SMOOTH TRANSFER OF
KLOOSTERMAN INTEGRALS

HERVE JACQUET

Abstract
We establish the existence of smooth transfer between absolute Kloosterman integ
and Kloosterman integrals relative to a quadratic extension.
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1. Introduction

Let E/F be a quadratic extension of local non-Archimedean fieldsy letF* —
{£1} be the corresponding quadratic character, ana/letF — C* be a nontriv-

ial character. LetNy, be the subgroup of upper triangular matrices in(@L with

unit diagonal, and lefA,, be the group of diagonal matrices. We define a characte
6 : Nm(F) — C* by 6(n) = /(X nii+1). The groupNm(F) x Nm(F) operates
on GL(m, F) by g — nigny, and the orbits that interseét,(F) form a dense
open subset. We define the diagonal orbital integrals of a smooth function of comp:
support® on GL(m, F):

Q(d, ¥ : a) :=/ @ ('niany)@(ninz) dng dny. (1)
Nm(F)xNm(F)
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122 HERVE JACQUET

Likewise, we letH(m x m, E/F) be the space of Hermitian matrices x m and
setSp(F) = H(m x m, E/F) N GL(m, E). We define a character — 6(nn) of
Nm(E) by 0(nf) = ¢ (X(nii+1+Mii1)). The groupNm(E) operates o0&y (F) by

s — 'nisn and the orbits that interse,(F) form a dense open subset &f(F).
We define the diagonal orbital integrals of a smooth function of compact suwport
on Sn(F):

QV, E/F, vy :a) :=/ @ ('hang(nn) dn. 2)
Nm(E)

We say thatb matchesV for v if for everya € Am(F),
Q@ ¢y:a)=y@ QWY E/F vy :a),
where

y@ ¥) :=n@)n(@a) - -n@az, ...,an-1) if a=diaga, a, ..., am).

In this paper we prove that for evedy there is a matching’, and conversely.

Suppose thaE/F is unramified, and suppose that the conductogyof OF.
Let &g be the characteristic function of the set of matrices with integral entries i
M(m x m, F). Similarly, let ¥g be the characteristic function of the set of matrices
with integral entries inH(m x m, E/F). The fundamental lemmasserts that the
restriction ofdg to GL(m, F) matches the restriction dfg to S, (F). This has been
established by Ng[10] in the case of positive characteristic.

In general, if® matchesy, then there are similar relations between the othel
orbital integrals (se€d], [4]).

Within the context of the relative trace formula, the problem at hand is the an:
logue of the transfer problem for the ordinary trace formula. Indeed, viydn is
an extension of function fields, the result presented in this paper, together with t
fundamental lemma of Ng[9], [10], implies the existence of global identities of the
form

/ b dmdmn( Y o(‘niens))
Nm (F) X Nm(F)\Nm(Fa)x Nm(Fa) £eGI(n,F)

e(nﬁ)dn( 3 \D(tﬁgn)e(nﬁ)dn).

/Nm(E)\Nm(EA) £eSn(F)

In turn, the identities are a crucial step in extending the results] o [GL(m).

Our method is first to linearize the problem by replacing(@LF) and Sn(F)
by the vector spaceldl(m x m, F) andH(m x m, E/F), respectively. We then es-
tablish a simple relation between the orbital integrals of a function on either spa
and its Fourier transform. It follows that # matchesV, then the Fourier transform
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of ® matches the Fourier transform @f. This proves the existence of many pairs of
matching functions and, in turn, is used to prove the existence of the transfer in a ve
simple way.

Our method is suggested by the work of J. Waldspurd&f. Waldspurger con-
siders orbital integrals in the context of the Lie algebras and derives the existence
the transfer from the fundamental lemma (assumed to hold) and global identities. |
uses the Fourier transform on the Lie algebras in an essential way. It is reasonabls
ask whether, conversely, the results of the paper can be used to prove the fundame
lemma in the context of the relative trace formula. We answer this question in tt
affirmative for the case oh = 2, 3 in Section 9. In a forthcoming paper (sé§)[ we
use the previous results to prove the fundamental lemma for.all

2. Orbital integrals in M(m x m, F)
We now consider the action & (F) x Nm(F) on M(m x m, F) given byr —
'nirn,. We denote byl the algebraic charactés : N(F) — F defined by

i=m-1

o) = Y Nijj1.
i=1

We say that an element e M(m x m, F) (or its orbit) isrelevantif the character
(N1, n2) = Bp(nyny) is trivial on the stabilizer ok in N(F) x N(F).

We letAj(x), 1 <i < m, be the determinant of the matrix obtained by removing
the lastm — i rows and the lagh — i columns of a matrix. In particular,Am(X) =
detx. The functionsA; are invariants of the action My (F) x Nm(F). Forl<i <
m — 1, we denote byD; the set defined by\; # 0. We denote byBy, the group of
upper triangular matrices in Gi), by Ay, the group of diagonal matrices, and by
a1, a2, ..., am—1 the simple roots oAy, corresponding t@B,,. We denote byN,, the
root group corresponding to a roet We identify the Weyl group ofA, with the
groupWp, of permutation matrices, and we lef, be the set of diagonal matrices in
M(m x m, F). We often drop the indem from the notation.

PROPOSITIONL
In M(m x m, F) the set defined b, = 0, Aj—1 = 0 contains no relevant orbit.

Proof
We begin with an elementary lemma.

LEMMA 1
Anyr e M(m x m, F) can be written (in possibly several ways) in the form

r = ‘nwb
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withw € W, n € Nm(F), and b an upper triangular matrix.

Proof
We let
Fo={MycCcViCVoC---CVp}

be the canonical flag. Thu is the space spanned by the firsectors of the canon-
ical basis. Let € M(m x m, F) be given. Consider the sequence of subspaces

NNVoCrvV1CrVo C--- CrVpy.
It need not be a flag, but, inductively, it is easy to show that there is a flag
F={UgcUicUyC---Cc Uy}

such that
rvi CU;, 0<i<n.

By the standard Bruhat decomposition,
F = 'nwd
for suitablew andn € Ny (F). Thus
Cnw)~Irv; Vi, 0<i <n.

Since(‘nw)~1r stabilizesZy, it is an upper triangular matrix. This proves the lemma.
O

To prove our assertion, it suffices then to consider the case of a relevant elemen
the form
r =wb

with w € Wy andb an upper triangular matrix such that thet= 0. Our task is then
to show thatAm_1(wb) # 0. We remark that if the column of indéxi < m, of the
matrixr is zero, them is irrelevant because then,, =r for all n,, € Ny (F). In
particular, the first diagonal entby 1 of b is nonzero. Then at the cost of multiplying
b by a suitable element d,, on the right, we may assume that, = 0. Again,
since the second column bfcannot be zero, we must halbg, # 0. Inductively, we
see that we may assurheo have the form

b 0
-5 3)
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wherel’ is an invertible diagonal matrix of sizen — 1) x (m— 1). Thus the last row
of b is zero. Sincawb is relevant, the firsm — 1 rows of wb cannot be zero. This
forcesw to have the form
_(w O
(% 1)

wherew’ is a permutation matrix in Gim — 1). Now
Am_1(wb) = detb’ detw’.

ThusAm—_1(wb) # 0, as claimed. O

Now it is elementary that every elemensuch that det = 0 butAp_1(x) £ 0isin
the orbit of an element of the form

x' 0
0 0/
Moreover,x is relevant if and only i’ is a relevant element in Gin — 1, F). Also,

a=diag@a, a2, ..., an) € In

is relevant if and only iyay - - - am—1 # O.

Now we recall the classification of the relevant orbits in(@l.F) (cf. [1], [12]).
Every orbit has a unique representative of the farenwith w € W anda € An(F).
If this element is relevant, then for every pair of positive roGis, a2) such that
wap = —ay, forng € Ny, (F) we have

!Ny, wan,, = wa = fy(Ny,Ny,) = 0. ()

This condition implies that ife1 is simple, thers is simple, and conversely. Thus
and its inverse have the property that if they change a simple root to a negative o
then they change it to the opposite of a simple root.&be the set of simple roots
such thatwe is negative. TherSis also the set of simple rootssuch thatw 1« is
negative andvS = —S. Let M be the standard Levi subgroup determinedsb¥hus
Sis the set of simple roots d¥l for the torusA, w is the longest element a¥ N M,
andw? = 1. This being so, ifx» is simple, then condition3] implies az(a) = 1.
Thusa is in the center oM.

Let wy be them x m permutation matrix with antidiagonal entries equal to 1. We
see that elements of the form

wma O -0
0 wma -~ O
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withmg+ma+.--4+m =m,a,a,...,a € F*, form a set of representatives
for the relevant orbits in GUn, F). A set of representatives for the relevant orbits in
M(n x n, F) is formed of the same elements, except that= 0 is allowed when
my = 1 (andwpy, = 1).

We seth = ¢ o 6. We define the orbital integral of a relevant element

Q[P, ¥ :x] = / @ (*n1xnp)6(n1n2) dng dny;

the integral is over the quotient &, (F) x Nm(F) by the stabilizer ofk. The nor-
malization of the measure is described below.

It is convenient to introduce thietermediate orbital integralsLet m, n be two
integers greater than zero. Fore .(M((m+ n) x (m+n), F)), A, € GL(n, F),
Bm e M(m x m, F), we set

n (A O[] / In 0\/Ax 0\ /1, X
Qm[q)’w'<0 Bm/| ® Y 1n/\0 Bm/\0 Iy
x Y [Tref' X + TrYel'] dX dY. (4)
Heree = €' is the matrix withm rows andn columns whose first row is the row

matrix of sizen,
€n Z(ana"'9071)’

and all other rows are zero. Likewises= €' is the matrix withn rows andn columns
whose first column is the column matrix

0
0
0
1

and all other columns are zero. ¥ = (i j), then the measuré X is the tensor
product of the self-dual Haar measurg ;.
The above integral can we written more explicitly as

An A, X )

or, after a change of variables,

w2l (3 )] =omnr=[o[(3 g, Ynd)]

x Y[ Tre AyEX) + Tr(Y Ay E)] d X dY.
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The previous form shows that the integral converges and defines a smooth funct
on GL(n, F) x M(m x m, F). More precisely, the following result is easily obtained.

LEMMA 2

If ® is supported on @, thenQp,[®, ¥ : o] is a smooth function of compact support
onGL(n, F) x M(m x m, F). Conversely, any smooth function of compact suppor
onGL(n, F) x M(m x m, F) is equal to2,[®, ¢ : e] for a suitable functiond
supported on Q.

We also introduce theormalizedintermediate orbital integrals

Qn [cb,w : <%” :m)} = |detAn|™ x QN [cp,y/ : (AO” Bomﬂ. (5)

If W is a smooth function of compact support on @LF) x M(m x m, F),
we can define its orbital integrals relative to the actidly x Np) x (Nm x Np) on
GL(n, F) x M(m x m, F). They are denoted b (¥, ¥ : Xn, Xm), wherex, is
relevant in GI(n, F) and xy, relevant inM(m x m, F). In particular, consider the
case of the function

A, O
W(An, Byn) = QN |:CI>, e <0” Bmﬂ

and a relevant elemertof M ((n + m) x (n 4+ m), F) of the form

Xn O
X =
(0 Xm) ’
wherexy, is relevant in Gl(n, F) andxy, is relevant inM(m x m, F). We then have
the following reduction formula:
QIO ¥ : X] = Q[Y, ¥ : Xn, Xm] - (6)

This formula reduces the computation of the orbital integrals (and the normalizatic
of the measures) to the case of an element of the fofey wherea is a scalar matrix.
Then

0 0 0 0 a
0 0 0 a axon
Qd, v :wpal= [ @ || .
[©. ¢ - wnal / 0 0 a o @%-2n-1 @%-2n
0 a  ax-13 -+ a%-1n-1 a%-1n
L\ a X2 axgs aXn n-1 aXn n

x W(EXi,n—wz) ®dx,j,
i=2
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where the measureby; j are self-dual.

We also denote b2 (®, v : ap, as, ..., an) the orbital integral2 (&, ¢ : a),
wherea = diag(a, a2, ..., ap). We introduce normalized diagonal orbital integrals
as follows. Fora € @ (F) we set

on(@) := A1(@)A2() - - - Ap-1(8).

Thus
n-1.n—

on(@ =altal ™% an1
anda is relevant ifo(a) # 0. Fora relevant, we set
Q@, ¥ : a) := |on(a)|Q(P, ¥ : a). @)

We have a reduction formula for these normalized orbital integrals. In a preci:
way, ford € S (M(n+ m) x (n+ m), F), set

W(An, Bm) = QN [d),w : ('?)” E?mﬂ'

_ (3 O
a_(o %)
with a, € An(F) anday, relevant iny(F). The normalized orbital integral af on
the pair(an, an) is defined to be

Consider a diagonal matrix

Q[W, ¥ : @, am] = lon(@n)| lom(@m)|Q[¥, ¥ : @n, am] .
It follows from the relation
(detan)"on(@n)o (@m) = on+m(@)
that it is equal ta2(®, ¥ : a).
3. Weil formula: The split case
Our goal is to obtain a simple relation between the orbital integrals of a function ar
the orbital integrals of its Fourier transform. Our main tool is the Weil formula for

the Fourier transform of a character of second order. We state the form of the W
formula that we are using. We consider the direct sum

Minxm F)e M(mxn, F),

the first index being the number of rows. A functidnon that space is written as

Ohn X
) . .
(%" o)
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Thus the matrix written is a square matrix of s{pe-m) x (n+m) with zero diagonal
blocks,X € M(n x m, F), andY € M(m x n, F). The Fourier transform of such a
function is the function defined by

(% )= ol B[l D o) way

=/q><\0/ Lé)w[—Tr(YU)—Tr(XV)]dU dv. (8)

PROPOSITION2
For A e GL(n, F), B € GL(m, F), and any Schwartz functioh on M(n x m, F) &
M(m x n, F), we have

0 X
/CI><Y 0)1//(TrBYAX) dxdy

0 X

_ —m —n 3
= | detA|™"'| detB| /CD(Y 0

) v(=TrB~Y A 1X)dX dY.

Proof
Assume first tha#A and B are unit matrices. Set

0V
q>1(u,V):/q><Y 0>¢(—Tr(YU))dU.

Then the left-hand side of the identity reduces to

f P (—X, X)dX

On the other hand, using the (partial) Fourier inversion formula, we see that the rig|
hand side is equal to

/cpl(v, ~Y)dY.

Our assertion then follows. In general, we remark thaBM AX) = TrY AXB We
changeX to X B~1 andY to Y A1 in the left-hand side, and we change¢o BY and
X to AX in the right-hand side. We see that we are reduced to the ca8e-ofl,
B = 1 applied to the function

0 xB1
—m;p|—n
(X,Y) — |detA|"|B|7"® (YAl 0 )
the Fourier transform of which is the function
~ (0 AX
(X,Y) > @(BY 0 >
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Our assertion follows. O

We record a simple consequence of this formula. Foe M(m x n, F) andQ €
M x m, F),

/q’<$ >0<>‘/’(Tr(PX)‘FTV(YQ)%—Tr(BYA)())d)(dY
— | detA| ™| detB| "

~

x/@(s )é)w(—TrB_l(YJr P)AL(X + Q) dXdY.
9)

4. Inversion formula for the orbital integrals
For® € (M(n x n, F)), we define the Fourier transform &fto be

d(X) = f O Y)Y [—Tr(XY)1dY.

The measure is self-dual. Recall that € W, is the permutation matrix with unit
antidiagonal. We set
D (X) = D (wnXwn).

Our goal in this section is to obtain a relation between the orbital integratsanfd
the orbital integrals ofb. We first establish such a relation for the intermediate orbital
integrals.

PROPOSITION3
Letn> 1, m > 1be two integers. Leb € . (M((mM+n) x (m+n), F)). Then

J(jafo (5 2ot amemisn)

x Y[ TrwmCrytwmel Ay e ¢/ [ — Tr(Anwn Dnwn) ] d Aq

_am|lsx = . (Cm O
_szn[cp,w.(O o) |
The integrals are for B e M(m x m, F) and A, € M(n x n, F).

Proof
We consider the partial Fourier transfon(with respect toBy,) of the normalized
intermediate orbital integral ab:

O (An, Cm) := /fz?n [dD, v (AO” E?m)] ¥ [~ Tr BmCrn] dBm.



SMOOTH TRANSFER OF KLOOSTERMAN INTEGRALS 131

If we changeCy, to wnCmwm and Dy, to wyDrwp, we see that the identity of the
proposition amounts to

/@(An, Cr) ¥ [TrCoyte™ AL 1e™yr[— Tr AnDn]d A,

= |detCm|” / d (Dn + wn Y wmCrmwmXwn LUnYmem)

Cm Wm X Wn Cm

X Y[—Tref X — TrYeh1dX dY. (10)
ChangingX to wmYwp andY to wy, Xwm and noting the relations
WnemWm = &', Wmémwn = €/,
we see that the right-hand side of the last formula can also be written

/ﬁ) Dn+ XCnY XGy
CmY Cnm

From now on, let us write for €' andé for €]". After a change of variables, we find
that® is also equal to

o Ay AnX
| detAn| /“’[(m Bm)]

X Y[Tr(eX) + Tr(Y€) + Tr(CmY AnX)]d X dY
X Y[=Tr(CmBm)] dBm.

After a new change of variables, this becomes

IR ()
x Y[ Tre Ayt X) + Tr(Y A Ye) + Tr(CmY A 1X)]dX dY
x Y[ — Tr(CmBm)] d Bm.

We now introduce a partial Fourier transform®f
A
ol n U
V  Cp

:=/c1>(¢” éﬂ)w[-w(ﬁ é)(c\;’o gm)}dXdeBn.

By the Weil formula, the previous expression is then

)w[—TrYgrr{‘—TrerTX]dXdY (11)

| detCpm| ™" / % (’?(” én) Y[ = Treqt Y + e ATH AKX + AT ] d X dY.
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Expandingy, we find
| detCr| "y [ — Tr(Crte AL )]
A, X
X / CDl(Y Cm)
x Y[ = Tr(CHYY AnX) — Tr(CrtYé) — Tr(CrleX)]d X dY.
Changing variables once more, we obtain, at last,
O (An, Cm) = | detCm|"y [ — Tr(Crle Ay 1E)]
« fon( Lo, %O
\CmY G
X Y[ = TrCmY AYX = Tr(Yé) — Tr(eX)]dX dY
To obtain (L0), we must multiply by
Y[ Tr(Cr e AL O]

and take the Fourier transform of the result with respe&{oThe Fourier transform
is evaluated aDp. We indeed obtainl(0). The proof shows that fa€, € GL(m, F),
the integral converges as an iterated integral. O

Our main result in this section is the following inversion formula for diagonal orbita
integrals.

THEOREM1
For® € (M(n x n, F)),

Q(D, Y s ag, @, ..., an)
:/Q(Cbﬂ/f plv p2""’pn)

i=n i=n-1
xw(—ZpianH_iJr Z ;)dpndpn—l"'dpl,
i=1 iz Pian-i

where the multiple integral is only an iterated integral.

Proof

Forn = 1 the formula is just the definition of the Fourier transform. Thus we may
assume that > 1 and that our assertion is true for 1. We prove it fom. We apply
the formula of Proposition 3 to the pair of integeérs— 1, 1). We obtain, for fixed
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a; € F*,

J(for o5 2YJornaron

x ¥[Trag ten—1AL Y én—D ][ — Tr(An—1wn—1Dn_1wn-1)] d An_1

~ . 0
=Qt |:d>, e (%1 Dn_l)}'

This formula shows that the functiahy (An—1) defined by

®1(An-1) = Y[ Tr(a; ten—1 Ay 1 én-1)]

< fart e (M5t )] vi-pa da

which a priori is defined only on Gl — 1, F), extends in fact to a Schwartz-Bruhat
function onM((n — 1) x (n — 1), F), still denoted by®; such thatd; = ©, where
® is the Schwartz function oW ((n — 1) x (n — 1), F) defined by

Ty — 0
®(Dn_1) = &, [@, v (%1 Dnl)]

The induction hypothesis applied 4 gives
QO.¥ :azas, ..., an)

= fﬁ(¢1» ¥ PL, P2, -, Pno1)
xw(—i:ilpianﬂ_i+i:n_2;)dnﬁ_1~-dm- (12)
i=1 =
On the other hand, with
a =diaga, ap, ..., am), a’ =diag(ag, as, ..., an),
we have
Q(O,Y :ap, a3, ...,a)
= on-1(@)2(©, ¥ : &)

-1
= |ag|""*|on-1(@)]

v — al 0 =
X 917 |:<1>,1// : < >:|9(U1U2)dU1dU2
/an(F>an1<F) n-1 0 ‘udu;

= |on(@)|R(P, ¥ : )
= Q(dV),E:al,ag, ...,an).
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Hence we get
Qb :ag, @, ..., an)

Z/Q((Dlﬂff: pl’ va'--’ pnfl)
i=n—1 i=n-2

x (- Z Pigniisi + o .> p1---dp.  (13)

i=1

To complete the proof, we have to compute the orbital integral of the functio
An_1 —~ ®1(An—1) on the matrixp’ = diag(p1, p2, . .., pn—1). Note that the factor

W[Tr(al_lenflA;ingnfl)],

which appears in the definition df1, is constant on the orbits &f,_1(F) x Nn—1(F)
and, in particular, takes the valyd1/(a1 pn—1)] on the orbit ofp’. Observe, further-
more, that if¢ is the characteristic function of a compact open sef in then the
function

- An-1 0
(An—1, Pn) ¢(detAn71)92_l |:d), e < % l pn):|

is a smooth function of compact support on@l= 1, F) x F. In particular,

t
//92‘1 [Cb, Y (ulc))(uz F?ﬂ 0 (Uu2) ¥ [— pnai]l dpn dug dup

n

is an absolutely convergent integral where the order of integration can be revers
Moreover, for a giverpy,

, o t ! 0
|on_1(p>|/s22 1[<1>,w : (“18 12 ) )}ewluz)dulduz
n

=Q[®, ¥ : p1, P2, ..., Pl
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It follows that

QI@1,¥ : Pl

=¥ g Jlon-a@)

t /
X //Q'I_l [Qw : (ulg 12 IC?n)]9(U1Uz)¢[—|0n<':11]duldUzdlon

1 , ,
=¥ [Pl dete
n_
_ tuipua O
x / (92 1[¢,Iﬁ : ( 18 2 . >i|'9(U1U2)1/f[—pnal]dU1dU2) dpn
n
1
- I/I[alp 1]|6n(p)|/§2[d>, VP P2, ..., Prl¥[—pnal dpn
n7
= w[alp 1]/{2[‘1’% : P1. P2, .., Pnl¥[—pnazl dpn.
n_
Upon inserting this result in the right-hand side o8), we find the identity of the
theorem. o

There is another more elementary formula that comes directly from the Fourier inve
sion formula.

PROPOSITION4
For ® ¢ #(M(n x n, F)), n > 1, the function

p@) = Q[P, ¥ : wna]

is a smooth function of compact support ori.F-urthermore,

_ -1
$(@) = |a|*“2+1/sz [cﬁ,%: ( w”ala g)} db.
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Proof
After a change of variables, we find

0 0 0 0 a
0 0 0 a Xo.n
— 1g/(—n%/2 T
o@ =al / ® 0 0 a *++ Xn-2n-1 Xn-2n
0 a X-13 -© Xn-1n-1 Xn-1n
 \a X2 Xn3z - Xn,n—1 Xnn /|

i=n
X W(aflzxi,n—wz) ®dXx j.
i=2

Since|Ap| is bounded above on the support®fthe above integral vanishes for
|a| sufficiently large. On the other hand, since the integrand is a smooth function
thex; j, the integral vanishes fga| small enough.

We pass to the second assertion. In terme efe find that is equal to

[/ 0 0 0 - —alt  xn\]
Y 0 0 —al .. Xn_gn-1 Xn-3n
& | b
/ 0 —a ! Xp_23 o+ Xn—2n-1 Xn-2n
—a ! Xp_12 Xn-13 - Xn—ln-1 Xn-in
L\ Xn,1 Xn,2 Xn,3 e Xn,n—1 Xn,n

[
2
x |a™" )/ZW(a Xin— |+1> ®dx j.
i=1

We define a functiorb; on GL(n — 1, F) by

®1(An_1) = /92—1 [cb,%: (AB1 8)] db.

We remark that iff is a smooth function of compact support Bri, then the product
f (detAn—1)®1(An—1) is a smooth function of compact support on @l=- 1, F). It
easily follows that

=l
/sz [é,%: (‘w”ala 8)] db= Q(®1; ¥ : —wn_1a”b).
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Now

_ M An—l An—lX _ vz
®1(Ap_1) = / (o} |:<Y A1 bt Y/An_lx)i| Y(—en—1X —Yén_1)dXdY db

= |detAn_1| 2

X / b [(A:(_l ﬁ)} Y (—en—1AL X — Y AL & 1)dXdY db

Now

i=n-1

Q[d1, ¥ 1 —wp_1a ] = / ch(Anfl)l[/(— Z Xi,nfi+1>dxi,j,
i—2

whereAn_1 is the matrix

0 0 0 e —a!
O 0 —a_l s _a_1Xn_3’n_l
0 a1 —a 23 —a Xn_2n-1
=l =l | 1
—a —a "Xp-12 —a Xn-13 —a “Xn-1n-1

After a change of variables, we find

i=n-1

—1)2—_(n—
@l V0D [ @yhgpp(a 3 Knien) d .

i=2

where nowAn_1 is the matrix

0 0 0o ... -—atl
-1
0 0 —a “+ Xn-3n-1
0 —a ! Xp_23 o Xn—2n-1
—a! Xp-1,2 Xn-1,3 -+ Xp—1n-1

Combining with the previous formula foby, we find that its orbital integral on
—1:
—wp_1a " is

i=n—-1

—1)2_(n— _ X
00220 [ oAy (a 3 xa-iea) d .
i=1
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where Ay is now the matrix

0 0 0 ... —al xn
0 0 —atl ... x X
n—3,n—-1 n—3,n
0 —a! Xn-23 -+ Xp—2n-1 Xn-2n
—al Xp-12 Xn-13 0 Xn—in-1 Xn-in
Xn,1 Xn,2 Xn,3 - Xn,n—1 Xn,n
Comparing with the last expression #pta), we obtain our assertion. O

5. Orbital integrals in H(n x n, E/F)

We letE/F be a quadratic extension Bfand denote byd (n x n, E/F) the space of
n x n Hermitian matrices, that is, the matria@ssuch that'm = m. The groupNn(E)
operates o (n x n, E/F) by m — 'Gmu Viewed as functions ohl (n x n, E/F),
the functionsA; are invariants of this action. Ford i < n, we letO/ be the subset of
H(nxn, E/F) defined byA; # 0. We define an algebraic charadtgr N(E) — F
by 61(u) = :j‘l uj.i+1. Often we writef1 (u) = fp(ut). We say that an element
X (or its orbit) is relevant b is trivial on the stabilizer ok in N, (E).

PROPOSITIONS
In H(n x n, E/F) the set defined bx,,_; = 0, A, = 0 contains no relevant orbit.

Proof

Everys € H(n x n, E/F) has the forms = ‘nwb with n € Nh(E), w € W, and

b upper triangular. Suppose that det 0, and suppose thatis relevant. We have
to show thatA,_1(s) # 0. Now, if a column ofs with indexi < nis zero, then the
row with indexi is also zero becausds Hermitian, and thesis irrelevant since it is
fixed by the grougNy, (E). In particular,by 1 # 0. As before, at the cost of replacing
s by 'fi;sm, we may assume that= 'nwb, whereb has the form

b 0
o= (5 o)
whereb’ is an invertible diagonal matrix in Gb — 1, E). In particular, the last row

of b is zero. We may replacg by the elemeniwbn 1, and the last row obn 1 i

is
again zero. Since the rows afbn ! with index less tham cannot be zerop must
have the form

w_w/O
~\0 0

with w’ € Wy_1. ThenAn_1(wbi~1) = detbdetw’ # 0, as claimed. O
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As before, an element such that dex = 0 butAp_1(x) # 0 is in the same orbit as
an element of the form

x' 0

0 0/

Moreover, X is relevant if and only ifx’ is a relevant element in Gin — 1, E) N
H(m-1) x (m-1), E/F).

Now we recall the classification of the relevant orbits in@k 1, E) N H((n —
1) x (n — 1), E/F). Every orbit has a unique representative of the fapan with
we W, w? =1,a e An(E), andwaw = a (cf. [11]). Suppose thak is a simple
root such thatva = —p wherep is positive. Fom, € N, defineng € Ng by

Mpwan, = wa.

Then
'Nywang = wa.

There exists an element g € Ny (i.e.,ny1 g = 1if « + B is not a root) such that
N = NgNgNy 4 Satisfies
fiwan = wa.

If wais relevant, this relation implies
Bo(NgNeNgNg) = 0.

If B is not simple, this leads to a contradiction. Thuss simple. Sincav? = 1, we
see that, as before, there is a standard Levi subghkduguch thatw is the longest
element inWy, N M. The above relation also implies theats in the center oM and
in A(F).

We conclude that the set of representatives for the relevant orblg,6F) x
Nm(F) in M(m x m, F) given in Section 2 is also a set of representatives for the
relevant orbits oNy(E) in H(m x m, E/F).

We setd (ut) = ¥ (6p(uli)). The orbital integrals

Q[®, ¥, E/F : x] =f®(tUxu)9(uU)du

of a relevant element are defined as before: the integral is over the quotient o
Nm(E) N M by the stabilizer ofx. Our goal is to study these orbital integrals in
complete analogy with the previous discussion.

It is convenient to introduce thietermediate orbital integralsLet m, n be two
integers greater than zero. Fore . (H((m+n) x (m+n), E/F)), An € Si(F),
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Bn € Hmx m, E/F), we set

An O
wfocrv(h 0)]

. / of( O0) (A 0) (. X
. X 1n/\0 Bn/\0 1y
x Y[ TreX) + Tr("Xe)] d X. (14)

Heree andé are as above. Note that= te. If X = (Xi,j), then the measure X
is the tensor product of the self-dual Haar measuigs . The integral converges
and defines a smooth function &(F) x M(m x m, F). In particular, we have the
following easy result.

LEMMA 3

If ® is supported on () then the functior2]},(®, ¢ : e) is @ smooth function of
compact support onp8F) x M(m x m, F). Conversely, every smooth function of
compact support on that space is of this form for a suitableupported on Q.

After a change of variables, we find, keeping in mind that&let F*,

Qn [cp, E/F, vy : (AO” E?m)}

_ —2m An X
e [o](B o X))

< Y[ TrEeATTX) + Tr("X AT | d X

We also introduce theormalizedintermediate orbital integrals

- (A O
oemy (% O]

:= n(detAn)™| detAn | x o [CD, E/F, v : (’/?)” BO )] (15)
m
One can define the orbital integrals of a smooth function of compact sugport
Si(F) x H(m x m, E/F) relative to the action of N, (E)) x (Nm(E)) on $,(F) x
H(m x m, E/F). They are denoted b (¥, ¥ : Xn, Xm), wherex, is relevant in
S\(F) andxn, is relevant inH(m x m, E/F). In particular, consider the case of the
function

_ n . An 0
W (An, Bm) = @, |:<I>, v, E/F: ( 0 Bm)i|
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and a relevant elemertof H(m x m, E/F) of the form

(% 0
= <0 Xm) 7
wherexy, is relevant in§,(F) andxn, is relevant inH(m x m, E/F). We then have
the reduction formula
Q[®,E/F, ¢ : X] = Q[V¥, E/F, ¥ : Xn, Xm] - (16)

This formula reduces the computation of the orbital integrals (and the normalizatic
of the measures) to the case of an element of the fogm wherea € F* is a scalar
matrix. Then

Q[V¥, E/F,¢ : wna]

0 0 0 0 a
0 o 0 a Don
_ / ol .
0 0 a ©r+ aAXn-2n-1 aAXn-2n
0 a  ax-13 -+ @%-1n-1 A%-1n
L\a QX2 axs - aXn,n-1 aXn,n

1=n
X W(in,n—i+2) ® dx,j,

i=2
wherexi i € F, X j € E, Xi,j = Xj.i, where the measuresq j, i < j, onE and the
measureslx ; on F are self-dual.

We also denote byQ(®,E/F,v : a,a»,...,ap) the orbital integral

Q((®, E/F, ¢ : a), wherea = diag(as, az, ..., ay) is relevant. We introduce nor-
malized diagonal orbital integrals as follows:

Q(®,E/F, ¢ :ag, @, ...,an)
:=n(on(@)lon(@)|2(P, E/F, ¢ 1 a1, @, ..., an). (17)

As before, there is a reduction formula for the normalized diagonal orbital integrals

6. Weil formula: The twisted case

As before, our goal is to obtain a simple relation between the orbital integrals of
function and the orbital integrals of its Fourier transform. Again, our main tool is th
Weil formula for the Fourier transform of a character of second order. We first recs
the one-variable case. Define the Fourier transform &f .7 (E) by

d(2) =/ ®(U)Y (—uz—Tz2)du.
E
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Then, fora e F*,
[ b@vemdz= i@ /F. ) [o@u(-Z)dz
We may take this formula as a definition of the consta/F, /). We also have
[ e@vemiz=jati@cE/F ) [ b@u(-Z)dz
Applying the formula twice, we get the relation

c(E/F,y)c(E/F,¢) = 1.

More generally, if® is a Schwartz function on the space of column vectors of size
n with entries inE, we define its Fourier transform, a function on the space of row
vectors of sizen, by

ﬁ)(X):/CD(UW[—ZU —ZUldu.

PROPOSITIONG
For every matrix Ac S,(F), we have

/ d(2)y[ZA'Z1dZ
En

= | detA|= n(detA)C(E/F, y)" f dX)Y[— XA IX]dX.
En

Proof
If Ais a diagonal matrix (with diagonal entries i), the formula follows at once
from the case oh = 1. In general, we may write

A= Ma'M,
with M € GL(n, E), a diagonal. Then the left-hand side is

|detM|E1/ dzMYHy(zalZ)dz

SinceZ +> |detM|zt®(ZM~Y) is the Fourier transform oK > ®(MX), this is
equal to

n(deta)| deta| “*c(E/F, y)" / dMX) ¥ (— XatX)dX.
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After a change of variables, this becomes
n(deta)| detM | *| deta] "Lc(E/F, w)”/GJ(X)W(—tYA‘1X)dX.
Since| detA|g = | deta|g| detM|g, our assertion follows. O

On the spacéi (n x n, E/F), we define the Fourier transform by

U(X) = / YY)y - Tr(XY)]dY,

where the measure is self-dual. Thusfif= (yi j), thenyij € F,yji =Y, ; for
i < j, and the measumY is the tensor product of the self-dual Haar measdrges
anddy j,i < j. Note that T(XY) is indeed inF. In H((n4+m) x (n4+m), E/F)
we consider the subspace of matrices with zero diagoenaln andm x m blocks.
The Fourier transform of a function in that space is then defined by

= (Onn tX / On,n \ ~\7
D = [ ol = —Tr(XV + XV)|dV.
< . Om,m) VO Y[ = Tr(XV 4+ XV)]
This being so, the form of Weil formula that we are using is as given in the ne»
proposition.

PROPOSITION?
Let A B be Hermitian matrices iGGL(n, E) andGL(m, E), respectively. Then

/é On 2 y[Tr(BZA'Z)]dz
Z Om’m
= n(detA)™| detA|z"n(detB)"| detB|"c(E/F, y)™"

x/cp<0”'” X >¢[—Tr(B“YA1X)]dx.

t7 0m7m

Proof
Let us observe that TBZ A'Z) is indeed inF. As before, we may reduce the com-
putation to the case whel® is the diagonal matrix dia®s, bo, ..., bm). We may
regardZ as a matrix

Z1

z=|?%],
Zm

where eacl; is a row of sizen. Then the formula follows from the previous formula
applied to the matrices A, bo A, ..., bnA. O
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7. Inversion formula in the Hermitian case
As before, we set
U(X) = U (wmXwm).

We then have the following result.
PROPOSITIONS

Letn> 1, m > 1be two integers. Le¥ € .(H((M+ n) x (m+n), E/F)). Then
we have

/(/ Qn [qf E/F, ¢ : (/g” E?m)}w[—Tr Bmmemwm]dBm>

X Y[ TrwmCrtwme Ay &) ][ — Tr(AnwnDnwn)] d Aq

= c(E/F, y)MQM [\ir, E/F.V: (CO"‘ g)]

Proof

The proof follows step by step the proof of the corresponding resulf@n + m) x
(n+ m), F). We consider the partial Fourier transfofn(with respect toBy,) of the
normalized intermediate orbital integral &f

An O

® (An, Cm) :=/§zg1 [\p E/F, ¢ : (0 Bm>:| ¥ [— Tr BnCm] dBn.

The critical step is as follows. We get for.

m -m An X

x Y[ Tr(e Ayt X) + Tr("X A 1é) + Tr(Cm "X A EX) ] d X
x Y[ = Tr(CmBm)] d Bn.

We now introduce a partial Fourier transformbf
An U\ An X B 0 X 0 u
(1S o) = (% a)? [T (5 &) (G o)) exam
By the Weil formula, the previous expression is then
| detCr| "5 (detCm)"c(E/F, y)™"
X / 2 (tAY” é(m> Y[ = TrC X + e ATH An(X + ATTH]d X

The rest of the proof is identical to the proof of Proposition 3. O
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Our main result in this section is the following inversion formula.
THEOREM 2
For® e (H(n xn, E/F)),
C(E/F.y) " D/2Q(d, ¥, E/F s ag. @p,.... an)

Z/Q(q)»w! E/F:plv p21---, pn)

i=n-1

1
x (- ;p.anﬂ P+ Z pT)dnqdpn 1---dpy,

where the integral is only an iterated integral.

Proof

Again the formula is trivial fom = 1, so we may assume that> 1 and that our
assertion is true fon — 1. We prove it fom. We apply the formula of Proposition 8
to the pair of integergn — 1, 1). We obtain

/(/ -t [xp, E/F,¢: (Arél ;)] W[—pnal]dpn>

x Y[ Tra ten—1AL én-0) ][ — Tr(An—1wn_1Dn-1wn-1)] d Ar_1

= c(E/F, y)""1QL [qf E/F, ¥ : (o DO )}
n—-1

We set

W1(An-1) = ¥[ Tr(a; ten1 Ay 1 én-1)]

x/QQ*l [\IJ E/F, v : (Ag_l S)} [—pnas] dpn.
n

ThenWy(Dn_1) = ©(Dn_1), where

®(Dn_1) = C(E/F, )" 15 [‘1‘ E/F. ¥ (o DS 1)}

The induction hypothesis applied 9o gives
c(E/F,y)"-DO-2/2Q©, E/F, ¥ : ap, a3, ..., &)
= / Q(W1, E/F. ¥ : p1. P2 ... Pn_1)

i=n-1 i=n-2

x¥(= Y Panai+ Y ———)dma-dp. (18)
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The rest of the proof is the same as before once we observe that

C(E/F. y)"e(E/F, y)""PN7A/2 = c(B/F, y)" "D/, =

We leave it to the reader to formulate and prove the analogue of Proposition 4 in t
present situation.

8. Smooth matching

Definition 1
We say that a functio® € .(M(nxn, F)) and a functionV € .¥(H(nxn, E/F))

have matching orbital integrals fgr, and we writed & v if for every diagonal
matrixa € o, with Ap_1(a) # 0,

Q(®, v;a) = QV, E/F, v : a).

From the inversion formula for the orbital integrals, we have at once the followin
result.

PROPOSITIONI B
If & <> W, thend <> c(E/F, y)"™D/2y, and conversely.

Now we can formulate our main result.

THEOREM 3
Given® € (M(nxn, F)), thereis¥ € . (H(n x n, E/F)) with matching orbital
integrals foryr, and conversely.

Proof

We treat the case @b. The case ofl is similar. The case afi = 1 being trivial, we
may assume thait > 1 and that our assertion is proved for< n. Fori < nwe can
consider smooth functions of compact support oniGE) x M((n—i) x (n—i), F)
andS (F) x H((n—i) x (n—i), E/F), respectively, and their orbital integrals for the
action of the group\; (F) x Nj (F) x Np—j (F) x Nn—j (F) andN; (E) x Nn—i(E),
respectively. It follows from the induction hypothesis that any function on the firs
space matches a function on the second spac¢ fddow let O; (resp.,0/) be the
opensetoM (nxn, F) (resp.,H(nxn, E/F)) defined byA; # 0. If ® is supported

on O, then its normalized intermediate orbital integral

Qi']fi [q)’ 1/’ : gl ) mnfi]
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is a smooth function of compact suppdit,_; on GL(i, F) x M((n—i) x (n—i), F);
it matches a function of compact supp®t,—; on S (F) x H((n—i) x (n—i), E/F),
which in turn is the normalized intermediate orbital integral of a funcliosupported
on O;. Now consider diagonal matrices € Aj, ap—i € M((n—1i) x (n —i), F),
with Ap_j _1(an_j) # 0. Then we have

Q[q’,l/f 1 (&0 ano_i>] =Q[®ini. V&, an-i].

There is a similar formula fo#. Thus, in fact® & V. Hence our assertion is true

for @ supported orQ;, i < n.
Next, suppose thab is such that

Q(®, ¥ : wpa) = 0

for all a € F*. Our classification of relevant orbits shows then that all the integral.
of ® over relevant orbits contained in the closed@alefined by

Al=Ar=---=Ap_1=0

vanish. Henceb has the same orbital integrals as a function supported on the cor
plement ofQ. We may assume that the supportdofs contained in the complement
of Q. Using a partition of unity, we see that we can write

where® is supported or0Q;. Then®; & Wi, where the functiony; is supported
on O/ and

Now let ® be an arbitrary function. Then
¢ @) :=[a| "PVVQ[D, ¥ : wnal

is a smooth function of compact support &rF. Let ®; be a function of compact
support contained i®,_1. Then

= 1 0
S
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is an arbitrary smooth function of compact support oniGL 1, F) x F. In particular,
we can choosé; so that

-1
o fafous (3 2]

Let ®, be the function such thab, = ®;. Sinced®; matches a function fow, it

follows from Proposition 9 tha®, <l> W, for a suitable functionVs. On the other
hand, by Propositior applied tod,,

QP, ¥ : wpa) = Q(P2, ¥ : wpa),

so that
Q(® — Dy, Y : wpa) = 0.

By the previous case, it follows thét— &, <i> W3 for a suitable functionz. Then
) <L ¥, + d3 and our assertion follows. O

9. Application to the fundamental lemma

Suppose thaE/F is unramified, and suppose that the conductoryos 0. Let

®g be the characteristic function of the set of matrices with integral entries i
M(m x m, F). Similarly, let ¥o be the characteristic function of the set of ma-
trices with integral entries irH(m x m, E/F). The fundamental lemmasserts
that &g matchesW¥y. We prove this form = 2 andm = 3. The case where
|deta] = 1 is already known, but the proof presented below is much simpler. Fir:
Q(do, ¥ : a) = Q(Po, ¥ : a), and likewise fordy. It follows that the difference

o(@) = Q(Po, ¥ : @) — Q(Wo, E/F, ¢ : @)
satisfies the functional equation

w(al,az,...,am)sz(pl, P2, ..., Pm)

i=m i=m-1

X 1lf<— Z Piam41-i +

i=1 i=1

1
Pi 8m-—i

)dpmdpm_l---dpl.
(19)

Moreover, it is supported on the datay - - - an| < 1. The fundamental lemma asserts
thatw = 0.
Form = 2 it is easily checked that

/ Q(Po, ¥ a1, @) dap
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is 1if |a;] = 1 and 0 otherwise, and likewise for
f Q(®o, E/F, ¢ 1 g, @) dap.
Thus
/w(al, az)da = 0.

If we set
w(ag, by) = /w(al, P2) Y (—p2by) dp2,

then (L9) is equivalent to the relation

1
(@, —b1) = p(b, al)W(ﬁ)- (20)

Moreover,u (a1, by +t) = u(ag, bp) for |t| < |az]. Sinceu(az, 0) = 0, we see that
u(ag, by) # 0implies|bi| > |ai1|. By (20), u(a1, br) # 0 also impliesbi| > |ay|.
Thusu = 0 or, equivalentlyw = 0, and we are done.

Form = 3 we first establish the following lemma.

LEMMA 4
If

fw(al, ap, ag)dag =0,

thenw = 0.

Proof
Indeed, if we set

w(ay, az, by) 1=/w(al,az, ag)y (—aghy) dag
and Q
o (ay, ap, by) == (a1, a, bw(@),

then (L9) is equivalent to

o(ag, ag, —by) = /U(bL P2, a1) ¥ (p2a2) dpe. (21)

The condition on the support af implies thatu(as, ap, by +t) = u(as, ap, bp) for
[t| < |a18z|. Under the assumption of the lemma, we thus hates , ap, by) = 0 for
|b1| < |azap|. Equivalently,o (a1, ag, b1) # 0 implies|ag| < |wb1a1_1|. From 1)
we haves (a, ap +t, b)) = o(ag, az, by) for |t| < |w—1b1a1_1|. Thuso = 0 and
w=0. O
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Thus it suffices to prove the relation
/Q(cbo, Vi@, a, az) dag = n(ap) / Q(Vo, E/F, ¥ : &, ap, ag) dag.

Nowfszf(%, ¥ :g,a3)dagis | detg|;2 times the characteristic functiah, of the
set ofg € M(2 x 2, F) such that
lgl <1,  1O.Hg <1 JgtiO )<L

Likewise, [ Q%(\IJO, E/F, v :g,a3)dagis| detg|;2 times the characteristic function
v, of the setofg € H(2 x 2, E/F) such that

lgh <1, 1©O,DgH <1
Thus it suffices to show that
Q(P1, ¥ : a1, &) = n@)Q V1, E/F, ¢ : agap). (22)
If |]azaz| = 1, then this relation is equivalent to
QP ¥t aq, @) = (@)W, E/F, ¢ ardy),

where®’ is the characteristic function of GR, ) and¥’ is the characteristic func-
tion of GL(2, o) N H(2 x 2, E/F); in turn, this relation is a special case of the
fundamental lemma fan = 2.

Now

Q(Py, ¥ : &g, a2) =/W(X1+XZ)dxldXz
over the set
lagl > 1,  Jaxil <1, x|l <lal™t  la+axaxe| < 1.

If |Jag| = 1, then this is 1. Ifiap| > 1, then this is zero unlega;ay| = 1. A similar
remark applies t& (Vo, E/F, ¥ : a1, a2). The relation 22) follows. We are done.

10. Concluding remarks

More generally, one can use Propositions 3 and 4 to prove inductively the theorem
density established ir8[; in a precise way, ifb is such that2 (P, ¥ : a) = 0 for all
diagonal matrices, thenQ(®, ¥ : @) = 0, andQ(®, v : g) = 0, 2(d, ¥ : g) =0

for all relevantg. Similarly, one can prove that ib PLIN W, then for everyg in the
common set of representatives for the two sets of orbits,

QP ¥ :9 =y(@ VQWV E/F.¥:0),
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where the constant(g, ¥) (the transfer facto) does not depend on the functions,
a result that also follows from3]. This gives another way to compute the transfer
factors.

Since the determinant is an invariant of the two actions, it follows from the thec
rem that for any smooth function of compact support or(iBLF) there is a function

of compact suppor¥ on Sy (F) such thatb PLIN |

Except for the last section, the previous discussion applies directly to the exte
sionC/R.

Suppose thaE/F is unramified, and suppose that the conductoryof OF.
Thenc(E/F, ¥) = 1. If E/F is a quadratic extension of global fields andis a
nontrivial character oF, /F, then the product of the constartE, /F,, ¥,) over all
placesv of F inertin E is 1. Likewise, forg relevant in GIn, F)N S,(F) the product
of the local transfer factors is 1.

References

[1] D. BUMP, S. FRIEDBERGaNndD. GOLDFELD, “Poincag series and Kloosterman sums”
in The Selberg Trace Formula and Related Topics (Brunswick, Maine, 1984)
Contemp. Math53, Amer. Math. Soc., Providence, 1986, 39 —¥@z 87]:11043
125

[2] H. JACQUET, The continuous spectrum of the relative trace formula@tx3) over a
quadratic extensiarisrael J. Math89 (1995), 1-59MR 96a:22029

, A theorem of density for Kloosterman integraisian J. Math2 (1998),
759-778MR 2001e:11054122, 150, 151

[4] H. JACQUETandY. YE, Relative Kloosterman integrals f@L(3), Bull. Soc. Math.
Francel20(1992), 263 —295VIR 94c:11047 122

, Distinguished representations and quadratic base chang&faB), Trans.

Amer. Math. Soc348(1996), 913 -939VIR 96h:11041 122

, Germs of Kloosterman integrals f@L(3), Trans. Amer. Math. So&51

(1999), 1227 —-1258VIR 99j:11053

, Kloosterman integrals over a quadratic extensitmappear in Ann. of Math.

(3]

(5]

(6]

(7]

2). 122

[8] E. LAPID andJ. ROGAWSK]| Periods of Eisenstein series: The Galois gd3eke Math.
J.120(2003), 153 -226.

[9] B. C. NGO, Faisceaux pervers, homomorphisme de changement de base et lemme

fondamental de Jacquet et,Y&nn. Sci.Ecole Norm. Sup. (432 (1999),

619-679MR 2001g:11076122

, Le lemme fondamental de Jacquet et Ye en céaritique positiveDuke
Math. J.96 (1999), 473 -520VR 2000f:11059 122

[11] T. A. SPRINGER “Some results on algebraic groups with involutions’Allgebraic
Groups and Related Topics (Kyoto/Nagoya, 198@)v. Stud. Pure Math5,
North-Holland, Amsterdam, 1985, 525 —548R 86m:20050 139

(10]


http://www.ams.org/mathscinet-getitem?mr=87j:11043
http://www.ams.org/mathscinet-getitem?mr=96a:22029
http://www.ams.org/mathscinet-getitem?mr=2001e:11054
http://www.ams.org/mathscinet-getitem?mr=94c:11047
http://www.ams.org/mathscinet-getitem?mr=96h:11041
http://www.ams.org/mathscinet-getitem?mr=99j:11053
http://www.ams.org/mathscinet-getitem?mr=2001g:11076
http://www.ams.org/mathscinet-getitem?mr=2000f:11059
http://www.ams.org/mathscinet-getitem?mr=86m:20050

152

(12]
(13]
(14]

(15]

HERVE JACQUET

G. STEVENS Poincar series orGL(r) and Kloostermann sumMath. Ann.277
(1987), 25—-51MR 88m:11031 125

J. L. WALDSPURGER Le lemme fondamental implique le transf&€bmpositio Math.
105(1997), 153—-236MR 98h:22023 122

Y. YE, The fundamental lemma of a relative trace formula®ir(3), Compositio
Math.89 (1993), 121 -162VIR 95b:22023

, An integral transform and its applicationMath. Ann.30(1994), 405-417.

MR 95j:11045

Department of Mathematics, Columbia University, Mail Code 4408, New York, New York
10027, USAhj@math.columbia.edu


http://www.ams.org/mathscinet-getitem?mr=88m:11031
http://www.ams.org/mathscinet-getitem?mr=98h:22023
http://www.ams.org/mathscinet-getitem?mr=95b:22023
http://www.ams.org/mathscinet-getitem?mr=95j:11045
mailto:hj@math.columbia.edu

	Introduction
	Orbital integrals in M(mm,F)
	Weil formula: The split case
	Inversion formula for the orbital integrals
	Orbital integrals in H(nn,E/F)
	Weil formula: The twisted case
	Inversion formula in the Hermitian case
	Smooth matching
	Application to the fundamental lemma
	Concluding remarks
	References

