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GERMS OF KLOOSTERMAN INTEGRALS
FOR GL(3)

HERVÉ JACQUET AND YANGBO YE

Abstract. In an earlier paper we introduced the concept of Shalika germs for
certain Kloosterman integrals. We compute explicitly the germs in the case of
the group GL(3).

1. Introduction

We let F be a local field of characteristic 0 and ψ a non trivial additive character
of F . We let G be the general linear group GL(r) regarded as an algebraic group
over F . We often write G for G(F ) = GL(r, F ) and C(G) for the space of smooth
functions of compact support on G(F ). We use similar notations for other groups
or varieties. In an earlier paper ([JY3]) we introduced the notion of Shalika germs
for the Kloosterman integrals of the group G(F ). We also considered a quadratic
extension E of F and the Kloosterman integrals relative to the symmetric space
S(r, F ) of Hermitian matrices in GL(r, E). Our purpose in this paper is to com-
pute the Shalika germs for the group GL(3, F ) and show they agree, up to certain
“transfer factors”, with the Shalika germs for the Kloosterman integrals relative to
S(F, 3) (Theorem 5.1).

This can be used to give a more satisfactory proof for the global results of [JY3].
Indeed, the relative trace formula identity established there was valid only under
some restrictive assumptions on the functions at hand. In more detail, let E/F be a
quadratic extension of number fields (satisfying the restrictive conditions of [JY3])
and η the corresponding quadratic character. One of our goals was the following
one: suppose that Π is a cuspidal automorphic representation of GL(3, EA) which
is distinguished by the quasi-split unitary group H in the sense that there is a form
φ in the space of Π, the integral of which over the group H is non zero. In [JY3] we
concluded that Π is invariant under the Galois group of E/F and thus a base change
by the results of [A-C]. It is now possible to show directly from the relative trace
formula of [JY3]—without using the results of [A-C]—that Π is the base change of
some representation π of GL(3, FA), in the sense that the L-functions

L(s, π)L(s, π ⊗ η) , L(s,Π)

agree, except perhaps for a finite number of factors. Moreover, our relative trace
formula suggests the following local result: suppose now that E/F is a quadratic
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extension of local fields and let H be a unitary group in GL(n,E). If Π is a
supercuspidal representation of GL(n,E), it is reasonable to conjecture that the
dimension of the space of linear forms invariant under H on the space of Π is at
most 1. For n = 3 it is surely possible to derive this conjecture from our relative
trace formula.

In general, the Shalika germs describe the asymptotic behavior of orbital integrals
of the form:

∫
f(n1gn2)θ(n1n2)dn1dn2.

Here N is a maximal unipotent subgroup in G and θ a generic character of N . In
standard harmonic analysis, there is a theory of asymptotics of orbital integrals
given by the Shalika germs and a dual theory of asymptotics of characters. The
orbits of interest are the semi-simple orbits, that is, the closed orbits. The behavior
at infinity of the semi-simple orbital integrals is controlled by the unipotent orbital
integrals. In fact, there is an infinitesimal notion of orbital integrals (on the Lie
algebra) and the Lie algebra situation is used as a model for the group situation.
Likewise, for the characters, there is an infinitesimal theory, where the crucial
objects are the Fourier transforms of the nilpotent orbital integrals.

The situation at hand is completely different. There is no infinitesimal version
of the theory. Moreover, all the orbits, that is, the double cosets of N in G, are
closed. In other words, all the orbits are elliptic. As a result, the asymptotics of
orbital integrals and the theory of asymptotics of characters (Bessel distributions)
are the same. Consider for instance the case of a supercuspidal representation π.
Then it is reasonable to conjecture that the Bessel distribution of π is a locally
integrable function equal on the open Bruhat cell to an integral of the above form,
where f is a matrix coefficient of π (see [B] for the GL(2) case). To prove the
conjecture, the first step is to prove that the resulting function is locally integrable,
and this can only be done if enough information on the germs is available (as in
[B]). For non supercuspidal representations the situation is more complicated but
the germs still play an important role (see [B]). In particular, the results of the
present paper will be useful in proving this conjecture on Bessel distributions in
the case of GL(3). Finally, the germs are likely to play an important role in the
proof of the “fundamental lemma” of [JY2] for GL(n) and the extension of the
results of [JY3] to GL(n). Thus, there is every reason to study them.

We note, however, that our computation is not really explicit. We simply show
that both germs can be reduced to the computation of the same (one variable)
integral. For GL(r) it might be possible to show similarly that the two kinds of
germs agree, up to a transfer factor, without computing explicitly the germs.

The paper is arranged as follows. In section 2 we review the notion of Shalika
germs adding appropriate remarks. In sections 3 and 4 we compute the germs for
the Kloosterman integrals for GL(3, F ). In sections 5 and 6 we compute the germs
for the Kloosterman integrals relative to S(F, 3).

Finally, we would like to thank the referee for the patient reading of a difficult
manuscript. We also thank Zenghyu Mao for making his computations on a re-
lated problem available to us. We adapted to our situation an ingenious change of
variables found in his work.
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2. Shalika germs

We first recall the concept of Shalika germs introduced earlier in the context of
GL(r, F ), adding appropriate remarks. Let F be a local field, non Archimedean of
characteristic 0. We denote by OF the ring of integers of F , by ℘F the maximal
ideal in it and by qF the cardinality of the quotient. We let ψF be a non trivial
additive character of F . We drop the index F if this does not create confusion. Let
A be the group of diagonal matrices, W = W (G) the Weyl group of A identified
with the group of permutation matrices in GL(r, F ) and N the group of upper
triangular matrices with unit diagonal. We define an algebraic group morphism
from N to F by:

θ0(u) =
∑

ui,i+1

and set θψ(u) = ψ(θ0(u)). We often write θ for θψ. Recall that the elements of the
form wa with w ∈ W and a ∈ A(F ) form a set of representatives for the action of
N(F )×N(F ) on G(F ) defined by:

s
(n1,n2)7→ tn1sn2.

We say that wa is relevant if θ0(n1n2) = 1 when (n1, n2) fixes wa. If wa is relevant,
then there is a standard parabolic subgroup Pw (i.e. Pw contains N) with standard
Levi factor Mw (i.e. Mw contains A) such that w is the longest element of W ∩Mw.
We then denote by Aw the center of Mw. The element a belongs to Aw. Conversely,
the wa obtained this way are all relevant. See: [JY3], [F], [dG], [g.S], and [r.S],
page 257. We denote by R(G) the set of w of the above form. If w ∈ R(G) and
M = Mw, we also write w = wM . In particular, wG is the longest element of W (G).
For Φ ∈ C(G) and wa relevant we consider the Kloosterman integral

I(wa,Φ) =
∫

Φ( tn1wan2)θ(n1n2)d(n1, n2).

The integral is taken over the quotient of N(F )×N(F ) by the stabilizer of wa.
We now recall the notion of Shalika germs. If w,w′ are in R(G), we write w→ w′

if Aw ⊇ Aw′ . This is equivalent to Mw ⊆ Mw′ or w ∈ Mw′ . We write w 1→ w′ if
w→ w′, w 6= w′ and there is no w′′ ∈ R(G) such that w → w′′ → w. We can define
a graph with R(G) for a set of vertices: the graph is oriented and the edges are the
pairs (w,w′) with w

1→ w′. Note that all oriented paths from a given w to a given
w′ have the same length which we denote by d(w,w′). We write w m→ w′ if w→ w′

and d(w,w′) = m. For each w ∈ R(G) we have e → w → wG. For 0 ≤ i ≤ n and
g ∈ GL(n) we denote by δi(g) the determinant of the submatrix of g formed with
the first i rows and first i columns (called ∆i(g) in [JY3]). Thus δi is a map of
algebraic varieties from G to F . In particular δ0 = 1 and δr(g) = det g. We denote
by ∆(G) the set of functions of the form

δ(g) =
∏
i

δi(g)ni

with ni ∈ Z, by ∆0(G) the set of functions of the form δi, 0 ≤ i ≤ r, and by
∆+(G) the set of functions of the form δi, 1 ≤ i ≤ r − 1. The restriction of such a
function to A is an algebraic character of A. As a matter of fact, we can identify
∆(G) with the set of algebraic characters of A. More generally, if M is a standard
Levi-subgroup, then we denote by ∆(M) the set of maps which are restrictions to
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M of the elements of ∆(G). We can also identify ∆(G) with ∆(M). This notation
is different from the corresponding notation in [JY3].

We recall without proof the following lemma:

Lemma 2.1. Suppose w ∈ R(G) and δ ∈ ∆(G). Suppose w 6= wG and δ(wGw) 6=
0. Then δ = δmr for some m ∈ Z. Suppose δ(w) 6= 0. Then δ(m) 6= 0 for all
m ∈Mw.

If w → w′, we denote by Aw
′

w the set of b ∈ Aw(F ) such that δ(b) = δ(w′w) for
all δ ∈ ∆(G) such that δ(w′w) 6= 0. Lemma 2.1 implies that if w 6= wG, then AwG

w

is the set of b ∈ Aw such that det(b) = det(wGw). On the other hand, it is clear
that Aww = {1} for all w.

It is important to keep in mind that all the notions introduced are inductive in
the following sense. Suppose that M = Mw′ with w′ ∈ R(G). Then M can be
written as an ordered product of linear factors M = G1 × G2 × · · · × Gs where
Gi ' GL(ri) and each element m ∈M is a diagonal matrix of square blocks:

m = diag(g1, g2, . . . , gs)

with gi ∈ Gi. In particular:

w′ = diag(w′1, w
′
2, . . . , w

′
s)

where w′i = wGi . Similarly, every a in Aw′ has the form:

a = diag(a1, a2, . . . , as)

with ai ∈ Aw′i ⊂ Gi. Thus

Aw′ '
∏

Aw′i .(2.1)

If w→ w′, then w ∈M and

w = diag(w1, w2, . . . wr)

where wi ∈ R(Gi) (and wi → w′i in Gi). We have then

Aw '
∏

Awi .

The restriction of a δ ∈ ∆(G) to M can be written as a product

δ(g) =
∏
i

δi(gi)

where δi ∈ ∆(Gi). If δ(w′w) 6= 0, then δi(w′iwi) 6= 0 for each i and conversely. It
follows that:

Aw
′

w '
∏

A
w′i
wi .(2.2)

We recall the following lemma, the (easy) proof of which was omitted in [JY3]:

Lemma 2.2. Suppose that w → w1 → w′; then

Aw1
w Aw

′
w1
⊆ Aw

′
w .

Proof. By the inductive character of our constructions, it suffices to prove this when
w′ = wG and w 6= wG. If a = bc with b ∈ Aw1

w and c ∈ Aw
′

w1
, we have to see that

δ(wGw) 6= 0 implies δ(a) = δ(wGw). However δ is a power of the determinant by
the previous lemma. Thus we may assume that δ = det. Then

δ(a) = δ(b)δ(c) = δ(w1w)δ(w′w1) = δ(w′w)δ(w2
1) = δ(w′w)

and the lemma follows.
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It will be convenient to use the following notation: if f and g are functions on
Aw

′
w and Aw′ respectively, then we define a new function f ∗ g on Aw by:

f ∗ g(a) =
∑

{a=bc,b∈Aw′
w ,c∈Aw′}

f(b)g(c).(2.3)

If f and g are functions on Aw1
w and Aw

′
w1

respectively, we define similarly a new
function f ∗ g on Aw

′
w by:

f ∗ g(a) =
∑

{a=bc,b∈Aw1
w ,c∈Aw′

w1
}
f(b)g(c).(2.4)

A system of Shalika germs is a family of smooth functions Kw′
w defined over

the sets Aw
′

w for w → w′ such that Kw
w = 1 for any w, and, for any function

f ∈ C(G(F )), there exist functions ωw = ωfw ∈ C(Aw(F )) with:

I(w., f) =
∑

{w′:w→w′}
Kw′
w ∗ ωw′ .(2.5)

For a given function f , the above relations determine the functions ωw by a tri-
angular system of linear equations. In particular ωwG(a) is just the orbital integral
I(wGa, f). When we want to emphasize the dependence of the functions ω∗ on the
system, we will write them as ωK,fw or ωKw . The notion of Shalika germs depends
on ψ. The choice of the invariant measures on the quotients depends on the choice
of ψ and will be recalled in the case r = 3.

We recall the following theorem of [JY3]:

Theorem 2.3. There exists a system of Shalika germs. If K is a system of Shalika
germs, and tw

′
w is a family of functions in C(Aw

′
w ) such that tww = 1 for all w, then

the functions

Hw′
w =

∑
w→w1→w′

Kw1
w ∗ tw′w1

(2.6)

form another system of Shalika germs. All systems of Shalika germs are obtained
in this way from a given system.

We remark that if tw
′

w is a system of functions with the property that tw
′

w = 0
unless w = w′ or w′ = wG, then the system H defined by (2.6) verifies Hw′

w = Kw′
w

for w′ 6= wG.
It is possible to compute inductively the germs Kw′

w in terms of the germs KwG
w .

Indeed, suppose that for each m < n we are given a system of germs for the
group GL(m,F ); in particular we are given the functions KwGL(m)

w . Then it follows
from the constructions of [JY3] that there is a system of germs on GL(n) with the
following property. If w′ 6= wG, then M = Mw′ can be written as a product of
linear groups Gi as above. For w→ w′ write a in Aw

′
w as

a = diag(a1, a2, . . . , as)

with ai ∈ Awi′wi
. Then:

Kw′
w (a) =

∏
K
w′i
wi (ai).(2.7)

It will be convenient to say that a system of this form is inductive (relative to the
given functions K

wGL(m)
w for m < r).
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We want to make this assertion more precise. Let Φ be a smooth function of
compact support on G such that

I(wG,Φ) = 1,

I(wGz,Φ) = 0 if z ∈ F× , zr = 1 , z 6= 1.

We claim there is an inductive system of germs K∗
∗ such that

KwG
w (a) = I(wa,Φ) for a ∈ AwG

w .

Indeed, let K∗
∗ be an inductive system. We first observe the following. Suppose

that a ∈ AwG
w has a decomposition a = bc with b ∈ Aw

′
w , c ∈ Aw′ and w → w′. If

w′ 6= wG, then the element c is in fact in AwG

w′ . For by definition:

det(a) = det(wGw) , det(b) = det(w′w);

hence

det(c) = det(wGw′).

If on the contrary w′ = wG, then we find that c ∈ AwG ' F× verifies det c = cr = 1.
Thus ωΦ,K

wG
(c) = 1 if c = 1 and 0 otherwise. For a ∈ AwG

w we have then

I(wa,Φ) = ωK,Φw (a) +
∑

w 6=w′ 6=wG

Kw′
w ∗ ωK,Φw′ (a) +KwG

w (a).

The “convolution” in this formula can be viewed as the “convolution” of a function
on Aw

′
w and a function on AwG

w′ . Define then a system of functions t∗∗ as follows:
tww = 1; twG

w is the restriction of ωK,Φw to AwG
w for w 6= wG; all other elements of the

family are 0. Then if H is the system of germs defined by t (see (2.6)), the above
relation reads:

I(wa,Φ) = HwG
w (a)

on AwG
w . Moreover Hw′

w = Kw′
w for w′ 6= wG. Thus H∗

∗ is an inductive system with
the required properties. Our assertion follows.

Proposition 2.4. If m is sufficiently large, there is an inductive system of germs
such that, for w 6= wG, KwG

w has support in the set AwG
w (m) defined by

| δ(a) |≤ q−m

for each δ ∈ ∆+(G) such that δ(w) 6= 0.

Proof. Choose m so large that the character ψ is trivial on the ideal ℘m and the
relations zr = 1 and z ≡ 1 mod ℘m imply z = 1. Let Φ be any function with support
in the set wGKm, where Km is the principal congruence subgroup of K = GL(r,O),
such that:

I(wG,Φ) = 1.

Then

I(wGz,Φ) = 0 if z ∈ F× , zr = 1 , z 6= 1.

For instance, we can take for Φ the characteristic function of wGKm divided by
the volume of N ∩Km. Then the inductive system of germs such that I(wa,Φ) =
KwG
w (a) for a ∈ AwG

w has the required property. Indeed, if δ ∈ ∆+(G), then
| δ(g) |≤ q−m on wGKm. Suppose I(wa,Φ) 6= 0. Then there is n1 and n2 such
that tn1wan2 ∈ wGKm. Suppose δ ∈ ∆+(G) and δ(w) 6= 0. Then δ(tn1wan2) =
δ(wa) = δ(w)δ(a) = ±δ(a). Thus | δ(a) |≤ q−m.
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We will need a refinement of the above result. Suppose w → w′ with w′ 6= wG.
ThenMw′ =

∏
Gi where theGi are linear groups. We write w′ = (w′i) and w = (wi)

as above. Then Aw
′

w =
∏
iA

w′i
wi . We set

Aw
′

w (m) =
∏

A
w′i
wi(m).(2.8)

We first prove a lemma:

Lemma 2.5. Suppose w → w′ and

a = bc

with a ∈ AwG
w , b ∈ Aw′w , c ∈ AwG

w′ . If a ∈ AwG
w (m), then c ∈ AwG

w′ (m). If b ∈ Aw′w (m)
and c ∈ AwG

w′ (m), then a ∈ AwG
w (m).

Proof. Let us prove the first assertion. Let δ ∈ ∆+(G). Suppose that δ(w′) 6= 0.
Then δ(m) 6= 0 for m ∈ Mw′ . In particular δ(w) = ±1 and δ(w′w) 6= 0. Thus
δ(b) = ±1 by definition and

| δ(c) |=| δ(a) |≤ q−m.

The first assertion of the lemma follows.
Now we prove the second assertion. Again if δ(w′) 6= 0, then δ(w) 6= 0 and

| δ(a) |=| δ(c) |≤ q−m.

Now suppose that δ(w) 6= 0 but δ(w′) = 0. Write as before Mw′ as a product of
linear factors Gi and correspondingly b = (bi). Then

δ(b) =
∏

δ′i(bi)

where δ′i ∈ ∆0(Gi). Moreover δ′i ∈ ∆+(Gi) for at least one index. Thus

| δ(b) |≤ q−m.

On the other hand

| δ(c) |=
∏
j

|δj(c)|rj ;

the product is over all δj ∈ ∆+(G) such that δj(w′) 6= 0; the exponent rj is rational
and ≥ 0. Thus | δ(c) |≤ 1 and | δ(a) |=| δ(b)δ(c) |≤ q−m. The second assertion
follows.

We are now ready to state our next result on inductive systems. We let m be
an integer, sufficient large. We consider inductive systems of germs. Thus we have
already chosen the functions Kw′

w for w′ 6= wG. By induction and the previous
proposition, given n we may assume that each function Kw′

w is supported on the
set Aw

′
w (n).

Proposition 2.6. Consider a function Φ supported on the set wGKm, such that:

I(wG,Φ) = 1,

I(wGz,Φ) = 0 if z ∈ F× , zr = 1 , z 6= 1.

Let n ≥ m. Then there is an inductive system of germs such that each function
KwG
w for w 6= wG is supported on the set AwG

w (n) and

KwG
w (a) = I(wa,Φ)

on AwG
w (n).
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Proof. We can choose an inductive system of germsK such that each function KwG
w

with w 6= wG is supported on AwG
w (n). As before for w 6= wG we have the relation

I(wa,Φ) = ωK,Φw (a) +
∑

w 6=w′ 6=wG

Kw′
w ∗ ωK,Φw′ (a) +KwG

w (a)

on AwG
w . Suppose that each function ωK,Φw for w 6= wG vanishes on AwG

w (n). Take
a ∈ AwG

w (n). Then the first term in this sum vanishes. Moreover, if a = bc with
b ∈ Aw′w and c ∈ AwG

w′ , then c ∈ AwG

w′ (n) and ωK,Φw′ (c) = 0. Thus in the second term
each convolution vanishes on a and the system of germs has the required property.

To obtain this result we modify the system of germs as follows. We consider a
family of functions t∗∗ such that tww = 1, twG

w is supported on AwG
w (n) and ωK,Φw = twG

w

on AwG
w (n) for w 6= wG; all other elements of the family are zero. Consider the

system of germs defined by (2.6). Thus Hw1
w = Kw1

w if w1 6= wG and

HwG
w =

∑
w′

Kw′
w ∗ twG

w′ .

Suppose w 6= wG. By the previous lemma the function HwG
w is supported on

AwG
w (n). The functions ωH,Φw is given by

ωK,Φw = ωH,Φw + twG
w .

It vanishes on AwG
w (n) and the system H∗

∗ has the required properties.

We will need to determine how the system of germs depends on ψ. The choice
of ψ determines a self-dual Haar measure on F :

Φ̂(y) =
∫

Φ(x)ψ(−yx)dx,
∫

Φ̂(y)dy = Φ(0).

If ψ1 is another non trivial character, then ψ1(x) = ψ(sx) for some s ∈ F×. Then∫
Φ(xs−1)ψ(x)dx =| s |1/2

∫
Φ(x)ψ1(x)d1x(2.9)

where d1x is the Haar measure self-dual with respect to ψ1. Let K∗
∗ be a system of

germs for the character ψ. The self-dual Haar measure is used to build a measure
on the quotient spaces for our orbital integrals. This will be recalled below in the
case r = 3. We set

S = diag(sr−1, sr−2, . . . , s, 1).

For r = 3 a more convenient definition for S is:

S = diag(s, 1, s−1).

For w ∈ R(W ) we set

Sw = wSwS.(2.10)

Then Sw is in Aw. Moreover for w → w′

Sw = Sw
′

w Sw′(2.11)

where Sw
′

w is such that δ(Sw
′

w ) = 1 if δ(w′w) 6= 0. Given Φ ∈ C(G) set

Φ1(x) = Φ(SxS).

Denote by I(wa,Φ;ψ) the orbital integrals with respect to ψ. Then

I(waS−1
w ,Φ1;ψ) =| s |nw I(wa,Φ;ψ1)
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where nw is a suitable half-integer. We write

nw = nw
′

w + nw′ .

We have then

I(wa,Φ, ψ1) = | s |−nw I(waS−1
w ,Φ1;ψ)

= | s |−nw

∑
Kw′
w ∗ ωK,Φ1

w′ (aS−1
w )

=
∑

Kw′
1w ∗ ωK1,Φ

w′ (a)

where we have set

ωK1,Φ
w′ (c) = | s |−nw′ ωK,Φ1

w′ (cS−1
w′ ),

Kw′
1,w(b) = | s |−nw′

w Kw′
w (b(Sw

′
w )−1).(2.12)

Thus the functions K∗
1∗ form a system of germs for the character ψ1.

Finally, we set

J(g) = wG
tg−1wG.(2.13)

Thus J is an automorphism of G of order 2 which leaves N and A invariant. We
have

θψ(J(n)) = θψ−1(n).

If K is a system of germs for ψ, the functions K∗
2∗ defined by

Kw′
2w(a) = KJw′

Jw (Ja)(2.14)

form a system of germs for ψ−1.

3. Computation of KwG
e

From now on we assume r = 3. We want to compute the germs KwG
w . For our

purposes, it suffices to do it when the conductor of the character ψ is the ring of
integers O. We choose an integer mF sufficiently large. We drop the index F when
this does not create a confusion. In particular, we assume that the relation z2 = 1
or z3 = 1 and z ≡ 1 mod ℘m implies z = 1. We also assume that the map z 7→ z2

defines an analytic bijection of 1+℘m onto 1+2℘m. The inverse bijection is denoted
by a square root. We define a function Φ ∈ C(G) by the following conditions:

Φ(x) = vol(℘m)−3

if

x31 ≡ x13 ≡ 1 mod ℘m , x22 ≡ 1 mod 2℘m,

xij ≡ 0 mod ℘m if i+ j 6= 4.

If x does not satisfy the above conditions, then Φ(x) = 0. Thus Φ is supported on
a subset of wGKm. We have

I(wGa,Φ) =
∫

Φ

a
 0 0 1

0 1 x
1 y z

ψ(x + y)dxdydz

where dx = dy = dz is the self-dual Haar measure on F . Thus for a ∈ F× with
a3 = 1 this vanishes unless a = 1 and is then equal to 1. Next we choose an integer
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n ≥ m sufficiently large with respect to m and compute the inductive system of
germs KwG

w supported on the sets AwG
w (n) which is determined by Φ, that is,

KwG
w (wa) = I(wa,Φ)

on AwG
w (n).

We first consider the germ KwG
e . Thus we consider a diagonal matrix

α = diag(a, b, c)

with c = −1/ab and

| δ1(α) |=| a |≤ q−n , | δ2(α) |=| ab |≤ q−n.

and compute KwG
e (α) when | b |≤ 1.

Proposition 3.1. With the previous notations, suppose | a |≤ q−n, | b |≤ 1. Then:

KwG
e (α) =| b |1/2| ab |−1 γ(1, ψ)γ(−b, ψ)(2, b)

∫
ψ

(
2x− 2x

b
√
µ

)
(x, b)dx

where we have set µ := b+ ax2 and the range of the integral is µ ≡ 1 mod 2℘m.

As usual (., .) denotes the quadratic residue symbol and the constant γ is the
Weil constant. We recall that it is defined by the formula∫

Φ̂(x)ψ(
ax2

2
)dx =| a |−1/2 γ(a, ψ)

∫
Φ(x)ψ(−x

2

2a
)dx.(3.1)

We will not try to evaluate the integral of the proposition further because we will
show that the germ for the quadratic extension is given by the same formula—up
to a transfer factor. Regarding the computation of the integral, we remark that
the phase function has critical points for µ = 1. If b 6= 1, the critical points are
non singular (the second derivative is not 0 at the critical point). We can then use
the method of stationary phase to evaluate the integral for b fixed and | a | small.
However, if b = 1, the only critical point is at µ = 1 and it is a singular point, so
we cannot evaluate the integral by the method of stationary phase in this case.

The orbital integral is defined by

I(α,Φ) =
∫

Φ(tn2αn1)θ(n2n1)dn2dn1;(3.2)

for i = 1, 2, we have set:

ni =

 1 xi zi
0 1 yi
0 0 1

 , dni = dxidyidzi,

where the measures on the right are equal to the self-dual Haar measure on F ;
θ(ni) = ψ(xi + yi).

To begin the computation we use a change of variables suggested by the work of
Z. Mao. Let

S =
(

a ax1

ax2 µ

)
, µ = b+ ax1x2.

Consider the matrix

T =

 S S

(
z1
y1

)
(
z2 y2

)
S

(
z2 y2

)
S

(
z1
y1

)
+ c

 .
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Then KwG
e is given by the integral

vol(℘m)−3

∫
ψ(x1 + x2 + y1 + y2)dx1dx2dy1dy2dz1dz2

over the range Φ(T ) 6= 0. The conditions on the matrix S are

ax1 ≡ ax2 ≡ 0 mod ℘m , µ ≡ 1 mod 2℘m.

We can write

S =
(

1 ax1
µ

0 1

)(
ab
µ 0
0 µ

)(
1 0
ax2
µ 1

)
.

We introduce new variables v1, u1, v2, u2 by:(
v1
u1

)
=
(

1 0
ax2
µ 1

)(
z1
y1

)
,
(
v2 u2

)
=
(
z2 y2

)( 1 ax1
µ

0 1

)
.

In terms of these new variables the integral becomes:

vol(℘m)−3

∫
ψ

(
x1 + x2 + u1 + u2 − ax2v1

µ
− ax1v2

µ

)
dx1dx2dv1dv2du1du2

and the domain of integration is defined by the following congruences mod ℘m,
except for µ:

ax1 ≡ ax2 ≡ 0 , µ ≡ 1 mod 2℘m,

abv1 ≡ abv2 ≡ 1 , u1 ≡ u2 ≡ 0 , v2v1
ab

µ
+ µu1u2 + c ≡ 0.

After integrating over u1, u2 we find:

vol(℘m)−1

∫
ψ

(
x1 + x2 − ax2v1

µ
− ax1v2

µ

)
dx1dx2dv1dv2

integrated over:

ax1 ≡ ax2 ≡ 0 mod ℘m , µ ≡ 1 mod 2℘m,

abv1 ≡ abv2 ≡ 1 mod ℘m , abv2abv1 ≡ µ mod ab℘m.

We note that
√
µ ≡ 1 mod ℘m. Thus we can change v1 and v2 to v1

√
µ/ab and

v2
√
µ/ab respectively to get:

vol(℘m)−1 | ab |−2

∫
ψ

(
x1 + x2 − x2v1

b
√
µ
− x1v2
b
√
µ

)
dx1dx2dv1dv2

over

ax1 ≡ ax2 ≡ 0 mod ℘m , µ ≡ 1 mod 2℘m,

v1 ≡ v2 ≡ 1 mod ℘m , v2v1 ≡ 1 + mod ab℘m.

Next, we set

v2 =
1 + ξ

v1

and integrate over ξ ∈ ab℘m. We get

| ab |−1

∫
ψ

(
x1 + x2 − x2v

b
√
µ
− x1

vb
√
µ

)
dx1dx2dv
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over

ax1 ≡ ax2 ≡ 0 mod ℘m , µ ≡ 1 mod 2℘m, v ≡ 1 mod ℘m.

Finally we change x1 to x1v and x2 to x2/v to get:

| ab |−1

∫
ψ

(
− x2

b
√
µ
− x1

b
√
µ

)
T (x1, x2)dx1dx2(3.3)

over

ax1 ≡ ax2 ≡ 0 mod ℘m , µ ≡ 1 mod 2℘m,

where we have set µ = b+ ax1x2 and

T (x1, x2) =
∫

1+℘m

ψ
(
x1v +

x2

v

)
dv.(3.4)

Lemma 3.2. T (x1, x2) = T (x2, x1). Suppose k ≥ 0. If | x2 |≤ q2m+k, then
T (x1, x2) = 0 unless | x2 − x1 |≤ qm+k and then | x1 |≤ q2m+k.

Proof. The first assertion is clear. For the second assertion, assume that | x2 |≤
q2m+k. If T (x1, x2) 6= 0, then there is v ∈ 1 + ℘m such that∫

1+℘m+k

ψ(x1vv0 +
x2

vv0
)dv0 6= 0.

We can write v0 = 1 + u0 and the above integral is then equal to

ψ(x1v +
x2

v
)
∫
℘m+k

ψ[(x1v − x2

v
)u0]du0.

This integral is 0 unless

| x1v − x2

v
|≤ qm+k.

This relation implies that | x1 |≤ q2m+k and then | x1−x2 |≤ qm+k as claimed.

.
The lemma allows us to write the integral for KwG

e as the sum of two integrals
I and II with the same integrand and the same conditions on the variables, except
that for I we demand that

| x1 |≤ q2m+k , | x1 − x2 |≤ qm+k,

and for II we demand that

| x1 |=| x2 |> q2m+k.

We fix an integer k even such that q−k ≤| 2 |2.
Recall that | a |≤ q−n. Taking n sufficiently large with respect to m we see that

on the domain of integration for I we have | ax1x2 |≤| 2 | q−2m−k. Thus b is a
unit; in fact b ≡ 1 mod 2℘m. Moreover

√
µ ≡ √

b mod ℘2m+k. In particular on the
domain of I we have:

ψ

[
− xi
b
√
µ

]
= ψ

[
− xi

b
√
b

]
.

The domain is defined by:

| x1 |≤ q2m+k , | x1 − x2 |≤ qm+k , b ≡ 1 mod 2℘m.
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After a change of variables, we find

I =| a |−1

∫ ∫
ψ

[
x(v +

1
v
)− 2x

b
√
b

](∫
ψ

[
y(v − 1

b
√
b
)
]
dy

)
dvdx.(3.5)

The integral is over:

| y |≤ qm+k , | x |≤ q2m+k , v ∈ 1 + ℘m.

The integral over y is 0 unless

| v − 1
b
√
b
|≤ q−m−k

and is then equal to qm+k This inequality amounts to

v =
1
b
√
b
(1 + u)

with | u |≤ q−m−k. Thus

I =| a |−1 qm+k

∫ ∫
ψ

[
x

(
1 + u

b
√
b

+
b
√
b

1 + u
− 2
b
√
b

)]
dxdu

over

| x |≤ q2m+k , | u |≤ q−m−k.

Over the range of integration we have | xu2 |≤ 1 and also

| x( 1
b
√
b
− b

√
b)u |≤ 1.

Thus the integrand does not depend on u and after integrating over u we obtain

I =| a |−1

∫
ψ

[
x(b

√
b− 1

b
√
b
)
]
dx

over | x |≤ q2m+k. We claim that this integral is also equal to

I =| a |−1

∫
ψ

[
2x(1− 1

b
√
b
)
]
dx

over the same range. Indeed, we can write b
√
b = 1/(1 + t) with | t |≤ q−m. Then

b
√
b− 1

b
√
b

=
1

1 + t
− (1 + t) = −2t+ t2 − t3 + · · · = −2tu

where

u = 1− t

2
+
t2

2
+ · · · .

We may (in fact we already) assume that q−m <| 2 |; thus u is a unit. On the other
hand

2(1− 1
b
√
b
) = −2t.

Changing x to xu−1 we obtain our assertion. Thus finally:

I =| a |−1

∫
ψ

[
2x
(

1− 1
b
√
µ

)]
dx(3.6)

where µ = b+ ax2 and the domain of integration is defined by µ ≡ 1 mod 2℘m and
| x |≤ q2m+k.
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We pass to the computation of II (see (17)):

II =| ab |−1

∫
T (x1, x2)ψ

[
−x1 + x2

b
√
µ

]
dx1dx2(3.7)

taken over

axi ≡ 0 mod ℘m , µ := b+ ax1x2 ≡ 1 mod 2℘m,

| x1 |=| x2 |> q2m+k.

We need two lemmas.

Lemma 3.3. Over the range of II if T (x1, x2) 6= 0, then x1 = x2u
2 with u ∈

1 + ℘m.

Proof. Let us write | x1 |=| x2 |= q2m+k+h with h > 0. If T (x1, x2) 6= 0, then there
is v ∈ 1 + ℘m such that∫

1+℘m+h+k/2
ψ

[
x1vv0 +

x2

vv0

]
dv0 6= 0.

Up to a constant factor this integral is equal to∫
ψ
(
(x1v − x2

v
)u0

)
du0

over ℘m+h+k/2. This integral vanishes unless

| x1v − x2

v
|≤ qm+h+k/2

or
x2

x1v2
∈ 1 + ℘m+k/2.

Since q−k/2 ≤| 2 |, this element is the square of an element in 1+℘m and the lemma
follows.

.

Lemma 3.4. Suppose | t |> q2m+k. Then the integral

S(t) :=
∫

1+℘m

ψ

[
t

(
v +

1
v

)]
dv

is equal to

| 2t |−1/2 ψ(2t)γ(2t, ψ).

Proof. If we write v = 1 + s with s ∈ ℘m, then

v +
1
v

= 2 +
s2

1 + s
= 2 + u2

where

u =
s√

1 + s
.

In view of our assumption on m the map s 7→ u is an analytic bijection of ℘m onto
itself. Thus we can rewrite the integral as

ψ(2t)
∫

Φ(u)ψ
(

2tu2

2

)
du
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where Φ is the characteristic function of ℘m. By (3.1) this is equal to

ψ(2t) | 2t |−1/2 γ(2t, ψ)
∫
ψ

(
−u

2

4t

)
Φ̂(u)du.

On the support of the new integrand | u2/4t |≤ 1. Thus the integral on the right is
the integral of the Fourier transform of Φ and is equal to Φ(0) = 1.

We now compute II. We remark that the condition µ ≡ 1 implies | ax1x2 |≤ 1
which, together with | x1 |=| x2 |, implies the condition ax1 ≡ ax2 ≡ 0 mod ℘m.
Thus:

II =| ab |−1

∫
T (x1, x2)ψ

(
−x1 + x2

b
√
µ

)
dx1dx2

taken over

µ := b+ ax1x2 ≡ 1 mod 2℘m , | x1 |=| x2 |> q2m+k.

By Lemma (3.2), the integral does not change if we impose the further restriction
that x1/x2 be the square of an element of 1 + ℘m. We can then change variables
as follows:

x1 = xu2 , x2 = x

with u ∈ 1 + ℘m. Then dx1dx2 =| 2x | dxdu. The integral takes the form:

II =| ab |−1| 2 |

×
∫ (∫

ψ
(
xv + xu2v−1

)
dv

)(∫
ψ

(
−x+ xu2

b
√
µ

)
du

)
| x | dx.

Here µ = b+ax2u2 and the range of integration is µ ≡ 1 mod 2℘m and | x |> q2m+k,
u, v ∈ 1 + ℘m. We can further change x to xu−1 and v to vu to arrive at:

II =| ab |−1| 2 |
∫
S(x)S(− x

b
√
µ

) | x | dx
over

| x |> q2m+k , µ := b+ ax2 ≡ 1 mod 2℘m.

Recall that | b |≤ 1. Thus we can apply Lemma (3.3) to each one of the functions
S to get:

II =| ab |−1| b |1/2
∫
ψ

(
2x− 2

x

b
√
µ

)
γ(2x, ψ)γ(− 2x

b
√
µ
, ψ)dx

taken over

µ := b+ ax2 ≡ 1 mod 2℘m , | x |> q2m+k.

If we take m sufficiently large, then
√
µ is a square and so disappears from the γ

factor. Now we recall the formula

γ(α, ψ)γ(β, ψ) = γ(1, ψ)γ(αβ, ψ)(α, β).

We see that the product of the γ factors in the integrand is equal to

γ(1, ψ)γ(−b, ψ)(2, b)(b, x).
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Thus we find

II = γ(1, ψ)γ(−b, ψ)(2, b) | ab |−1| b |1/2
∫
ψ

(
2x− 2

x

b
√
µ

)
(b, x)dx(3.8)

taken over

µ := b+ ax2 ≡ 1 mod 2℘m , | x |> q2m+k.

At this point we remark that if b ≡ 1 mod 2℘m, then b is a square and we have

γ(1, ψ)γ(−b, ψ)(2, b) = γ(1, ψ)γ(−1, ψ) = 1,

| b |= 1 , (b, x) = 1.

Thus we can rewrite I in the same form as II but over the domain:

µ := b+ ax2 ≡ 1 mod 2℘m , | x |≤ q2m.

If we add I and II, we get the result announced in Proposition (3.1).

4. Computation of KwG
w1

We continue with the notations of the previous section. Apart from wG the
remaining elements of R(G) are w1, w2 where:

w1 =

 0 1 0
1 0 0
0 0 1

 , w2 =

 1 0 0
0 0 1
0 1 0

 .

Now we compute KwG
w1

. Let α ∈ AwG
w1

(n). Thus

α = diag(a, a, a−2) = a diag(1, 1, a−3)

with | a |2≤ q−n.

Proposition 4.1. For | a |2≤ q−n

KwG
w1

(α) =| a |−2| 3 |−1/2 ψ

(
3
a

)
γ(2a, ψ)γ(6a, ψ).

Proof. As before:

KwG
w1

(α) =
∫

Φ

tn2α

 0 1 0
1 x 0
0 0 1

n1

 θ(n1n2)ψ(x)dxdn1dn2(4.1)

where

ni =

 1 0 zi
0 1 yi
0 0 1

 ,

dni = dyidzi and θ(ni) = ψ(yi). As usual the measures are equal to the self-dual
Haar measure. After changing zi to zi − xyi this becomes∫

Φ

a
 0 1 y1

1 x z1
y2 z2 a−3 + y2z1 + z2y1 − xy1y2


×ψ(x+ y1 + y2)dxdy1dy2dz1dz2

where the support of Φ is defined by:

ayi ≡ 1 mod ℘m , ax ≡ 1 mod 2℘m , azi ≡ 0 mod ℘m,
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a−2 + ay2z1 + ay1z2 − axy1y2 ≡ 0 mod ℘m.

Changing z1, z2 to z1(ay2)−1, z2(ay1)−1 (and noting that | ayi |= 1 on the domain
of integration) we obtain for new domain of integration:

ayi ≡ 1 mod ℘m , ax ≡ 1 mod 2℘m , azi ≡ 0 mod ℘m,

a−2 + z1 + z2 − axy1y2 ≡ 0 mod ℘m.

Next we change x to xa−1 and change all other variables similarly. We get:

vol(℘m)−3 | a |−5

∫
ψ

[
x+ y1 + y2

a

]
dxdy1dy2dz1dz2

over

zi ≡ 0 mod ℘m , x ≡ 1 mod 2℘m , yi ≡ 1 mod ℘m,

z1 + z2 + a−1 − xy1y2
a

≡ 0 mod a℘m.

The integral over z1, z2 is 0 unless

a−1 − xy1y2
a

≡ 0 mod ℘m.

If we impose this condition, we can change z1 to

z1 − a−1 − xy1y2
a

and integrate z1, z2 over the range:

z1 ≡ z2 ≡ 0 mod ℘m, z1 + z2 ≡ 0 mod a℘m.

We get:

| a |−4 vol(℘m)−1

∫
ψ

[
x+ y1 + y2

a

]
dxdy1dy2

over

x ≡ 1 mod 2℘m , yi ≡ 1 mod ℘m,

xy1y2 ≡ 1 mod a℘m.

We set

y2 =
1 + u

xy1

with u ∈ a℘m and integrate over u. We get:

| a |−3

∫
ψ

[
Q(x, y)
a

]
dxdy

over

x ≡ 1 mod 2℘m , y ≡ 1 mod ℘m

where we have set

Q(x, y) = x+ y + x−1y−1.

If we set x = 1 + u, y = 1 + v, then Q has only one point critical point namely the
point u = 0, v = 0 and it is a regular point since the Taylor expansion of Q up to
order 2 at this point reads:

Q = 3 + u2 + v2 + uv + · · · .
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By the principle of stationary phase, if n is sufficiently large with respect to m, the
integral depends only on the quadratic part of the Taylor expansion of Q and is
thus equal to:

| a |−3 ψ(
3
a
)
∫
ψ

(
u2 + v2 + uv

a

)
dudv.

The integral is taken over a small enough neighborhood of 0. If we set

u1 = u+
v

2
, v1 = v,

the integral becomes:

| a |−3 ψ(
3
a
)
∫
ψ

(
2u2

1

2a

)
du1

∫
ψ

(
3v2

1

4a

)
dv1.

By (3.1), if n is sufficiently large we obtain Proposition (4.1).

5. Germs over the quadratic extension

We consider a quadratic extension E/F and denote by ηE/F or simply η the
quadratic character of F× attached to E. We write E = F (

√
τ ) where | τ |F= 1 or

| τ |F= q−1
F . We fix an additive character ψ = ψF of F and set ψE(z) = ψF (z+ z).

We denote by dx, x ∈ F , the self-dual Haar measure on F and by dz, z ∈ E,
the self-dual Haar measure on E. If we write z = z1 + z2

√
τ with zi ∈ F , then

dz =| 2 |F | τ |1/2F dz1dz2. We denote by S(r, F ) the set of invertible Hermitian
matrices in GL(r, E).

The group N(E) operates on S(r, F ) by:

s
n7→ tnsn.

We can use this action to define the relevant orbits of N(E) on S(r, F ). As be-
fore, the elements of the form wa with w ∈ R(G) and a ∈ Aw(F ) form a set of
representatives for the relevant orbits. We can then define orbital integrals by:

J(wa,Φ) =
∫

Φ(tnwan)θψ(nn)dn,

the integral over the quotient of N(E) by the stabilizer of wa. The choice of the
invariant measures depends on ψ and will be recalled in the case of r = 3. The
product nn is in N(F ) modulo an element of the derived group of N(E) so that
θψ(nn) is well defined. We can define the notion of a system of Shalika germs L∗∗
for these orbital integrals. In particular, our results on the support of the Shalika
germs and the dependence of the germs on the choice of the character ψF apply to
the present situation. Our goal is the following theorem:

Theorem 5.1. There exist systems of germs L∗∗ and K∗∗ such that:

LwG
e (a, b,−1/ab) = ηE/F (b)KwG

e (a, b,−1/ab),(5.1)

LwG
w1

(a, a, a−2) = ηE/F (a)c(E/F, ψ)KwG
w1

(a, a, a−2),(5.2)

LwG
w2

(a2, a−1, a−1) = ηE/F (−a)c(E/F, ψ)KwG
w2

(a2, a−1, a−1),(5.3)

Lw1
e (a, a−1, 1) = ηE/F (a)c(E/F, ψ)Kw1

e (a, a−1, 1),(5.4)

Lw2
e (1, a, a−1) = ηE/F (−a)c(E/F, ψ)Kw2

e (1, a, a−1),(5.5)
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where the constant c is defined in terms of the Weil constant by

c(E/F, ψ) = γ(τ, ψ)γ(1, ψ)−1ηE/F (2).(5.6)

If ψ1(x) = ψ(sx), then c(E/F, ψ1) = c(E/F, ψ)ηE/F (s). In particular,

c(E/F, ψ−1) = ηE/F (−1)c(E/F, ψ).

If K∗
∗ is a system of germs for the character ψ and ψ1(x) = ψ(sx), then the

following formulas define a system of germs for the character ψ1:

KwG
1e (a, b,−1/ab) = KwG

e (as−2, b,−s2/ab) | s |−5/2,(5.7)

KwG

1w1
(a, a, a−2) = KwG

w1
(as−1, as−1, s2a−2) | s |−1/2,(5.8)

KwG
1w2

(a2, a−1, a−1) = KwG
w2

(s−2a2, sa−1, sa−1) | s |−1/2,(5.9)

Kw1
1e (a, a−1, 1) = Kw1

e (as−1, sa−1, 1) | s |−2,(5.10)

Kw2
1e (1, a, a−1) = Kw2

e (1, s−1a, sa−1) | s |−2 .(5.11)

Similar results apply to the germs L∗∗. Thus it suffices to prove the theorem for
one character ψ. In particular, we may assume the conductor of ψF is OF . Identi-
ties (5.4) and (5.5) have been proved in [JY3] (Propositions (2.3) and (3.1)).

We now consider the system of germs constructed in the previous sections. It
depends on the choice of the two integers mF and n as well as the character ψF
with conductor OF . Recall that we first choose the integer mF sufficiently large.
We then choose the integer n sufficiently large with respect to mF and then the
functions of the germs have support in A∗∗(n). In this section we choose an integer
m = mE as follows. If E/F is unramified, we take mE = mF . If E/F is ramified,
we take mE = 2mF . Thus in all cases ℘mE ∩ F = ℘mF

F . How large the integer mF

(or mE) needs be depends on the quadratic extension. We let U(m) be the group
of z ∈ 1 +℘mE such that zz = 1. If m is sufficiently large, the elements of U(m) can
be written in the form:

z =
√

1 + v2τ + v
√
τ , v ∈ F , v√τ ∈ ℘mE .(5.12)

Then, if dv denotes the self-dual Haar measure on F ,

dz = dv(5.13)

is a Haar measure on U(m). We denote by A(m) the set of elements of E× of the
form

tz , t ∈ (1 + ℘mE ) ∩ F , z ∈ U(m).(5.14)

The set A(m) is a subgroup of 1 + ℘mE and contains 1 + ℘2m
E . As a matter of fact

A(m) is the set of elements of the form x+ y
√
τ with x ∈ F ∩ (1 +℘mE ) and y ∈ F ,

y
√
τ ∈ ℘mE . We denote by Ψ ∈ C(S(3, F )) the function defined by the conditions

Ψ(x) = vol(℘mE )−1 vol(℘mE ∩ F )−1

if

x22 ≡ 1 mod 2℘mE , x13, x31 ∈ A(m),

xij ≡ 0 mod ℘mE , if i+ j 6= 4,
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and Ψ(x) = 0 otherwise. Now:

J(wGa,Ψ) =
∫

Ψ

a
 0 0 1

0 1 x
1 x z

ψ(x+ x)dxdz

where dx is the self-dual Haar measure on E and dz the self-dual Haar measure on
F . As before if a ∈ F× with a3 = 1 and m is sufficiently large, then J(wGa,Ψ) = 1
if a = 1 and J(wGa,Ψ) = 0 otherwise. If n is sufficiently large (with respect to m),
there is an inductive system of germs L∗∗ supported on the sets A∗∗(n) such that on
AwG
w (n):

LwG
w (a) = J(wa,Ψ).

The automorphism J (see (2.13)) leaves the function Φ of the previous section
and the function Ψ invariant and thus transforms the systems K and L defined by
mF , n, ψ into the systems defined by mF , n, ψ

−1. Since J(w1) = w2, assertion (5.2)
implies (5.3). Similarly, it suffices to prove assertion (5.1) for | b | ≤ 1 since
J(a, b,−1/ab) = (−ab, b−1, a−1). Thus Theorem (5.1) will be a consequence of
Propositions (3.1), (4.1) and Propositions (5.1) and (6.1) below:

Proposition 5.2. Suppose

α = diag(a, b,−1/ab)

with

| a |F≤ q−nF , | b |F≤ 1.

Then:

LwG
e (α) =

| ab |−1
F | b |1/2F γ(−b, ψ)γ(1, ψ)(2, b)ηE/F (b)

∫
ψ

(
2t− 2t

b
√
µ

)
(t, b)dt,

the integral over the set defined by t ∈ F and:

µ := b+ at2 ≡ 1 mod 2℘mF

F .

Proof. As before LwG
e (α) = J(α,Ψ). We introduce the matrices:

S =
(

a ax
ax µ

)
, µ = b+ axx,

T =

 S S

(
z
y

)
(
z y

)
S

(
z y

)
S

(
z
y

)
+ c

 .

Then LwG
e is given by the integral

vol(℘mE )−1 vol(℘mE ∩ F )−1

∫
ψ(x+ x+ y + y)dxdydz

over the range Ψ(T ) 6= 0. The conditions on the matrix S are

ax ≡ 0 mod ℘mE , µ ≡ 1 mod 2℘mE .
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We can write

S =
(

1 ax
µ

0 1

)(
ab
µ 0
0 µ

)(
1 0
ax
µ 1

)
.

We introduce new variables v, u by:(
v
u

)
=
(

1 0
ax
µ 1

)(
z
y

)
.

Then the integral can be written as:

vol(℘mE )−1 vol(℘mE ∩ F )−1

∫
ψ

(
x+ x+ u+ u− axv

µ
− axv

µ

)
dxdvdu

taken over

ax ≡ 0 mod ℘mE , µ := b+ axx ≡ 1 mod 2℘mE ,

abv

µ
+ axu ∈ A(m) , µu ≡ 0 mod ℘mE ,

abvv

µ
+ µuu− 1

ab
≡ 0 mod ℘mE .

This can be simplified:

ax ≡ 0 mod ℘mE , µ := b+ axx ≡ 1 mod 2℘mE ,

u ≡ 0 mod ℘mE , abv ∈ A(m) , (abv)(abv) ≡ µ mod ab℘mE .

We integrate over u and change v to v/ab to get

vol(℘mE ∩ F )−1 | ab |−2
F

∫
ψ

(
x+ x− xv + xv

bµ

)
dxdv

taken over

ax ≡ 0 mod ℘mE , µ := b+ axx ≡ 1 mod 2℘mE ,

v ∈ A(m) , vv ≡ µ mod ab℘mE .

If m is sufficiently large, µ has a square root in F ∩ (1 +℘mE ). We change v to v
√
µ

and remark that
√
µ is in A(m). Thus the integral takes the form:

vol(℘mE ∩ F )−1 | ab |−2
F

∫
ψ

(
x+ x− xv + xv

b
√
µ

)
dxdv

taken over

ax ≡ 0 mod ℘mE , µ := b+ axx ≡ 1 mod 2℘mE ,

v ∈ A(m) , vv ≡ 1 mod ab℘mE .

Now vv is in F ∩ (1 + ab℘mE ). Thus it is the square of an element 1 + t with
t ∈ F ∩ 2−1ab℘mE . If n is sufficiently large, the element t is also in ℘mE . Then

v = u(1 + t)

with u ∈ U(m) and t ∈ F ∩ 2−1ab℘mE . Recall (see (5.12)) that if m is sufficiently
large, we can write

u =
√

1 + s2τ + s
√
τ
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where s
√
τ ∈ ℘mE and s ∈ F and then du = ds is a Haar measure on U(m). We

have dv =| 2 |F | τ |1/2F dudt. Moreover,∣∣∣∣xutb
∣∣∣∣
E

≤
∣∣∣ax

2

∣∣∣
E
≤| 2 |−1

E q−mE ≤ 1.

Thus the integrand does not depend on t. After integrating over t, the integral
takes the form:

| τ |1/2F | ab |−1
F

∫
ψ

(
x+ x− xu+ xu

b
√
µ

)
dxdu

taken over

ax ≡ 0 mod ℘mE , µ := b+ axx ≡ 1 mod 2℘mE , u ∈ U(m).

At this point, it is convenient to change u to its inverse and then x to xu to get:

LwG
e (α) =| τ |1/2F | ab |−1

∫
ψ

(
−x+ x

b
√
µ

)
T (x)dx(5.15)

taken over

ax ≡ 0 mod ℘mE , µ := b+ axx ≡ 1 mod 2℘mE ,

where we have set

T (x) =
∫
U(m)

ψ(xu + xu)du.(5.16)

As before we write the integral as the sum of two integrals I and II with the same
integrand but I is over the set of x with | x |E≤ q2m+k

E and II over the set of x
such that | x |E> q2m+k

E . The integer k ≥ 0 is even if | τ |= 1, odd if | τ |= q−1
F .

Moreover, it satisfies additional conditions which will be specified below.
Consider the integral I. In view of our assumption on | a |, if n is sufficiently

large with respect to m and k, the condition | x |E≤ q2m+k
E implies ax ≡ 0 mod ℘mE

and axx ≡ 0 mod 2℘2m+k
E . Thus I = 0 unless b ≡ 1 mod 2℘mE and then

I =| ab |−1| τ |1/2F

∫
ψ

(
−x+ x

b
√
b

)
T (x)dx(5.17)

taken over | x |E≤ q2m+k
E . We need a lemma:

Lemma 5.3. Let k be even if | τ |F= 1 and odd otherwise. Suppose further q−kE ≤
| 2 |E. Then if | x |E≤ q2m+k

E , T (x) = 0 unless | x− x |E≤ qm+k
E .

Proof. As before if T (x) 6= 0, then there is u ∈ U(m) such that the following
integral is non zero: ∫

U(m+k)

ψ(xuu0 + xuu0)du0.

If we set xu = z1 + z2
√
τ , the integral reads∫

ψ(2z1
√

1 + s20τ + 2z2s0τ)ds0
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where s0 ∈ F and | s0√τ |E≤ q−m−kE . We get then | s20τ |E≤ q−2m−2k
E . On the

other hand | 2z1 |E≤ q2m+k
E . In view of the assumption on k, we get | z1s20τ |E≤ 1

and the integral reads:

ψ(2z1)
∫
ψ(2z2s0τ)ds0.

We claim that this integral vanishes unless | 2z2
√
τ |E≤ qm+k

E . Indeed, if the
extension is unramified, then | τ |F= 1 and qE = q2F . The range of s0 is then
| s0 |F≤ q−m−kF and the integral vanishes unless | 2z2 |F≤ qm+k

F which is equivalent
to | 2z2

√
τ |E≤ qm+k

E . Now suppose the extension is ramified. Then qE = qF = q
and m is even. Suppose first | τ |F= 1. Recall k is then even. The range of s0
is defined by | s0 |E≤ q−m−k or | s0 |F≤ q−(m+k)/2. Then the integral vanishes
unless | 2z2 |F≤ q(m+k)/2 which is equivalent to | 2z2√τ |E≤ qm+k. Finally, assume
| τ |F= q−1. Recall k is then odd. Then | √τ |E= q−1. The range of s0 is then
defined by | s0 |E≤ q1−m−k or | s0 |F≤ q(1−m−k)/2. Thus the integral vanishes
unless | 2z2τ |F≤ q(m+k−1)/2 or | 2z2 |F≤ q(m+k+1)/2, that is, | 2z2√τ |E≤ qm+k.

If we write x = x1 + x2
√
τ and u =

√
1 + s2τ + s

√
τ , we have

2z2
√
τ = 2x2

√
τ
√

1 + s2τ + 2x1s
√
τ .

Since | 2x1 |E≤ q2m+k
E , we find | 2x1s

√
τ |E≤ qm+k

E which implies that

| 2x2

√
τ |E≤ qm+k

E

as claimed.

From now on we assume that k satisfies the conditions of the lemma. If we write
x = x1 + x2

√
τ in the integral I, then by the previous lemma the integral does not

change if we restrict x2 to the range | 2x2
√
τ |E≤ qm+k

E . By the assumption on
k, this inequality implies | x2

√
τ |E≤ qmE . Then the condition | x |E≤ q2m+k

E is
equivalent to | x1 |E≤ q2m+k

E . Thus we can write

I =| ab |−1
F | 2τ |F

∫
ψ

[
2x1

√
1 + s2τ + 2x2sτ − 2x1

b
√
b

]
dx1dx2ds,

the integral over

| x1 |E≤ q2m+k
E , | 2x2

√
τ |E≤ qm+k

E , | s√τ |E≤ q−mE .

As in the proof of the previous lemma, if we integrate over x2 first, the resulting
integral vanishes unless | s√τ |E≤ q−m−kE . Thus the integral does not change if we
take for the range of s the set | s√τ |E≤ q−m−kE . Then ψ(2x1

√
1 + s2τ ) = ψ(2x1).

Thus the integral I contains as a factor the integral∫
ds

∫
ψ(2x2sτ)dx2 =| 2 |−1

F | τ |−1
F .

Thus we find that I = 0 unless b ≡ 1 mod 2℘mE and then

I =| ab |−1
F

∫
ψ

[
2x− 2x

b
√
b

]
dx

taken over x ∈ F with | x |E≤ q2m+k
E . This can also be written

I =| ab |−1
F

∫
ψ

[
2x− 2x

b
√
µ

]
dx(5.18)



1250 HERVÉ JACQUET AND YANGBO YE

where µ = b + ax2 and the range is defined by µ ≡ 1 mod 2℘mE and x ∈ F ,
| x |E≤ q2m+k

E .
We pass to the computation of II. As before (see (38)):

II =| ab |−1
F | τ |1/2F

∫
ψ

(
−x+ x

b
√
µ

)
T (x)dx(5.19)

taken over

ax ≡ 0 mod ℘mE , | x |E> q2m+k
E , µ := b+ axx ≡ 1 mod 2℘mE .

As before, if n is sufficiently large in comparison with m, the first condition is a
consequence of the other conditions. At this point we need another lemma:

Lemma 5.4. Let k′ be an integer satisfying the conditions of the previous lemma.
Set k = 3k′. Then if m is sufficiently large and | x |E> q2m+k

E , the integral T (x)
vanishes unless x ∈ F×U(m).

Proof. We stress that, in this lemma, how large m needs be depends on the qua-
dratic extension but not on the integer k. We can write

| x |E= q2m+2h+k
E , or | x |E= q2m+2h−1+k

E ,

where h > 0. In any case

| x |E≤ q2m+2h+k
E .

By the previous lemma T (x) = 0 unless x has the form:

x = x1 + x2

√
τ

with | 2x2
√
τ |E≤ qm+h+2k′

E . Then

| x1 |E= q2m+2h+k
E , or | x1 |E= q2m+2h−1+k

E ,

and we can write

x = x1(1 +
x2
√
τ

x1
),

| x2
√
τ

x1
|E≤| 2 |−1

E q−m−k
′−h+1

E ≤| 2 |−1
E q−m−k

′
E ≤ q−mE .

Thus x ∈ F×A(m) = F×U(m).

From now on we assume that k satisfies the conditions of Lemma (5.2). Then it
satisfies the conditions of Lemma (5.1) as well. Thus in the integral II we can set
x = tv with v ∈ U(m) and t ∈ F×. Then dx =| 2 |F | τ |1/2F | t |F dtdv. The measure
dv has been defined earlier. We find:

II =| ab |−1
F | 2τ |F

∫ (∫
ψ(t(u+ u))du

)(∫
ψ

[
− t(v + v)

b
√
µ

]
dv

)
| t |F dt

over u, v ∈ U(m) and t ∈ F× with | t |E> q2m+k
E and µ := b + at2 ≡ 1 mod 2℘mE .

We apply again the method of stationary phase in the following form:

Lemma 5.5. If m is sufficiently large and if k is large enough in comparison with
m, then, for t ∈ F× with | t |E> q2m+k

E , the integral T (t) (see (39)) is given by:

T (t) =| 2τt |−1/2
F ψ(2t)γ(2tτ, ψ).
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Proof. The integral has the form

T (t) =
∫
ψ(2t

√
1 + s2τ)ds

for | s√τ |E≤ q−mE . If m is sufficiently large, we can set

u =
s√√

1+s2τ+1
2

.

Then

T (t) = ψ(2t)
∫
ψ(tu2τ)du.

If k is sufficiently large, the integral has the required value.

Thus we now assume that the integer k satisfies the conditions of the three
previous lemmas. We can then use the last lemma to compute the inner integrals
of II:

II =| ab |−1
F | b |1/2F

∫
ψ

(
2t− 2t

b
√
µ

)
γ(2tτ, ψ)γ(−2tb

√
µτ, ψ)dt.

If m is sufficiently large,
√
µ is a square and so the second γ factor does not depend

on µ. The product of the γ factors is

γ(−b, ψ)γ(1, ψ)(2, b)(t, b)ηE/F (b).

Thus we find

II =| ab |−1
F | b |1/2F γ(−b, ψ)γ(1, ψ)(2, b)ηE/F (b)

∫
ψ

(
2t− 2t

b
√
µ

)
(t, b)dt(5.20)

over t ∈ F with

| t |E> q2m+k
E , µ := b+ at2 ≡ 1 mod 2℘mE .

The last congruence can be written mod2℘mF

F . Finally, just as before, we can
combine this integral with (5.18) to obtain Proposition (5.1) and assertion (5.1) of
Theorem (5.1).

6. Computation of LwG
w1

We pass to the computation of LwG
w1

.

Proposition 6.1. Let

α = diag(a, a, a−2) = a diag(1, 1, a−3)

with | a |2≤ q−n. Then:

LwG
w1

(α) = η(a)c(E/F, ψ) | a |−2
F | 3 |−1/2

F ψ(
3
a
)γ(2a, ψ)γ(6a, ψ).

Comparing with the corresponding formula for K (Proposition (4.1)) we see that
Proposition (6.1) implies assertion (5.2) of Theorem (5.1).

It remains to prove the proposition. As before:

LwG
w1

(α) =
∫

Ψ

tnα

 0 1 0
1 x 0
0 0 1

n

 θ(nn)ψ(x)dxdn
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where

n =

 1 0 z
0 1 y
0 0 1

 ,

dn = dydz and θ(nn) = ψ(y + y). As usual the measures dy and dz are equal to
the self-dual Haar measure on E and dx is the self-dual Haar measure on F . Then,
as before,

LwG
w1

(α) =
∫

Ψ

a
 0 1 y

1 x z
y z a−3 + yz + zy − xyy

ψ(x+ y + y)dxdydz.

The range of the integral is

ay ∈ A(m) , ax ≡ 1 mod 2℘mE , az ≡ 0 mod ℘mE ,

1
a2

+ ayz + ayz − axyy ≡ 0 mod ℘mE .

Changing z to z/ay the last condition becomes:

1
a2

+ z + z − axyy ≡ 0 mod ℘mE

while the other conditions do not change since | ay |= 1. We can change x to xa−1

and change all other variables similarly to obtain:

LwG
w1

(α) =| a |−5
F vol(℘mE )−1 vol(℘mE ∩ F )−1

∫
ψ

[
x+ y + y

a

]
dxdydz

over

y ∈ A(m) , x ≡ 1 mod 2℘mE , z ≡ 0 mod ℘mE ,

z + z +
1− xyy

a
≡ 0 mod a℘mE .

If n is sufficiently large, we have

a℘mE ∩ F ⊂ Tr(℘mE ).

Thus the integral over z is 0 unless
1− xyy

a
∈ Tr(℘mE ).

If it is so, we can write this element in the form t+ t with t ∈ ℘mE and change z to
z − t. Integrating with respect to z first we have to compute the volume of the set
defined by the conditions:

z + z ∈ a℘mE ∩ F , z ∈ ℘mE .
We write

z =
z1
2

+ z2
√
τ .

Then dz = dz1dz2 | τ |1/2F . The first condition reads z1 ∈ a℘mE ∩ F . It implies (if n
is large enough) z1/2 ∈ ℘mE . Then the second condition is equivalent to z2

√
τ ∈ ℘mE .

If | τ |= 1, this is in turn equivalent to z2 ∈ ℘mE ∩ F = ℘mF

F . If | τ |= q−1
F , then
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the extension is ramified. The condition on z2 amounts to | z2 |E≤ q−m+1 which is
equivalent to | z2 |F≤ q−m/2 or z2 ∈ ℘mE ∩ F . Thus the volume in question is

| a |F | τ |1/2F vol(℘mE ∩ F )2.

The integral is therefore equal to

| τ |1/2F | a |−4
F vol(℘mE ∩ F ) vol(℘mE )−1

×
∫
ψ

[
x+ y + y

a

]
dxdy

over

x ∈ 1 + 2℘mE ∩ F , y ∈ A(m) , xyy ∈ 1 + aTr(℘mE ).

We write

y = ts , t ∈ 1 + ℘mE ∩ F , s =
√

1 + v2τ + v
√
τ , v

√
τ ∈ ℘mE ,

dy =| 2 |F | τ |1/2F dtdv,

and the integral becomes:

LwG
w1

(α) =| 2τ |F | a |−4
F vol(℘mE ∩ F ) vol(℘mE )−1

×
∫
ψ

[
x+ 2t

√
1 + v2τ

a

]
dxdtdv.

If we change x to xt−2, then t−2 is in 1 + 2℘mE and so the conditions on x read:

x ∈ 1 + 2℘mE , x ∈ 1 + aTr(℘mE ).

If n is sufficiently large, the second condition implies the first. Moreover ψ(t−2x/a)
= ψ(t−2/a). Thus we can integrate over x and get

| 2τ |F | a |−3
F vol(℘mE ∩ F ) vol(℘mE )−1 vol(Tr(℘mE ))

×
∫
ψ

[
t−2 + 2t

√
1 + v2τ

a

]
dtdv.

Recall that the self-dual Haar measure on E is given by dz =| 2 |F | τ |1/2F dz1dz2 if
z = z1 + z2

√
τ . In other words, let E0 be the F -vector space of elements of E with

trace 0. Then | τ |1/2F dz2 is a measure on E0. We have an exact sequence

0 → E0 → E
Tr→ F → 0

and the image by the trace of the quotient measure of the self-dual Haar measure
on E by the measure on E0 is the self-dual Haar measure on F . We have then

vol(℘mE ) = vol(Tr(℘mE )) vol(℘mE ∩ E0).

However z2
√
τ ∈ ℘mE is equivalent to z2 ∈ ℘mE ∩F , since m is even if τ is not a unit.

Thus we get

vol(℘mE ) =| τ |1/2F vol(Tr(℘mE )) vol(℘mE ∩ F )

As a consequence we can simplify the factors in our integral:

LwG
w1

=| 2 |F | τ |1/2F | a |−3
F

∫
ψ

[
Q(t, v)
a

]
dtdv



1254 HERVÉ JACQUET AND YANGBO YE

where we have set:

Q(t, v) = t−2 + 2t
√

1 + v2τ .

We write once more t = 1 + u. Then the function Q has only one critical point at
u = 0, v = 0. Its Taylor expansion, up to quadratic terms, at this point is:

Q(u, v) = 3 + 3u2 + v2τ + · · · .
Thus if n is sufficiently large, the integral is equal to

| 2 |F | τ |1/2F | a |−3
F ψ(

3
a
)
∫
ψ

[
3u2

a

]
du

∫
ψ

[
v2τ

a

]
dv

or

| a |−2
F | 3 |−1/2

F ψ(
3
a
)γ(6a, ψ)γ(2aτ, ψ).

We have

γ(2aτ, ψ) = γ(2a, ψ)η(a)c(E/F, ψ)

and we obtain the result announced in Proposition (6.1). This concludes the proof
of the proposition and Theorem (5.1).
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