Nm(F) operates

on GL(m, F) by g 7→ tn1gn2, and the orbits that intersectAm(F) form a dense
open subset. We define the diagonal orbital integrals of a smooth function of compact
support8 on GL(m, F):

�(8,ψ : a) :=
∫

Nm(F)×Nm(F)
8( tn1an2)θ(n1n2)dn1 dn2. (1)
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Likewise, we letH(m × m, E/F) be the space of Hermitian matricesm × m and
set Sm(F) = H(m× m, E/F) ∩ GL(m, E). We define a charactern 7→ θ(nn) of
Nm(E) by θ(nn) = ψ

( ∑
(ni,i+1+ni,i+1)

)
. The groupNm(E) operates onSm(F) by

s 7→ tnsn, and the orbits that intersectAm(F) form a dense open subset ofSm(F).
We define the diagonal orbital integrals of a smooth function of compact support9

on Sm(F):

�(9, E/F, ψ : a) :=
∫

Nm(E)
8( tnan)θ(nn)dn. (2)

We say that8 matches9 for ψ if for everya ∈ Am(F),

�(8,ψ : a) = γ (a, ψ)�(9, E/F, ψ : a),

where

γ (a, ψ) := η(a1)η(a1a2) · · · η(a1a2, . . . ,am−1) if a = diag(a1,a2, . . . ,am).

In this paper we prove that for every8 there is a matching9, and conversely.
Suppose thatE/F is unramified, and suppose that the conductor ofψ is OF .

Let 80 be the characteristic function of the set of matrices with integral entries in
M(m× m, F). Similarly, let90 be the characteristic function of the set of matrices
with integral entries inH(m × m, E/F). The fundamental lemmaasserts that the
restriction of80 to GL(m, F) matches the restriction of90 to Sm(F). This has been
established by Nĝo [10] in the case of positive characteristic.

In general, if8 matches9, then there are similar relations between the other
orbital integrals (see [3], [4]).

Within the context of the relative trace formula, the problem at hand is the ana-
logue of the transfer problem for the ordinary trace formula. Indeed, whenE/F is
an extension of function fields, the result presented in this paper, together with the
fundamental lemma of Nĝo [9], [10], implies the existence of global identities of the
form∫

Nm(F)×Nm(F)\Nm(FA)×Nm(FA)
θ(n1n2)dn1 dn2

( ∑
ξ∈Gl(n,F)

8( tn1ξn2)
)

=

∫
Nm(E)\Nm(EA)

θ(nn)dn
( ∑
ξ∈Sm(F)

9( tnξn)θ(nn)dn
)
.

In turn, the identities are a crucial step in extending the results of [5] to GL(m).
Our method is first to linearize the problem by replacing GL(m, F) andSm(F)

by the vector spacesM(m× m, F) and H(m× m, E/F), respectively. We then es-
tablish a simple relation between the orbital integrals of a function on either space
and its Fourier transform. It follows that if8 matches9, then the Fourier transform
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of 8 matches the Fourier transform of9. This proves the existence of many pairs of
matching functions and, in turn, is used to prove the existence of the transfer in a very
simple way.

Our method is suggested by the work of J. Waldspurger [13]. Waldspurger con-
siders orbital integrals in the context of the Lie algebras and derives the existence of
the transfer from the fundamental lemma (assumed to hold) and global identities. He
uses the Fourier transform on the Lie algebras in an essential way. It is reasonable to
ask whether, conversely, the results of the paper can be used to prove the fundamental
lemma in the context of the relative trace formula. We answer this question in the
affirmative for the case ofm= 2,3 in Section 9. In a forthcoming paper (see [7]), we
use the previous results to prove the fundamental lemma for allm.

2. Orbital integrals in M(m×m, F)
We now consider the action ofNm(F) × Nm(F) on M(m × m, F) given byr 7→
tn1rn2. We denote byθ0 the algebraic characterθ0 : N(F)→ F defined by

θ0(n) =
i=m−1∑

i=1

ni,i+1.

We say that an elementx ∈ M(m× m, F) (or its orbit) isrelevantif the character
(n1,n2) 7→ θ0(n1n2) is trivial on the stabilizer ofx in N(F)× N(F).

We let1i (x), 1≤ i ≤ m, be the determinant of the matrix obtained by removing
the lastm− i rows and the lastm− i columns of a matrixx. In particular,1m(x) =
detx. The functions1i are invariants of the action ofNm(F)× Nm(F). For 1≤ i ≤
m− 1, we denote byOi the set defined by1i 6= 0. We denote byBm the group of
upper triangular matrices in GL(m), by Am the group of diagonal matrices, and by
α1, α2, . . . , αm−1 the simple roots ofAm corresponding toBm. We denote byNα the
root group corresponding to a rootα. We identify the Weyl group ofAm with the
groupWm of permutation matrices, and we letAm be the set of diagonal matrices in
M(m×m, F). We often drop the indexm from the notation.

PROPOSITION1
In M(m×m, F) the set defined by1m = 0,1m−1 = 0 contains no relevant orbit.

Proof
We begin with an elementary lemma.

LEMMA 1
Any r ∈ M(m×m, F) can be written (in possibly several ways) in the form

r = tnwb
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withw ∈ Wm, n ∈ Nm(F), and b an upper triangular matrix.

Proof
We let

F0 = {V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vn}

be the canonical flag. ThusVi is the space spanned by the firsti vectors of the canon-
ical basis. Letr ∈ M(m×m, F) be given. Consider the sequence of subspaces

rV0 ⊆ rV1 ⊆ rV2 ⊆ · · · ⊆ rVm.

It need not be a flag, but, inductively, it is easy to show that there is a flag

F = {U0 ⊂ U1 ⊂ U2 ⊂ · · · ⊂ Um}

such that
rVi ⊆ Ui , 0≤ i ≤ n.

By the standard Bruhat decomposition,

F = tnwF0

for suitablew andn ∈ Nm(F). Thus

(tnw)−1rVi ⊆ Vi , 0≤ i ≤ n.

Since(tnw)−1r stabilizesF0, it is an upper triangular matrix. This proves the lemma.

To prove our assertion, it suffices then to consider the case of a relevant element of
the form

r = wb

with w ∈ Wm andb an upper triangular matrix such that detb = 0. Our task is then
to show that1m−1(wb) 6= 0. We remark that if the column of indexi , i < m, of the
matrix r is zero, thenr is irrelevant because thenrnαi = r for all nαi ∈ Nαi (F). In
particular, the first diagonal entryb1,1 of b is nonzero. Then at the cost of multiplying
b by a suitable element ofNα1 on the right, we may assume thatb1,2 = 0. Again,
since the second column ofb cannot be zero, we must haveb2,2 6= 0. Inductively, we
see that we may assumeb to have the form

b =

(
b′ 0
0 0

)
,
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whereb′ is an invertible diagonal matrix of size(m− 1)× (m− 1). Thus the last row
of b is zero. Sincewb is relevant, the firstm− 1 rows ofwb cannot be zero. This
forcesw to have the form

w =

(
w′ 0
0 1

)
,

wherew′ is a permutation matrix in GL(m− 1). Now

1m−1(wb) = detb′ detw′.

Thus1m−1(wb) 6= 0, as claimed.

Now it is elementary that every elementx such that detx = 0 but1n−1(x) 6= 0 is in
the orbit of an element of the form(

x′ 0
0 0

)
.

Moreover,x is relevant if and only ifx′ is a relevant element in GL(m− 1, F). Also,

a = diag(a1,a2, . . . ,am) ∈ Am

is relevant if and only ifa1a2 · · ·am−1 6= 0.
Now we recall the classification of the relevant orbits in GL(m, F) (cf. [1], [12]).

Every orbit has a unique representative of the formwa with w ∈ W anda ∈ Am(F).
If this element is relevant, then for every pair of positive roots(α1, α2) such that
wα2 = −α1, for nαi ∈ Nαi (F) we have

tnα1wanα2 = wa⇒ θ0(nα1nα2) = 0. (3)

This condition implies that ifα1 is simple, thenα2 is simple, and conversely. Thusw
and its inverse have the property that if they change a simple root to a negative one,
then they change it to the opposite of a simple root. LetSbe the set of simple rootsα
such thatwα is negative. ThenS is also the set of simple rootsα such thatw−1α is
negative andwS= −S. Let M be the standard Levi subgroup determined byS. Thus
S is the set of simple roots ofM for the torusA, w is the longest element ofW ∩ M ,
andw2

= 1. This being so, ifα2 is simple, then condition (3) impliesα2(a) = 1.
Thusa is in the center ofM .

Letwm be them×m permutation matrix with antidiagonal entries equal to 1. We
see that elements of the form

g =


wm1a1 0 · · · 0

0 wm2a2 · · · 0
· · ·

0 0 · · · wmr ar

 ,
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with m1 + m2 + · · · + mr = m, a1,a2, . . . ,ar ∈ F×, form a set of representatives
for the relevant orbits in GL(m, F). A set of representatives for the relevant orbits in
M(n × n, F) is formed of the same elements, except thatar = 0 is allowed when
mr = 1 (andwmr = 1).

We setθ = ψ ◦ θ0. We define the orbital integral of a relevant elementx:

� [8,ψ : x] =
∫
8(tn1xn2)θ(n1n2)dn1 dn2;

the integral is over the quotient ofNm(F) × Nm(F) by the stabilizer ofx. The nor-
malization of the measure is described below.

It is convenient to introduce theintermediate orbital integrals. Let m,n be two
integers greater than zero. For8 ∈ S (M((m+ n)× (m+ n), F)), An ∈ GL(n, F),
Bm ∈ M(m×m, F), we set

�n
m

[
8,ψ :

(
An 0
0 Bm

)]
:=

∫
8

[(
1n 0
Y 1m

) (
An 0
0 Bm

) (
1n X
0 1m

)]
× ψ

[
Tr εm

n X + Tr Yε̃m
n

]
d X dY. (4)

Hereε = εm
n is the matrix withm rows andn columns whose first row is the row

matrix of sizen,
εn = (0,0, . . . ,0,1),

and all other rows are zero. Likewise,ε̃ = ε̃m
n is the matrix withn rows andm columns

whose first column is the column matrix

ε̃n =


0
0
. . .

0
1

 ,

and all other columns are zero. IfX = (xi, j ), then the measured X is the tensor
product of the self-dual Haar measuredxi, j .

The above integral can we written more explicitly as∫
8

[(
An AnX

Y An Bm+ Y AnX

)]
ψ

[
Tr(εX)+ Tr(Yε̃)

]
d X dY,

or, after a change of variables,

�n
m

[
8,ψ :

(
An 0
0 Bm

)]
= |detAn|

−2m
∫
8

[(
An X
Y Bm+ Y A−1

n X

)]
× ψ

[
Tr(εA−1

n X)+ Tr(Y A−1
n ε̃)

]
d X dY.
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The previous form shows that the integral converges and defines a smooth function
on GL(n, F)×M(m×m, F). More precisely, the following result is easily obtained.

LEMMA 2
If 8 is supported on On, then�n

m[8,ψ : •] is a smooth function of compact support
on GL(n, F) × M(m×m, F). Conversely, any smooth function of compact support
on GL(n, F) × M(m × m, F) is equal to�n

m[8,ψ : •] for a suitable function8
supported on On.

We also introduce thenormalizedintermediate orbital integrals

�̃n
m

[
8,ψ :

(
An 0
0 Bm

)]
:= |detAn|

m
× �n

m

[
8,ψ :

(
An 0
0 Bm

)]
. (5)

If 9 is a smooth function of compact support on GL(n, F) × M(m × m, F),
we can define its orbital integrals relative to the action(Nn × Nn) × (Nm× Nm) on
GL(n, F) × M(m × m, F). They are denoted by�(9,ψ : xn, xm), wherexn is
relevant in GL(n, F) and xm relevant inM(m × m, F). In particular, consider the
case of the function

9(An, Bm) = �
n
m

[
8,ψ :

(
An 0
0 Bm

)]
and a relevant elementx of M((n+m)× (n+m), F) of the form

x =

(
xn 0
0 xm

)
,

wherexn is relevant in GL(n, F) andxm is relevant inM(m×m, F). We then have
the following reduction formula:

� [8,ψ : x] = � [9,ψ : xn, xm] . (6)

This formula reduces the computation of the orbital integrals (and the normalization
of the measures) to the case of an element of the formwna, wherea is a scalar matrix.
Then

�[8,ψ : wna] =
∫
8





0 0 0 · · · 0 a
0 0 0 · · · a ax2,n

· · · · · · · · · · · · · · · · · ·

0 0 a · · · axn−2,n−1 axn−2,n

0 a axn−1,3 · · · axn−1,n−1 axn−1,n

a axn,2 axn,3 · · · axn,n−1 axn,n




× ψ

( i=n∑
i=2

xi,n−i+2

)
⊗ dxi, j ,
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where the measuresdxi, j are self-dual.
We also denote by�(8,ψ : a1,a2, . . . ,an) the orbital integral�(8,ψ : a),

wherea = diag(a1,a2, . . . ,an). We introduce normalized diagonal orbital integrals
as follows. Fora ∈ Am(F) we set

σn(a) := 11(a)12(a) · · ·1n−1(a).

Thus
σn(a) = an−1

1 an−2
2 · · ·an−1

anda is relevant ifσn(a) 6= 0. Fora relevant, we set

�̃(8,ψ : a) := |σn(a)|�(8,ψ : a). (7)

We have a reduction formula for these normalized orbital integrals. In a precise
way, for8 ∈ S (M(n+m)× (n+m), F), set

9(An, Bm) = �̃
n
m

[
8,ψ :

(
An 0
0 Bm

)]
.

Consider a diagonal matrix

a =

(
an 0
0 am

)
with an ∈ An(F) andam relevant inAm(F). The normalized orbital integral of9 on
the pair(an,am) is defined to be

�̃ [9,ψ : an,am] = |σn(an)| |σm(am)|� [9,ψ : an,am] .

It follows from the relation

(detan)
mσn(an)σ (am) = σn+m(a)

that it is equal to�̃(8,ψ : a).

3. Weil formula: The split case
Our goal is to obtain a simple relation between the orbital integrals of a function and
the orbital integrals of its Fourier transform. Our main tool is the Weil formula for
the Fourier transform of a character of second order. We state the form of the Weil
formula that we are using. We consider the direct sum

M(n×m, F)⊕ M(m× n, F),

the first index being the number of rows. A function8 on that space is written as

8

(
0n,n X
Y 0m,m

)
.
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Thus the matrix written is a square matrix of size(n+m)×(n+m)with zero diagonal
blocks,X ∈ M(n×m, F), andY ∈ M(m× n, F). The Fourier transform of such a
function is the function defined by

8̂

(
0n,n X
Y 0m,m

)
:=

∫
8

(
0 U
V 0

)
ψ

[
−Tr

((
0 X
Y 0

) (
cc0 U
V 0

))]
dU dV

=

∫
8

(
0 U
V 0

)
ψ

[
− Tr(YU)− Tr(XV)

]
dU dV. (8)

PROPOSITION2
For A ∈ GL(n, F), B ∈ GL(m, F), and any Schwartz function8 on M(n×m, F)⊕
M(m× n, F), we have∫

8

(
0 X
Y 0

)
ψ (Tr BY AX) d X dY

= |detA|−m
|detB|−n

∫
8̂

(
0 X
Y 0

)
ψ(−Tr B−1Y A−1X)d X dY.

Proof
Assume first thatA andB are unit matrices. Set

81(U,V) =
∫
8

(
0 V
Y 0

)
ψ

(
− Tr(YU)

)
dU.

Then the left-hand side of the identity reduces to∫
81(−X, X)d X.

On the other hand, using the (partial) Fourier inversion formula, we see that the right-
hand side is equal to ∫

81(Y,−Y)dY.

Our assertion then follows. In general, we remark that Tr(BY AX) = Tr Y AX B. We
changeX to X B−1 andY to Y A−1 in the left-hand side, and we changeY to BY and
X to AX in the right-hand side. We see that we are reduced to the case ofA = 1,
B = 1 applied to the function

(X,Y) 7→ |detA|−m
|B|−n8

(
0 X B−1

Y A−1 0

)
,

the Fourier transform of which is the function

(X,Y) 7→ 8̂

(
0 AX

BY 0

)
.
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Our assertion follows.

We record a simple consequence of this formula. ForP ∈ M(m× n, F) and Q ∈
M(n×m, F),∫

8

(
0 X
Y 0

)
ψ

(
Tr(P X)+ Tr(Y Q)+ Tr(BY AX)

)
d X dY

= |detA|−m
|detB|−n

×

∫
8̂

(
0 X
Y 0

)
ψ

(
− Tr B−1(Y + P)A−1(X + Q)

)
d X dY.

(9)

4. Inversion formula for the orbital integrals
For8 ∈ S (M(n× n, F)), we define the Fourier transform of8 to be

8̂(X) =
∫
8(Y)ψ[−Tr(XY)]dY.

The measure is self-dual. Recall thatwn ∈ Wn is the permutation matrix with unit
antidiagonal. We set

8̌(X) = 8̂(wnXwn).

Our goal in this section is to obtain a relation between the orbital integrals of8 and
the orbital integrals of̌8. We first establish such a relation for the intermediate orbital
integrals.

PROPOSITION3
Let n≥ 1, m≥ 1 be two integers. Let8 ∈ S (M((m+ n)× (m+ n), F)). Then∫ (∫

�̃n
m

[
8,ψ :

(
An 0
0 Bm

)]
ψ [−Tr BmwmCmwm] d Bm

)
× ψ

[
Tr(wmC−1

m wmε
m
n A−1

n ε̃m
n )

]
ψ

[
− Tr(AnwnDnwn)

]
d An

= �̃m
n

[
8̌, ψ :

(
Cm 0
0 Dn

)]
.

The integrals are for Bm ∈ M(m×m, F) and An ∈ M(n× n, F).

Proof
We consider the partial Fourier transform2 (with respect toBm) of the normalized
intermediate orbital integral of8:

2(An,Cm) :=

∫
�̃n

m

[
8,ψ :

(
An 0
0 Bm

)]
ψ [−Tr BmCm] d Bm.
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If we changeCm to wmCmwm and Dn to wnDnwn, we see that the identity of the
proposition amounts to∫

2(An,Cm)ψ[Tr C−1
m εm

n A−1
n ε̃m

n ]ψ[−Tr AnDn]d An

= |detCm|
n
∫
8̂

(
Dn + wnYwmCmwmXwn wnYwmCm

CmwmXwn Cm

)
× ψ[−Tr εn

mX − Tr Yε̃n
m]d X dY. (10)

ChangingX towmYwn andY townXwm and noting the relations

wnε
n
mwm = ε̃

m
n , wmε̃

n
mwn = ε

m
n ,

we see that the right-hand side of the last formula can also be written∫
8̂

(
Dn + XCmY XCm

CmY Cm

)
ψ[−Tr Yε̃m

n − Tr εm
n X]d X dY. (11)

From now on, let us writeε for εm
n andε̃ for ε̃m

n . After a change of variables, we find
that2 is also equal to

|detAn|
m

∫
8

[(
An AnX

Y An Bm

)]
× ψ[Tr(εX)+ Tr(Yε̃)+ Tr(CmY AnX)]d X dY

× ψ[−Tr(CmBm)]d Bm.

After a new change of variables, this becomes

|detAn|
−m

∫
8

[(
An X
Y Bm

)]
× ψ

[
Tr(εA−1

n X)+ Tr(Y A−1
n ε̃)+ Tr(CmY A−1

n X)
]

d X dY

× ψ
[
− Tr(CmBm)

]
d Bm.

We now introduce a partial Fourier transform of8:

81

(
An U
V Cm

)
:=

∫
8

(
An X
Y Bm

)
ψ

[
−Tr

(
0 X
Y Bm

) (
cc0 U
V Cm

)]
d X dY d Bm.

By the Weil formula, the previous expression is then

|detCm|
−n

∫
81

(
An X
Y Cm

)
ψ

[
− Tr C−1

m (Y + εA−1
n )An(X + A−1

n ε̃)
]

d X dY.
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Expandingψ , we find

|detCm|
−nψ

[
− Tr(C−1

m εA−1
n ε̃)

]
×

∫
81

(
An X
Y Cm

)
× ψ

[
− Tr(C−1

m Y AnX)− Tr(C−1
m Yε̃)− Tr(C−1

m εX)
]

d X dY.

Changing variables once more, we obtain, at last,

2(An,Cm) = |detCm|
nψ

[
− Tr(C−1

m εA−1
n ε̃)

]
×

∫
81

(
An XCm

CmY Cm

)
× ψ

[
− Tr CmY AnX − Tr(Yε̃)− Tr(εX)

]
d X dY

To obtain (10), we must multiply by

ψ
[

Tr(C−1
n εA−1

n ε̃)
]

and take the Fourier transform of the result with respect toAn. The Fourier transform
is evaluated atDn. We indeed obtain (10). The proof shows that forCm ∈ GL(m, F),
the integral converges as an iterated integral.

Our main result in this section is the following inversion formula for diagonal orbital
integrals.

THEOREM 1
For 8 ∈ S (M(n× n, F)),

�̃(8̌,ψ : a1,a2, . . . ,an)

=

∫
�̃(8,ψ : p1, p2, · · · , pn)

× ψ
(
−

i=n∑
i=1

pi an+1−i +

i=n−1∑
i=1

1

pi an−i

)
dpn dpn−1 · · · dp1,

where the multiple integral is only an iterated integral.

Proof
For n = 1 the formula is just the definition of the Fourier transform. Thus we may
assume thatn > 1 and that our assertion is true forn−1. We prove it forn. We apply
the formula of Proposition 3 to the pair of integers(n − 1,1). We obtain, for fixed
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a1 ∈ F×,∫ (∫
�̃n−1

1

[
8,ψ :

(
An−1 0

0 pn

)]
ψ [−pna1] dpn

)
× ψ

[
Tr(a−1

1 εn−1A−1
n−1ε̃n−1)

]
ψ

[
− Tr(An−1wn−1Dn−1wn−1)

]
d An−1

= �̃1
n−1

[
8̌, ψ :

(
a1 0
0 Dn−1

)]
.

This formula shows that the function81(An−1) defined by

81(An−1) := ψ
[

Tr(a−1
1 εn−1A−1

n−1ε̃n−1)
]

×

∫
�̃n−1

1

[
8,ψ :

(
An−1 0

0 pn

)]
ψ [−pna1] dpn,

which a priori is defined only on GL(n− 1, F), extends in fact to a Schwartz-Bruhat
function onM((n− 1) × (n− 1), F), still denoted by81 such that8̌1 = 2, where
2 is the Schwartz function onM((n− 1)× (n− 1), F) defined by

2(Dn−1) = �̃
1
n−1

[
8̌, ψ :

(
a1 0
0 Dn−1

)]
.

The induction hypothesis applied to81 gives

�̃(2,ψ : a2,a3, . . . ,an)

=

∫
�̃(81, ψ : p1, p2, . . . , pn−1)

× ψ
(
−

i=n−1∑
i=1

pi an+1−i +

i=n−2∑
i=1

1

pi an−i

)
dpn−1 · · · dp1. (12)

On the other hand, with

a = diag(a1,a2, . . . ,am), a′ = diag(a2,a3, . . . ,an),

we have

�̃(2,ψ : a2,a3, . . . ,an)

= |σn−1(a
′)|�(2,ψ : a′)

= |a1|
n−1
|σn−1(a

′)|

×

∫
Nn−1(F)×Nn−1(F)

�1
n−1

[
8̌, ψ :

(
a1 0
0 tu2a′u1

)]
θ(u1u2)du1 du2

= |σn(a)|�(8̌,ψ : a)

= �̃(8̌, ψ : a1,a2, . . . ,an).
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Hence we get

�̃(8̌,ψ : a1,a2, . . . ,an)

=

∫
�̃(81, ψ : p1, p2, . . . , pn−1)

× ψ
(
−

i=n−1∑
i=1

pi an+1−i +

i=n−2∑
i=1

1

pi an−i

)
dpn−1 · · · dp1. (13)

To complete the proof, we have to compute the orbital integral of the function
An−1 7→ 81(An−1) on the matrixp′ = diag(p1, p2, . . . , pn−1). Note that the factor

ψ
[

Tr(a−1
1 εn−1A−1

n−1ε̃n−1)
]
,

which appears in the definition of81, is constant on the orbits ofNn−1(F)×Nn−1(F)
and, in particular, takes the valueψ[1/(a1pn−1)] on the orbit ofp′. Observe, further-
more, that ifφ is the characteristic function of a compact open set inF×, then the
function

(An−1, pn) 7→ φ(detAn−1)�̃
n−1
1

[
8,ψ :

(
An−1 0

0 pn

)]
is a smooth function of compact support on GL(n− 1, F)× F . In particular,∫ ∫

�̃n−1
1

[
8,ψ :

(tu1xu2 0
0 pn

)]
θ(u1u2)ψ[−pna1]dpn du1 du2

is an absolutely convergent integral where the order of integration can be reversed.
Moreover, for a givenpn,

|σn−1(p
′)|

∫
�̃n−1

1

[
8,ψ :

(tu1p′u2 0
0 pn

)]
θ(u1u2)du1 du2

= �̃ [8,ψ : p1, p2, . . . , pn] .
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It follows that

�̃[81,ψ : p′]

= ψ
[ 1

a1pn−1

]
|σn−1(p

′)|

×

∫ ∫
�̃n−1

1

[
8,ψ :

(tu1p′u2 0
0 pn

)]
θ(u1u2)ψ[−pna1]du1 du2 dpn

= ψ
[ 1

a1pn−1

]
|σn−1(p

′)||detp′|

×

∫ (
�n−1

1

[
8,ψ :

(tu1p′u2 0
0 pn

)]
θ(u1u2)ψ[−pna1]du1 du2

)
dpn

= ψ
[ 1

a1pn−1

]
|σn(p)|

∫
�[8,ψ : p1, p2, . . . , pn]ψ[−pna1]dpn

= ψ
[ 1

a1pn−1

] ∫
�̃[8,ψ : p1, p2, . . . , pn]ψ[−pna1]dpn.

Upon inserting this result in the right-hand side of (13), we find the identity of the
theorem.

There is another more elementary formula that comes directly from the Fourier inver-
sion formula.

PROPOSITION4
For 8 ∈ S (M(n× n, F)), n > 1, the function

φ(a) = � [8,ψ : wna]

is a smooth function of compact support on F×. Furthermore,

φ(a) = |a|−n2
+1

∫
�

[
8̌, ψ :

(
−wn−1a−1 0

0 b

)]
db.
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Proof
After a change of variables, we find

φ(a) = |a|(n−n2)/2
∫
8





0 0 0 · · · 0 a
0 0 0 · · · a x2,n

· · · · · · · · · · · · · · · · · ·

0 0 a · · · xn−2,n−1 xn−2,n

0 a xn−1,3 · · · xn−1,n−1 xn−1,n

a xn,2 xn,3 · · · xn,n−1 xn,n




× ψ

(
a−1

i=n∑
i=2

xi,n−i+2

)
⊗ dxi, j .

Since|1n| is bounded above on the support of8, the above integral vanishes for
|a| sufficiently large. On the other hand, since the integrand is a smooth function of
thexi, j , the integral vanishes for|a| small enough.

We pass to the second assertion. In terms of8̌ we find thatφ is equal to

∫
8̌





0 0 0 · · · −a−1 x1,n

· · · · · · · · · · · · · · · · · ·

0 0 −a−1
· · · xn−3,n−1 xn−3,n

0 −a−1 xn−2,3 · · · xn−2,n−1 xn−2,n

−a−1 xn−1,2 xn−1,3 · · · xn−1,n−1 xn−1,n

xn,1 xn,2 xn,3 · · · xn,n−1 xn,n




× |a|(n−n2)/2ψ

(
a

i=n∑
i=1

xi,n−i+1

)
⊗ dxi, j .

We define a function81 on GL(n− 1, F) by

81(An−1) =

∫
�n−1

1

[
8̌, ψ :

(
An−1 0

0 b

)]
db.

We remark that iff is a smooth function of compact support onF×, then the product
f (detAn−1)81(An−1) is a smooth function of compact support on GL(n− 1, F). It
easily follows that∫

�

[
8̌, ψ :

(
−wn−1a−1 0

0 b

)]
db= �(81;ψ : −wn−1a−1).
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Now

81(An−1) =

∫
8̌

[(
An−1 An−1X

Y An−1 b+ Y An−1X

)]
ψ(−εn−1X − Yε̃n−1)d X dY db

= |detAn−1|
−2

×

∫
8̌

[(
An−1 X

Y b

)]
ψ(−εn−1A−1

n−1X − Y A−1
n−1ε̃n−1)d X dY db.

Now

�[81, ψ : −wn−1a−1
] =

∫
81(An−1)ψ

(
−

i=n−1∑
i=2

xi,n−i+1

)
dxi, j ,

whereAn−1 is the matrix
0 0 0 · · · −a−1

· · · · · · · · · · · · · · ·

0 0 −a−1
· · · −a−1xn−3,n−1

0 −a−1
−a−1xn−2,3 · · · −a−1xn−2,n−1

−a−1
−a−1xn−1,2 −a−1xn−1,3 · · · −a−1xn−1,n−1

 .

After a change of variables, we find

|a|((n−1)2−(n−1))/2
∫
81(An−1)ψ

(
a

i=n−1∑
i=2

xi,n−i+1

)
dxi, j ,

where nowAn−1 is the matrix
0 0 0 · · · −a−1

· · · · · · · · · · · · · · ·

0 0 −a−1
· · · xn−3,n−1

0 −a−1 xn−2,3 · · · xn−2,n−1

−a−1 xn−1,2 xn−1,3 · · · xn−1,n−1

 .

Combining with the previous formula for81, we find that its orbital integral on
−wn−1a−1 is

|a|((n−1)2−(n−1))/2+2(n−1)
∫
8̌(An)ψ

(
a

i=n−1∑
i=1

xi,n−i+1

)
dxi, j ,
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whereAn is now the matrix

0 0 0 · · · −a−1 x1,n

· · · · · · · · · · · · · · · · · ·

0 0 −a−1
· · · xn−3,n−1 xn−3,n

0 −a−1 xn−2,3 · · · xn−2,n−1 xn−2,n

−a−1 xn−1,2 xn−1,3 · · · xn−1,n−1 xn−1,n

xn,1 xn,2 xn,3 · · · xn,n−1 xn,n


.

Comparing with the last expression forφ(a), we obtain our assertion.

5. Orbital integrals in H(n× n, E/F)
We letE/F be a quadratic extension ofF and denote byH(n×n, E/F) the space of
n×n Hermitian matrices, that is, the matricesm such thattm= m. The groupNn(E)
operates onH(n×n, E/F) by m 7→ tumu. Viewed as functions onH(n×n, E/F),
the functions1i are invariants of this action. For 1≤ i < n, we letO′i be the subset of
H(n×n, E/F) defined by1i 6= 0. We define an algebraic characterθ1 : N(E)→ F
by θ1(u) =

∑i=n−1
i=1 ui,i+1. Often we writeθ1(u) = θ0(uu). We say that an element

x (or its orbit) is relevant ifθ1 is trivial on the stabilizer ofx in Nn(E).

PROPOSITION5
In H(n× n, E/F) the set defined by1n−1 = 0,1n = 0 contains no relevant orbit.

Proof
Everys ∈ H(n × n, E/F) has the forms = tnwb with n ∈ Nn(E), w ∈ Wn, and
b upper triangular. Suppose that dets = 0, and suppose thats is relevant. We have
to show that1n−1(s) 6= 0. Now, if a column ofs with index i < n is zero, then the
row with indexi is also zero becauses is Hermitian, and thens is irrelevant since it is
fixed by the groupNαi (E). In particular,b1,1 6= 0. As before, at the cost of replacing
s by tn1sn1, we may assume thats= tnwb, whereb has the form

b =

(
b′ 0
0 0

)
,

whereb′ is an invertible diagonal matrix in GL(n− 1, E). In particular, the last row
of b is zero. We may replaces by the elementwbn−1, and the last row ofbn−1 is
again zero. Since the rows ofwbn−1 with index less thann cannot be zero,w must
have the form

w =

(
w′ 0
0 0

)
with w′ ∈ Wn−1. Then1n−1(wbn−1) = detbdetw′ 6= 0, as claimed.
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As before, an elementx such that detx = 0 but1n−1(x) 6= 0 is in the same orbit as
an element of the form (

x′ 0
0 0

)
.

Moreover,x is relevant if and only ifx′ is a relevant element in GL(m − 1, E) ∩
H((m− 1)× (m− 1), E/F).

Now we recall the classification of the relevant orbits in GL(n− 1, E)∩ H((n−
1) × (n − 1), E/F). Every orbit has a unique representative of the formwa with
w ∈ W, w2

= 1, a ∈ Am(E), andwaw = a (cf. [11]). Suppose thatα is a simple
root such thatwα = −β whereβ is positive. Fornα ∈ Nα, definenβ ∈ Nβ by

tnβwanα = wa.

Then
tnαwanβ = wa.

There exists an elementnα+β ∈ Nα+β (i.e.,nα+β = 1 if α+β is not a root) such that
n = nαnβnα+β satisfies

tnwan= wa.

If wa is relevant, this relation implies

θ0(nαnαnβnβ) = 0.

If β is not simple, this leads to a contradiction. Thusβ is simple. Sincew2
= 1, we

see that, as before, there is a standard Levi subgroupM such thatw is the longest
element inWm ∩ M . The above relation also implies thata is in the center ofM and
in A(F).

We conclude that the set of representatives for the relevant orbits ofNm(F) ×
Nm(F) in M(m × m, F) given in Section 2 is also a set of representatives for the
relevant orbits ofNm(E) in H(m×m, E/F).

We setθ(uu) = ψ(θ0(uu)). The orbital integrals

�[8,ψ, E/F : x] =
∫
8(tuxu)θ(uu)du

of a relevant elementx are defined as before: the integral is over the quotient of
Nm(E) ∩ M by the stabilizer ofx. Our goal is to study these orbital integrals in
complete analogy with the previous discussion.

It is convenient to introduce theintermediate orbital integrals. Let m,n be two
integers greater than zero. For8 ∈ S (H((m+ n) × (m+ n), E/F)), An ∈ Sn(F),
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Bm ∈ H(m×m, E/F), we set

�n
m

[
8, E/F, ψ :

(
An 0
0 Bm

)]
:=

∫
8

[(
1n 0
t X 1m

) (
An 0
0 Bm

) (
1n X
0 1m

)]
× ψ

[
Tr(εX)+ Tr( t Xε̃)

]
d X. (14)

Hereε and ε̃ are as above. Note thatε̃ = tε. If X = (xi, j ), then the measured X
is the tensor product of the self-dual Haar measuresdxi, j . The integral converges
and defines a smooth function onSn(F) × M(m×m, F). In particular, we have the
following easy result.

LEMMA 3
If 8 is supported on O′n, then the function�n

m(8,ψ : •) is a smooth function of
compact support on Sn(F) × M(m × m, F). Conversely, every smooth function of
compact support on that space is of this form for a suitable8 supported on O′n.

After a change of variables, we find, keeping in mind that detAn ∈ F×,

�n
m

[
8, E/F, ψ :

(
An 0
0 Bm

)]
= |detAn|

−2m
F

∫
8

[(
An X
t X Bm+

t X A−1
n X

)]
× ψ

[
Tr(εA−1

n X)+ Tr( t X A−1
n ε̃)

]
d X.

We also introduce thenormalizedintermediate orbital integrals

�̃n
m

[
8, E/F, ψ :

(
An 0
0 Bm

)]
:= η(detAn)

m
|detAn|

m
F ×8

n
m

[
8, E/F, ψ :

(
An 0
0 Bm

)]
. (15)

One can define the orbital integrals of a smooth function of compact support9 on
Sn(F)× H(m×m, E/F) relative to the action of(Nn(E))× (Nm(E)) on Sn(F)×
H(m × m, E/F). They are denoted by�(9,ψ : xn, xm), wherexn is relevant in
Sn(F) andxm is relevant inH(m×m, E/F). In particular, consider the case of the
function

9(An, Bm) = �
n
m

[
8,ψ, E/F :

(
An 0
0 Bm

)]
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and a relevant elementx of H(m×m, E/F) of the form

x =

(
xn 0
0 xm

)
,

wherexn is relevant inSn(F) andxm is relevant inH(m× m, E/F). We then have
the reduction formula

� [8, E/F, ψ : x] = � [9, E/F, ψ : xn, xm] . (16)

This formula reduces the computation of the orbital integrals (and the normalization
of the measures) to the case of an element of the formwna, wherea ∈ F× is a scalar
matrix. Then

�[9, E/F,ψ : wna]

=

∫
8





0 0 0 · · · 0 a
0 0 0 · · · a ax2,n

· · · · · · · · · · · · · · · · · ·

0 0 a · · · axn−2,n−1 axn−2,n

0 a axn−1,3 · · · axn−1,n−1 axn−1,n

a axn,2 axn,3 · · · axn,n−1 axn,n




× ψ

( i=n∑
i=2

xi,n−i+2

)
⊗ dxi, j ,

wherexi,i ∈ F , xi, j ∈ E, xi, j = x j,i , where the measuresdxi, j , i < j , on E and the
measuresdxi,i on F are self-dual.

We also denote by�(8, E/F, ψ : a1,a2, . . . ,an) the orbital integral
�(8, E/F, ψ : a), wherea = diag(a1,a2, . . . ,an) is relevant. We introduce nor-
malized diagonal orbital integrals as follows:

�̃(8, E/F,ψ : a1,a2, . . . ,an)

:= η
(
σn(a)

)
|σn(a)|�(8, E/F, ψ : a1,a2, . . . ,an). (17)

As before, there is a reduction formula for the normalized diagonal orbital integrals.

6. Weil formula: The twisted case
As before, our goal is to obtain a simple relation between the orbital integrals of a
function and the orbital integrals of its Fourier transform. Again, our main tool is the
Weil formula for the Fourier transform of a character of second order. We first recall
the one-variable case. Define the Fourier transform of8 ∈ S (E) by

8̂(z) =
∫

E
8(u)ψ(−uz− uz)du.
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Then, fora ∈ F×,∫
8̂(z)ψ(azz)dz= |a|−1

F η(a)c(E/F, ψ)
∫
8(z)ψ

(
−

zz

a

)
dz.

We may take this formula as a definition of the constantc(E/F, ψ). We also have∫
8(z)ψ(azz)dz= |a|−1

F η(a)c(E/F, ψ)
∫
8̂(z)ψ

(
−

zz

a

)
dz.

Applying the formula twice, we get the relation

c(E/F, ψ)c(E/F, ψ) = 1.

More generally, if8 is a Schwartz function on the space of column vectors of size
n with entries inE, we define its Fourier transform, a function on the space of row
vectors of sizen, by

8̂(X) =
∫
8(U )ψ[−ZU − ZU ]dU.

PROPOSITION6
For every matrix A∈ Sn(F), we have∫

En
8̂(Z)ψ[Z A t Z]d Z

= |detA|−1
F η(detA)c(E/F, ψ)n

∫
En
8(X)ψ[− t X A−1X]d X.

Proof
If A is a diagonal matrix (with diagonal entries inF×), the formula follows at once
from the case ofn = 1. In general, we may write

A = Ma t M,

with M ∈ GL(n, E), a diagonal. Then the left-hand side is

|detM |−1
E

∫
8̂(Z M−1)ψ[Za t Z]d Z.

SinceZ 7→ | detM |−1
E 8̂(Z M−1) is the Fourier transform ofX 7→ 8(M X), this is

equal to

η(deta)|deta|−1c(E/F, ψ)n
∫
8(M X)ψ(− t Xa−1X)d X.
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After a change of variables, this becomes

η(deta)|detM |−1
E |deta|−1c(E/F, ψ)n

∫
8(X)ψ(− t X A−1X)d X.

Since|detA|F = |deta|F |detM |E, our assertion follows.

On the spaceH(n× n, E/F), we define the Fourier transform by

9̂(X) =
∫
9(Y)ψ

[
− Tr(XY)

]
dY,

where the measure is self-dual. Thus ifY = (yi, j ), then yi,i ∈ F , y j,i = yi, j for
i < j , and the measuredY is the tensor product of the self-dual Haar measuresdyi,i

anddyi, j , i < j . Note that Tr(XY) is indeed inF . In H((n+m) × (n+m), E/F)
we consider the subspace of matrices with zero diagonaln × n andm× m blocks.
The Fourier transform of a function in that space is then defined by

8̂

(
0n,n

t X
X 0m,m

)
=

∫
8

(
0n,n V
t V 0m,m

)
ψ

[
− Tr(XV + XV)

]
dV.

This being so, the form of Weil formula that we are using is as given in the next
proposition.

PROPOSITION7
Let A, B be Hermitian matrices inGL(n, E) andGL(m, E), respectively. Then∫

8̂

(
0n,n

t Z
Z 0m,m

)
ψ

[
Tr(BZ At Z)

]
d Z

= η(detA)m|detA|−m
F η(detB)n|detB|−n

F c(E/F, ψ)mn

×

∫
8

(
0n,n X
t X 0m,m

)
ψ

[
− Tr(B−1 t X A−1X)

]
d X.

Proof
Let us observe that Tr(BZ At Z) is indeed inF . As before, we may reduce the com-
putation to the case whereB is the diagonal matrix diag(b1,b2, . . . ,bm). We may
regardZ as a matrix

Z =


Z1

Z2

· · ·

Zm

 ,

where eachZi is a row of sizen. Then the formula follows from the previous formula
applied to the matricesb1A,b2A, . . . ,bmA.
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7. Inversion formula in the Hermitian case
As before, we set

9̌(X) = 9̂(wmXwm).

We then have the following result.

PROPOSITION8
Let n≥ 1, m≥ 1 be two integers. Let9 ∈ S

(
H((m+ n)× (m+ n), E/F)

)
. Then

we have∫ (∫
�̃n

m

[
9, E/F, ψ :

(
An 0
0 Bm

)]
ψ[−Tr BmwmCmwm]d Bm

)
× ψ

[
Tr(wmC−1

m wmεA−1
n ε̃)

]
ψ

[
− Tr(AnwnDnwn)

]
d An

= c(E/F, ψ)mn�̃m
n

[
9̌, E/F, ψ :

(
Cm 0
0 Dn

)]
.

Proof
The proof follows step by step the proof of the corresponding result forM((n+m)×
(n+m), F). We consider the partial Fourier transform2 (with respect toBn) of the
normalized intermediate orbital integral of9:

2(An,Cm) :=

∫
�̃n

m

[
9, E/F, ψ :

(
An 0
0 Bm

)]
ψ [−Tr BmCm] d Bm.

The critical step is as follows. We get for2:

η(detAn)
m
|detAn|

−m
∫
9

[(
An X
t X Bm

)]
× ψ

[
Tr(εA−1

n X)+ Tr( t X A−1
n ε̃)+ Tr(Cm

t X A−1
n X)

]
d X

× ψ
[
− Tr(CmBm)

]
d Bm.

We now introduce a partial Fourier transform of9:

91

(
An U
tU Cm

)
:=

∫
9

(
An X
t X Bm

)
ψ

[
−Tr

(
0 X

t X Bm

) (
0 U

tU Cm

)]
d X d Bm.

By the Weil formula, the previous expression is then

|detCm|
−nη(detCm)

nc(E/F, ψ)mn

×

∫
91

(
An X
t X Cm

)
ψ

[
− Tr C−1

m (t X + εA−1
n )An(X + A−1

n ε̃)
]

d X.

The rest of the proof is identical to the proof of Proposition 3.
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Our main result in this section is the following inversion formula.

THEOREM 2
For 8 ∈ S (H(n× n, E/F)),

c(E/F,ψ)(n(n−1))/2�̃(8̌, ψ, E/F : a1,a2, . . . ,an)

=

∫
�̃(8,ψ, E/F : p1, p2, . . . , pn)

× ψ
(
−

i=n∑
i=1

pi an+1−i +

i=n−1∑
i=1

1

pi an−i

)
dpn dpn−1 · · · dp1,

where the integral is only an iterated integral.

Proof
Again the formula is trivial forn = 1, so we may assume thatn > 1 and that our
assertion is true forn − 1. We prove it forn. We apply the formula of Proposition 8
to the pair of integers(n− 1,1). We obtain∫ (∫

�̃n−1
1

[
9, E/F, ψ :

(
An−1 0

0 pn

)]
ψ[−pna1]dpn

)
× ψ

[
Tr(a−1

1 εn−1A−1
n−1ε̃n−1)

]
ψ

[
− Tr(An−1wn−1Dn−1wn−1)

]
d An−1

= c(E/F, ψ)n−1�̃1
n−1

[
9̌, E/F, ψ :

(
a1 0
0 Dn−1

)]
.

We set

91(An−1) := ψ
[

Tr(a−1
1 εn−1A−1

n−1ε̃n−1)
]

×

∫
�̃n−1

1

[
9, E/F, ψ :

(
An−1 0

0 pn

)]
[−pna1] dpn.

Then9̌1(Dn−1) = 2(Dn−1), where

2(Dn−1) = c(E/F, ψ)n−1�̃1
n−1

[
9̌, E/F, ψ :

(
a1 0
0 Dn−1

)]
.

The induction hypothesis applied to91 gives

c(E/F,ψ)(n−1)(n−2)/2�̃(2, E/F, ψ : a2,a3, . . . ,an)

=

∫
�̃(91, E/F, ψ : p1, p2, . . . , pn−1)

× ψ
(
−

i=n−1∑
i=1

pi an+1−i +

i=n−2∑
i=1

1

pi an−i

)
dpn−1 · · · dp1. (18)
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The rest of the proof is the same as before once we observe that

c(E/F, ψ)n−1c(E/F, ψ)(n−1)(n−2)/2
= c(E/F, ψ)n(n−1)/2.

We leave it to the reader to formulate and prove the analogue of Proposition 4 in the
present situation.

8. Smooth matching

Definition 1
We say that a function8 ∈ S (M(n×n, F)) and a function9 ∈ S (H(n×n, E/F))

have matching orbital integrals forψ , and we write8
ψ
←→ 9 if for every diagonal

matrixa ∈ An with 1n−1(a) 6= 0,

�̃(8,ψ;a) = �̃(9, E/F, ψ : a).

From the inversion formula for the orbital integrals, we have at once the following
result.

PROPOSITION9

If 8
ψ
←→ 9, then8̌

ψ
←→ c(E/F, ψ)n(n−1)/29̌, and conversely.

Now we can formulate our main result.

THEOREM 3
Given8 ∈ S (M(n×n, F)), there is9 ∈ S (H(n×n, E/F)) with matching orbital
integrals forψ , and conversely.

Proof
We treat the case of8. The case of9 is similar. The case ofn = 1 being trivial, we
may assume thatn > 1 and that our assertion is proved forn′ < n. For i < n we can
consider smooth functions of compact support on GL(i, F)×M((n− i )× (n− i ), F)
andSi (F)×H((n− i )×(n− i ), E/F), respectively, and their orbital integrals for the
action of the groupsNi (F)× Ni (F)× Nn−i (F)× Nn−i (F) andNi (E)× Nn−i (E),
respectively. It follows from the induction hypothesis that any function on the first
space matches a function on the second space forψ . Now let Oi (resp.,O′i ) be the
open set ofM(n×n, F) (resp.,H(n×n, E/F)) defined by1i 6= 0. If 8 is supported
on Oi , then its normalized intermediate orbital integral

�̃i
n−i [8,ψ : gi ,mn−i ]
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is a smooth function of compact support8i,n−i on GL(i, F)×M((n−i )×(n−i ), F);
it matches a function of compact support9i,n−i on Si (F)×H((n−i )×(n−i ), E/F),
which in turn is the normalized intermediate orbital integral of a function9 supported
on O′i . Now consider diagonal matricesai ∈ Ai , an−i ∈ M((n − i ) × (n − i ), F),
with 1n−i−1(an−i ) 6= 0. Then we have

�̃

[
8,ψ :

(
ai 0
0 an−i

)]
= �̃

[
8i,n−i , ψ : ai ,an−i

]
.

There is a similar formula for9. Thus, in fact,8
ψ
←→ 9. Hence our assertion is true

for 8 supported onOi , i < n.
Next, suppose that8 is such that

�(8,ψ : wna) = 0

for all a ∈ F×. Our classification of relevant orbits shows then that all the integrals
of 8 over relevant orbits contained in the closed setQ defined by

11 = 12 = · · · = 1n−1 = 0

vanish. Hence8 has the same orbital integrals as a function supported on the com-
plement ofQ. We may assume that the support of8 is contained in the complement
of Q. Using a partition of unity, we see that we can write

8 =

i=n−1∑
i=1

8i ,

where8 is supported onOi . Then8i
ψ
←→ 9i , where the function9i is supported

on O′i and

8
ψ
←→

i=n−1∑
i=1

9i .

Now let8 be an arbitrary function. Then

φ(a) := |a|(n+1)(n−1)�[8,ψ : wna]

is a smooth function of compact support onF×. Let 81 be a function of compact
support contained inOn−1. Then

�1
n−1

[
81, ψ :

(
gn−1 0

0 b

)]
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is an arbitrary smooth function of compact support on GL(n−1, F)×F . In particular,
we can choose81 so that

φ(a) =
∫
�

[
81, ψ :

(
−a−1wn−1 0

0 p

)]
dp.

Let 82 be the function such thať82 = 81. Since81 matches a function forψ , it

follows from Proposition 9 that82
ψ
←→ 92 for a suitable function92. On the other

hand, by Proposition4 applied to82,

�(8,ψ : wna) = �(82, ψ : wna),

so that
�(8−82, ψ : wna) = 0.

By the previous case, it follows that8−82
ψ
←→ 93 for a suitable function93. Then

8
ψ
←→ 92+83 and our assertion follows.

9. Application to the fundamental lemma
Suppose thatE/F is unramified, and suppose that the conductor ofψ is OF . Let
80 be the characteristic function of the set of matrices with integral entries in
M(m × m, F). Similarly, let 90 be the characteristic function of the set of ma-
trices with integral entries inH(m × m, E/F). The fundamental lemmaasserts
that 80 matches90. We prove this form = 2 and m = 3. The case where
|deta| = 1 is already known, but the proof presented below is much simpler. First
�̃(80, ψ : a) = �̃(80, ψ : a), and likewise for90. It follows that the difference

ω(a) := �̃(80, ψ : a)− �̃(90, E/F, ψ : a)

satisfies the functional equation

ω(a1,a2, . . . ,am) =

∫
ω(p1, p2, . . . , pm)

× ψ
(
−

i=m∑
i=1

pi am+1−i +

i=m−1∑
i=1

1

pi am−i

)
dpm dpm−1 · · · dp1.

(19)

Moreover, it is supported on the set|a1a2 · · ·am| ≤ 1. The fundamental lemma asserts
thatω = 0.

Form= 2 it is easily checked that∫
�(80, ψ : a1,a2)da2
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is 1 if |a1| = 1 and 0 otherwise, and likewise for∫
�(80, E/F, ψ : a1,a2)da2.

Thus ∫
ω(a1,a2)da2 = 0.

If we set

µ(a1,b1) :=

∫
ω(a1, p2)ψ(−p2b1)dp2,

then (19) is equivalent to the relation

µ(a1,−b1) = µ(b1,a1)ψ
( 1

a1b1

)
. (20)

Moreover,µ(a1,b1 + t) = µ(a1,b1) for |t | ≤ |a1|. Sinceµ(a1,0) = 0, we see that
µ(a1,b1) 6= 0 implies|b1| > |a1|. By (20), µ(a1,b1) 6= 0 also implies|b1| > |a1|.
Thusµ = 0 or, equivalently,ω = 0, and we are done.

Form= 3 we first establish the following lemma.

LEMMA 4
If ∫

ω(a1,a2,a3)da3 = 0,

thenω = 0.

Proof
Indeed, if we set

µ(a1,a2,b1) :=

∫
ω(a1,a2,a3)ψ(−a3b1)da3

and

σ(a1,a2,b1) := µ(a1,a2,b1)ψ
( 1

a2b1

)
,

then (19) is equivalent to

σ(a1,a2,−b1) =

∫
σ(b1, p2,a1)ψ(p2a2)dp2. (21)

The condition on the support ofω implies thatµ(a1,a2,b1 + t) = µ(a1,a2,b1) for
|t | ≤ |a1a2|. Under the assumption of the lemma, we thus haveµ(a1,a2,b1) = 0 for
|b1| ≤ |a1a2|. Equivalently,σ(a1,a2,b1) 6= 0 implies|a2| ≤ |$b1a−1

1 |. From (21)
we haveσ(a1,a2 + t,b1) = σ(a1,a2,b1) for |t | ≤ |$−1b1a−1

1 |. Thusσ = 0 and
ω = 0.
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Thus it suffices to prove the relation∫
�(80, ψ : a1,a2,a3)da3 = η(a2)

∫
�(90, E/F, ψ : a1,a2,a3)da3.

Now
∫
�2

1(80, ψ : g,a3)da3 is |detg|−2
F times the characteristic function81 of the

set ofg ∈ M(2× 2, F) such that

‖g‖ ≤ 1, ‖(0,1)g−1
‖ ≤ 1, ‖g−1 t (0,1)‖ ≤ 1.

Likewise,
∫
�2

1(90, E/F, ψ : g,a3)da3 is |detg|−2
F times the characteristic function

91 of the set ofg ∈ H(2× 2, E/F) such that

‖g‖ ≤ 1, ‖(0,1)g−1
‖ ≤ 1.

Thus it suffices to show that

�(81, ψ : a1,a2) = η(a2)�(91, E/F, ψ : a1a2). (22)

If |a1a2| = 1, then this relation is equivalent to

�(8′, ψ : a1,a2) = η(a1)�(9
′, E/F, ψ : a1a2),

where8′ is the characteristic function of GL(2,OF ) and9 ′ is the characteristic func-
tion of GL(2,OE) ∩ H(2 × 2, E/F); in turn, this relation is a special case of the
fundamental lemma form= 2.

Now

�(81, ψ : a1,a2) =

∫
ψ(x1+ x2)dx1 dx2

over the set

|a2| ≥ 1, |a1xi | ≤ 1, |xi | ≤ |a1|
−1, |a2+ a1x1x2| ≤ 1.

If |a2| = 1, then this is 1. If|a2| > 1, then this is zero unless|a1a2| = 1. A similar
remark applies to�(90, E/F, ψ : a1,a2). The relation (22) follows. We are done.

10. Concluding remarks
More generally, one can use Propositions 3 and 4 to prove inductively the theorem of
density established in [3]; in a precise way, if8 is such that�(8,ψ : a) = 0 for all
diagonal matricesa, then�(8̌,ψ : a) = 0, and�(8,ψ : g) = 0,�(8̌,ψ : g) = 0

for all relevantg. Similarly, one can prove that if8
ψ
←→ 9, then for everyg in the

common set of representatives for the two sets of orbits,

�(8,ψ : g) = γ (g, ψ)�(9, E/F, ψ : g),
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where the constantγ (g, ψ) (the transfer factor) does not depend on the functions,
a result that also follows from [3]. This gives another way to compute the transfer
factors.

Since the determinant is an invariant of the two actions, it follows from the theo-
rem that for any smooth function of compact support on GL(m, F) there is a function

of compact support9 on Sm(F) such that8
ψ
←→ 9.

Except for the last section, the previous discussion applies directly to the exten-
sionC/R.

Suppose thatE/F is unramified, and suppose that the conductor ofψ is OF .
Thenc(E/F, ψ) = 1. If E/F is a quadratic extension of global fields andψ is a
nontrivial character ofFA/F , then the product of the constantsc(Ev/Fv, ψv) over all
placesv of F inert in E is 1. Likewise, forg relevant in GL(n, F)∩Sn(F) the product
of the local transfer factors is 1.
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