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DISTINGUISHED REPRESENTATIONS AND

QUADRATIC BASE CHANGE FOR GL(3)

HERVE JACQUET AND YANGBO YE

Abstract. Let E/F be a quadratic extension of number fields. Suppose that
every real place of F splits in E and let H be the unitary group in 3 variables.
Suppose that Π is an automorphic cuspidal representation of GL(3, EA). We
prove that there is a form φ in the space of Π such that the integral of φ over
H(F )\H(FA) is non zero. Our proof is based on earlier results and the notion,
discussed in this paper, of Shalika germs for certain Kloosterman integrals.

1. Introduction

Let E/F be a quadratic extension of number fields. We denote by z 7→ z the
Galois conjugation in E. We denote by F+ the group of elements of F× which
are norms and define similarly F+

v for any place v of F inert in E. We let F+
A be

the group of elements z = (zv) in F×A such that zv ∈ F+
v for v inert. Of course

F+ = F+
A ∩ F×. We let E1 be the group of elements of norm 1 in E×. We let S

be the variety of invertible Hermitian matrices:

S(F ) = {s ∈ GL(n,E)|s∗ = s}(1)

where we have set

s∗ = ts.

Finally, we let S+(F ) be the set of s ∈ S(F ) such that det s ∈ F+ and define
similarly S+

v and S+(FA). Let Π be an automorphic cuspidal representation of
GL(n,EA). For σ ∈ S(F ) let Hσ be the corresponding unitary group:

Hσ = {h|h∗σh = σ}.(2)

Following [HLR], we say that Π is Hσ-distinguished if there exists a form φ ∈ Π
such that ∫

Hσ(F )\Hσ(FA)

φ(h) dg 6= 0.(3)

Let Z be the center of GL(n) so that Z ' GL(1). Implicit in this definition is
the requirement that the central character ω of Π be trivial on the set of elements
of norm 1, that is, be distinguished with respect to E1, the unitary group in 1
variable. According to an argument due to [HLR], if Π is distinguished with respect
to a unitary group Hσ then Π is invariant under Galois conjugation and thus is the
base change of a cuspidal representation π of GL(n, FA) ([AC]). It is natural to
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conjecture the converse is true: any base change representation is distinguished
with respect to some unitary group. According to [HLR], this is the case if n = 2.
We consider more particularly the case where n is odd and all the Archimedean
places of F split in E. At a (finite) place v of F inert in E the only invariant in
S(Fv) is the class of the determinant modulo F+

v . It follows that the only invariant
in S(F ) is the class of the determinant modulo F+. Thus two Hermitian matrices
are equivalent if and only if their determinants are equivalent modulo the norms.
As a consequence, if σ1 and σ2 are given in S(F ), there is ζ ∈ F× such that ζσ1

and σ2 are equivalent. In particular, two given matrices have isomorphic unitary
groups so that we can speak of the unitary group without ambiguity.

We prove the converse for n = 3 under some restriction on the quadratic exten-
sion:

Theorem 1.1. Assume that any Archimedean place of F splits in E. Let Π be a
cuspidal automorphic representation of GL(3, EA) which is a base change. Then Π
is distinguished for the unitary group.

We may also view the above result in a more geometric light. Let Φ be a smooth
function of compact support on S(FA). Let χ be an idèle class character of F .
Define a function KΦ on G(EA) by

KΦ(g) =

∫
F+
A /F

+

∑
ξ∈S(F )

Φ(g∗ξzg)χ(z)d×z.(4)

If Φ is supported on S+(FA) then the sum can be taken over S+(F ) since S+(F ) =
S(F ) ∩ S+(FA). Clearly

KΦ(γzg) = KΦ(g)χ(zz)−1

for every γ ∈ G(E) and z ∈ E×A . An automorphic representation Π with central
character z 7→ χ(zz)−1 is distinguished if and only if∫

G(E)Z(EA)\G(EA)

KΦ(g)φ(g) dg 6= 0,

for at least one function Φ and one φ in the space of Π. Thus the problem of deter-
mining which cuspidal representations are distinguished is tantamount to finding
the “projection” of the space spanned by the functions KΦ on the space of cusp
forms. In other words, our result amounts to saying that the forms which are
quadratic base change are the “automorphic spectrum” of the symmetric variety
S.

In general, if θ is any involutive automorphism of a reductive group G, one can
define similarly the notion of an automorphic representation distinguished for the
group of fixed points H of θ. As is the case here, one expects that distinguished
representations have a simple characterization, in terms of the “principle of func-
toriality” (suitably extended to metaplectic covering groups): see [JR3]. Other
examples are discussed in [J4], [M2], [FJ], [JR2], [yF1]. Of course the general the-
ory remains to be developed. It will have many applications to special values of
L-functions, cohomology and the principle of functoriality. The case at hand is a
prototype case where distinguished representations have a specially simple charac-
terization.

To prove the theorem, we use a form of the trace formula: see (18) and (23)
below. This form of the trace formula has been used in other cases than the case
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at hand: see [J3], [J4], [M1], [M2] and also the flawed article [yF2]. More classical
contributions to the same area are [I] and [Z].

The notion of distinguished representation is specially interesting when the pair
(G,H) is a Gelfand pair: this means that for any place v and any irreducible
representation πv of Gv the dimension of the space of linear forms on πv which are
Hv invariant is at most 1. Indeed the period integral

µ(φ) =

∫
H(F )\H(FA)

φ(h) dh

is a linear form which is H(FA) invariant and one expects it is a product of local
invariant forms µv times a number which is the special value of an L function: see
[G]. In the case at hand, for n > 2, we have an example of the opposite situation:
the pair is not a Gelfand pair. Nonetheless, the trace formula that we are using
suggests that the linear form µ (defined by the global integral) is an infinite tensor
product of local ones. However, our result is not really sufficient to establish this
assertion, because of the restrictions on the functions we are using in the trace
formula.

To describe the trace formula in question we let Φ′ be a smooth function of
compact support on GL(n, FA). We shall assume that Φ′ is the product of local
functions Φ′v and that for any v inert in E the function Φ′v is supported on the
group

G+
v = {g| det g ∈ F+

v }.

We also define G+(F ), G+(FA) similarly, as well as Z+(F ), Z+
v and Z+(FA). Thus

Z+(FA) ' F+
A . Let χ be an idèle class character of F . We will set

KΦ′(g1, g2) =

∫
F+\F+

A

∑
ξ∈GL(n,F )

Φ′(g−1
1 ξzg2)χ(z)d×z.(5)

We let ψ be a nontrivial additive character of FA/F . We let N be the group of upper
triangular matrices with unit diagonal. We define an algebraic additive character
of N , i.e. an algebraic morphism of algebraic groups from N to F , by:

θ0(n) =
∑
i

ni,i+1

and then set θ(n) = ψ(θ0(n)). We compute the integral:∫
KΦ′(

tn1, n2)θ(n−1
1 n2) dn1 dn2

where ni ∈ N(F ) \N(FA).
To that end (compare with [F], [dG], [g.S]), we introduce a notion of orbital

integral. We let A be the group of diagonal matrices, B = AN the group of upper
triangular matrices in G = GL(n), W = W (A,G) the Weyl group of A identified
with the group of permutation matrices. We first go to a local situation and let F
be a local field, ψ a nontrivial additive character of F . We define θ as above. Then
an element g ∈ G(F ) is said to be relevant if the character (n1, n2) 7→ θ0(n1n2) is
trivial on the stabilizer Ng of g in the group N×N . The stabilizer is defined by the
equation tn1gn2 = g. We will denote by C(G(F )) the space of smooth functions of
compact support on G(F ). If g is relevant and Φ′ ∈ C(G(F )), we define the orbital
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integral I(g,Φ′) by:

I(g,Φ′) =

∫
Ng(F )\N(F )×N(F )

Φ′(tn1gn2)θ(n1n2) dn1 dn2.(6)

Recall that the elements of the form wa with w ∈ W,a ∈ A(F ) form a set of
representatives for the orbits of N(F ) × N(F ) on G(F ). We now describe a set
of representatives for the relevant orbits. We say that a Levi-subgroup of M is
standard if it contains A and a parabolic subgroup is standard if it contains B. We
say that an element w ∈ W is relevant if w2 = 1 and for every simple root α (i.e.
simple with respect to B) such that w(α) is negative, there is another simple root
β with w(α) = −β. We denote by R(G) the set of relevant elements in W . An
element w of W is relevant if and only if there is a standard Levi-subgroup M of
G such that w is the longest element of W ∩M . We then denote by Aw or AM
the center of M . We also write M = Mw and w = wM . If g = wa with a ∈ A(F )
is relevant then w ∈ R(G). Assuming w ∈ R(G) then wa is relevant if and only
if a ∈ Aw(F ). Suppose that w ∈ R(G). Then let Pw = MwUw be the parabolic
subgroup which is standard and has Levi factor Mw. Set also Vw = N ∩Mw. Then
Nwa = Nw for every a ∈ Aw. Furthermore, Nw is the set of pairs (n1, n2) with
ni ∈ Vw and n2 = wtn−1

1 w. It follows that any point of the orbit of wa under
N(F )×N(F ) can be written uniquely in the form:

ξ(u1, u2, v) = tu1wavu2

with ui ∈ Uw(F ) and v ∈ Vw(F ). Since the orbits of N(F ) × N(F ) are closed,
the map ξ is an isomorphism of Uw(F ) × Uw(F ) × Vw(F ) onto the orbit of wa.
Recall we have fixed a nontrivial additive character ψ; we let dx be the self-dual
Haar measure on F . If α is a root let Xα be the corresponding root vector in
the Lie algebra of N (one entry is 1, the other entries are 0). If U is a subgroup
of N generated by roots (i.e. whose Lie algebra is spanned by vectors Xα) we set
du = ⊗ dxα if u = 1 +

∑
α xαXα. We take for invariant measure on the orbit the

product measure du1 dv du2. Thus:

I(wa,Φ′) =

∫
Uw(F )×Uw(F )×Vw(F )

Φ′(tu1wavu2)θ(u1u2)θ(v) du1 dv du2.(7)

Since the orbit is closed, for f ∈ C(G(F )), the integrand on the right has compact
support. Thus the integral converges and defines a smooth function on Aw(F ) (see
section 2). We let ∆i(g) be the minor formed with the first i rows and i columns
of a matrix g. Thus ∆i(

tn1a1ga2n2) = ∆i(a1)∆i(g)∆i(a2). On the support of a
function Φ′ ∈ C(G(F )) the functions ∆i(g) remain in a compact support of F , while
the function ∆n(g) remains in a compact support of F×. Thus an orbital integral
I(wa,Φ′) has support in a set defined by inequalities of the form:

|∆i(a)| ≤ Ci if ∆i(w) 6= 0, A ≤ | det(a)| ≤ B.
Explicitly, for n = 3 the relevant elements can be defined as follows. For M = A,

every a in A(F ) is relevant. Let P1 = M1N1 be the parabolic subgroup of type
(2, 1) and A1 the center of M1, that is, the group of matrices of the form a =
diag(a1, a2, a3) with a1 = a2. The longest element of W ∩M1 is

w1 =

0 1 0
1 0 0
0 0 1

 .(8)



REPRESENTATIONS AND QUADRATIC BASE CHANGE FOR GL(3) 917

Then for a ∈ A1(F ) the element w1a is relevant. Similarly, let P2 = M2N2 be the
parabolic subgroup of type (1, 2) and A2 the center of M2, that is, the group of
elements of the form a = diag(a1, a2, a3) with a2 = a3. The longest element in
W ∩M2 is

w2 =

1 0 0
0 0 1
0 1 0

 .(9)

Then any w2a with a in A2 is relevant. Finally set

wG =

0 0 1
0 1 0
1 0 0

 .(10)

Then for a ∈ Z(F ) = AwG(F ) the product wGa is relevant. For GL(3) the orbital
integrals are the functions I(a,Φ), I(w1a,Φ), I(w2a,Φ), I(wGa,Φ) on the groups of
F points of A,A1, A2, Z = AwG respectively.

Coming back to the global situation we define similarly the orbital integrals
I(wa,Φ′) for relevant elements wa with w ∈ R(G), a ∈ Aw(FA). If V is an algebraic
subgroup of N we normalize the Haar measure on V (FA) by vol(V (F )\V (FA)) = 1.
The integrals are infinite products of convergent integrals, almost all of which are
equal to 1 because the integrand is 1 on its support which has measure 1 (see
Proposition 2.1). Thus they are convergent. A simple formal manipulation gives
then ∫

KΦ′(
tn1, n2)θ(n−1

1 n2) dn1 dn2 =

∫
F+
A /F

+

∑
w

∑
α

I(wαz,Φ′)χ(z)d×z.(11)

Here the sum is for w ∈ R(G) and α ∈ Aw(F ). Indeed, one replace KΦ′ by its
expression as a sum and collects the terms belonging to one orbit of N(F )×N(F ).
An irrelevant orbit contributes a zero integral. The integral on the left is over a
compact set and thus converges absolutely (even when Φ′ and θ are replaced by
their absolute values). As before there are A > 0, B > 0 such that I(wa,Φ′) 6= 0
implies A ≤ |∆n(wa)| ≤ B; there is also a compact subset ω of FA such that
I(wa,Φ′) 6= 0 implies ∆i(wa) ∈ ω for 1 ≤ i < n. As a result I(wαz,Φ′) 6= 0 implies
that z is in a compact set of F+

A /F
+ and α in a finite set. Thus the expression on

the right is well defined.
Now let Φ be a smooth function of compact support on S(FA). Recall KΦ defined

in (4). We shall assume that Φ =
∏

Φv where Φv is supported on S+
v for v inert.

Thus Φ is supported on S+(FA). We consider the integral∫
KΦ(n)θ(nn) dn

over N(E)\N(EA). Note that the product of nn and a suitable element of the
derived group of N(EA) is in N(FA) so that the expression θ(nn) is well defined.
Alternatively, we define an algebraic additive character θ1 of N (regarded as a group
over E) to F by

θ1(n) =
∑
i

(ni,i+1 + ni,i+1).

Then θ(nn) = ψ(θ1(n)).
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To compute this integral, we define a notion of orbital integral for the action
of N(EA) on S(FA). To that end we again go to a local situation where F is a
local field and E a quadratic extension of F . The group G(E) operates on S(F )

by s
g7→ g∗sg. We say that an element s ∈ S(F ) is relevant if the character θ1 is

trivial on the stabilizer N(E)s of s in N(E). The corresponding orbital integral is
defined by

J(s,Φ) =

∫
N(E)s\N(E)

Φ(n∗sn)θ(nn) dn.

Mutatis mutandis, the previous discussion applies to the present situation where
G(F ) is replaced by S(F ) and the group N(F )×N(F ) by the group N(E) acting
on S(F ). Recall that the intersection of an orbit of N(E) × N(E) on GL(n,E)
with S(F ) is a single orbit of N(E) acting on S(F ) ([t.S]). Otherwise said, each
orbit of N(E) on S(F ) has a unique representative of the form wa with w ∈ W
and a ∈ A(E) satisfying waw = a. In particular, each relevant orbit has a unique
representative of the form wa with w ∈ R(G) and a ∈ Aw(F ) (see [JR1] or [Y4]).
Consider elements w ∈ R(G) and a ∈ Aw(F ). Introduce as before Pw = MwUw
and Vw = Mw ∩N . Then any element of the orbit of wa can be written in the form

u∗v∗wavu

with v ∈ Vw(E), u ∈ Uw(E). The stabilizer of w (or wa) is the set of v ∈ Vw(E)
such that v∗wv = w. On the other hand, it is immediate that v1 = wv∗wv is an
element of Vw(E) which satisfies the equation

wv∗1w = v1.

This equation determines an F -subgroup V 1
w of Vw(E). Thus v1 ∈ V 1

w(F ). Thus in
fact any point of the orbit of wa can be written uniquely in the form u∗wav1u, u ∈
Uw(E), v1 ∈ V 1

w(F ). This gives a diffeomorphism of Uw(E)× V 1
w(F ) onto the orbit

of wa in S(F ). We have already defined a measure dv on Vw(F ). The additive
character z 7→ ψ(z + z) of E gives rise to a self-dual Haar measure on E and thus,
as before, to a measure on Uw(E). We can write an element v1 of V 1

w(F ) in the
form

v1 =
∑

(zαXα + zαX−wGα +
∑
β=−w

xβXβ.

Here the second sum is over all positive roots β in Vw such that β = −w and the
first sum is over all remaining positive roots in Vw; also zα ∈ E, xβ ∈ F . We set
dv1 = ⊗ dzα ⊗ dxβ . We take for invariant measure on the orbit of wa the product
measure du dv1. Then

I(wa,Φ) =

∫
Uw(E)×V 1

w(F )

Φ(u∗wav1u)θ(uu)ψ(θ1(v1)) du dv1.(12)

As before the orbital integrals are absolutely convergent and define smooth func-
tions onAw(F ). ForGL(3) the orbital integrals are the functions J(a,Φ), J(w1a,Φ),
J(w2a,Φ), J(wGa,Φ) on the groups of F -points of A,A1, A2, Z = AwG respectively.

We can apply the same discussion to the situation where the local quadratic
extension is replaced by the semisimple F -algebra E = F ⊕ F . Then

S(E) = {(g, tg)|g ∈ G(F )}
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and we can consider the relevant orbits of N(E) = N(F ) × N(F ) on S(E). The
situation is then equivalent to the situation discussed earlier for N(F ) × N(F )
acting on G(F ).

Coming back to the global situation, we define global orbital integrals for relevant
elements wa and we have∫

KΦ(n)θ(nn) dn =

∫
F×A /F

×

∑
w

∑
α

J(wαz,Φ)χ(z)d×z.(13)

We can also describe the function KΦ as follows. To begin with, every σ ∈ S+(F )
is equivalent to the identity matrix so that we can write

KΦ(g) =

∫ ∑
γ∈H(F )\G(E)

Φ(g∗γ∗zγg)χ(z)d×z.

Here H is the unitary group attached to the identity matrix. There exists a smooth
function of compact support f on GL(n,EA) such that

Φ(g∗g) =

∫
H(FA)

f(hg) dh.

We use the exact sequence

1→ E1
A → E×A → F+

A → 1

to define a measure on E1
A. Then

vol(E1
A/E

1(F )) = 1

and ∫
F+
A /F

+

∑
ξ∈S(F )

Φ(g∗ξzg)χ(z)d×z =

∫
E×A /E

×

∑
ξ∈S(F )

Φ(g∗ξzzg)χ(zz)d×z.

Set as usual

Kf (x, y) =

∫
E×\E×A

∑
γ∈GL(n,E)

f(x−1γzy)χ(zz)d×z.

Then

KΦ(g) =

∫
H(F )\H(FA)

Kf(h, g) dh,

and∫
N(E)\N(EA)

KΦ(n)θ(nn) dn =

∫
N(E)\N(EA)

(∫
H(F )\H(FA)

Kf (h, n) dh

)
θ(nn) dn.

In our trace formula, n = 3 and the functions Φ and Φ′ are related by the fol-
lowing global matching orbital integral conditions, where η = ηE/F is the quadratic
idèle class character of F attached to E:

I(a,Φ′) = η(a2)J(a,Φ),(14)

I(w1a,Φ
′) = η(a2)J(w1a,Φ),(15)

I(w2a,Φ
′) = η(a2)J(w2a,Φ),(16)

I(wGa,Φ
′) = J(wGa,Φ) = 0.(17)
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It follows that, for all w ∈ R(G), α ∈ Aw(F ), z ∈ F+
A :

I(wαz,Φ′) = J(wαz,Φ).

Taking in account the equalities (11) and (13) we get∫
KΦ′(

tn1, n2)θ(n−1
1 n2) dn1 dn2 =

∫
KΦ(n)θ(nn) dn.(18)

In a more precise way, we assume that Φ =
∏

Φv, f =
∏
fw and Φ′ =

∏
Φ′v.

The Haar measure dh on H(FA) is written as a product of local Haar measures in
the usual way. We let S be a finite set of places so chosen that a place v not in
S is finite and split, or (finite) inert and unramified in E; in addition, the residual
characteristic of v is odd and the conductor of ψv is the ring of integers Ov of Fv.
If v /∈ S is inert and w is the place of E above v, we set Kw = GL(3,Ow) and
assume that vol(Hv ∩Kw) = 1. We will also assume that S does contain at least
one finite place of F inert in E.

Recall the function Φ′v is assumed to be supported on G+
v for all places v inert

in E. For v /∈ S, the function Φ′v is bi-invariant under K ′v = GL(3,Ov) and equal
to the characteristic function of K ′v for almost all v /∈ S. If v is in S and inert in E
then we assume that I(wGa,Φ

′
v) = 0.

Similarly, let v be a place of F inert in E. Let us denote by w the unique place
of E above v. We define Φv by Φv(s) = 0 if v /∈ S+

v and

Φv(s) =

∫
Hv

fw(hvg) dhv

if s ∈ S+
v and s = g∗g. Thus Φv is indeed supported on S+

v . If v ∈ S we will
assume that J(wGa,Φv) = 0. If v /∈ S we will take fw to be bi-invariant under
Kw = GL(3,Ow) and will assume that Φ′v is the image of fw under the base change
homomorphism of Hecke algebras. For almost all v /∈ S and inert we assume that
Φ′v is the characteristic function of K ′v and fw the characteristic function of Kw.
This implies that for almost all v inert and not in S, Φv is the characteristic function
Φ0
v of Kw ∩ Sv, provided we assume, as we do, that the measure of Hv ∩Kw is 1.

Indeed, if Φv(s) 6= 0 then s = g∗g with g ∈ HvKw. Thus in fact s = g∗g with
g ∈ Kw. Moreover Φv(s) = 1 then because vol(Hv ∩ Kw) = 1. Conversely, if s
is in Sv ∩Kw then s = g∗g with g ∈ Kw by the theory of elementary divisors for
Hermitian matrices and then Φv(s) = 1. Note that in general for v inert and not
in S we have

Φv(s) =

∫
Φ0
v(g
∗
wsgw)fw(gw) dgw.

For v inert in S or not in S, we will assume that the following local matching
orbital integral conditions are satisfied:

I(a,Φ′v) = ηv(a2)J(a,Φv),(19)

I(w1a,Φ
′
v) = ηv(−a2)J(w1a,Φv)c(Ew/Fv, ψv),(20)

I(w2a,Φ
′
v) = ηv(a2)J(w2a,Φv)c(Ew/Fv, ψv).(21)

The constant c(Ew/Fv, ψv) will be defined in Proposition 3.1. The essential point of
this article is to show that for v in S and inert and a given Φ′v with I(wGa,Φ

′
G) = 0

there is a function Φv with J(wGa,Φv) = 0 satisfying these conditions (Proposi-
tion 3.2). This is the only missing element in the proof of the trace formula at
hand. For v inert not in S, the constant c(Ew/Fv, ψv) is 1 and the “fundamental
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lemma” ([JY2] and [Y2]) asserts that these conditions are indeed satisfied by our
chosen functions. The product of the constants c(Ew/Fv, ψv) for v inert is 1.

Finally, consider a place v of F (finite or infinite) which splits into two places
v1 and v2. After choosing one of the two places, we may identify Sv with the set
of pairs (g, tg) with g ∈ Gv and Hv with the group of pairs (h, th−1) with h ∈ Gv.
The group Gv1 × Gv2 ' Gv × Gv operates on Sv and we have again a notion of
orbital integrals. To insure the analogue of the matching conditions (19) to (21)
(with c = 1) we take

Φ′v(g) = Φv(g,
t g) =

∫
fv1(hg)fv2(th−1) dh.(22)

For all places v /∈ S which split we take Φ′v to be a bi-K ′v invariant function and
fvi to be a bi-Kvi invariant function. Since such a function is invariant under
transposition, the function Φ′v is simply the convolution of fv1 and fv2 . For almost
all such v we take fvi to be the characteristic function of Kvi . Finally at each
Archimedean place w of E (resp. v of F ), we denote by Kw (resp. K ′v) the standard
maximal compact subgroup. If v is an Archimedean place of F then (by assumption)
it splits in E; we assume that each function fvi is itself a convolution of two Kvi

finite functions. It follows that Φ′v is a K ′v finite function which is a quadruple
convolution product of smooth K ′v finite functions of compact support. With these
choices, the global matching orbital integral conditions (14) to (17) are satisfied.

We define in the usual way the cuspidal components Kcusp
Φ′ and Kcusp

f of KΦ′

and Kf and define the cuspidal component of KΦ by

Kcusp
Φ (g) =

∫
Kcusp
f (h, g) dh.

Then according to [J6] the difference:∫
KΦ(n)θ(nn) dn−

∫
Kcusp

Φ (n)θ(nn) dn

can be represented by an absolutely convergent expression taken over the contin-
uous spectrum (see [J6] for details). The same assertion is trivially true for the
difference∫

KΦ′(
tn1, n2)θ(n−1

1 n2) dn1 dn2 −
∫
Kcusp

Φ′ (tn1, n2)θ(n−1
1 n2) dn1 dn2.

Equating the continuous parts and the discrete parts, we conclude from a standard
argument that:∫

Kcusp
Φ (n)θ(nn) dn =

∫
Kcusp

Φ′ (tn1, n2)θ(n−1
1 n2) dn1 dn2.(23)

This is the trace formula we had in mind. It will imply the theorem.
Finally we remark that for an arbitrary extension E/F we would have to consider

all unitary groups. IfHσ is a set of representatives for the finitely many isomorphism
classes (n is odd), then for each σ we would have to introduce a function fσ.

The material is arranged as follows. In section 2 we study the local orbital
integrals I(wa,Φ′) and in section 3 the local orbital integrals J(wa,Φ) together
with their matching with the integrals I(wa,Φ′). The theorem is then quickly
proved in section 4. In section 2, it is more convenient to discuss the qualitative
asymptotic behavior of our integrals in the context of GL(n). We thus define the
Shalika germs for our integrals and prove the existence of the germs in the context
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of GL(n). As a matter of fact, one of the aims of this paper is to introduce the
correct notion of Shalika germs for our integrals. However, for the purpose at hand,
we only need very partial results on GL(2) and GL(3). A discussion with S. Rallis
and J. Bernstein was very helpful in formulating the definition of the germs.

2. Shalika germs

We let F be a local field of characteristic 0 and ψ a nontrivial additive character.
We often write G for G(F ) and C(G) for the space of smooth functions of compact
support on G(F ). We use similar notations for other groups or varieties. We denote
by F an algebraic closure of F .

We first describe the asymptotic behavior of our integrals in the context of
G = GL(n). If w,w′ are in R(G) we write w → w′ if Aw ⊇ Aw′ . This is equivalent

to Mw ⊆ Mw′ or w ∈ Mw′ . We write w
1→ w′ if w → w′, w 6= w′ and there is no

w′′ ∈ R(G) such that w → w′′ → w. We can define a graph with R(G) for a set

of vertices: the graph is oriented and the edges are the pairs (w,w′) with w
1→ w′.

Note that all oriented paths from a given w to a given w′ have the same length

which we denote by d(w,w′). We write w
m→ w′ if w → w′ and d(w,w′) = m. For

each w ∈ R(G) we have e → w → wG. For 0 ≤ i ≤ n we denote by πi(g) the
representation of G on the ith exterior power V i of the standard vector space V of
dimension n. Let ej, 1 ≤ j ≤ n, be the canonical basis of V . Let

εi = e1 ∧ e2 ∧ · · · ∧ ei, ηi = en−i+1 ∧ en−i+2 ∧ · · · ∧ en
be the highest vector and the lowest vector respectively in V i. In particular, the
one-dimensional vector space V n has a basis εn. If v ∈ V i and v′ ∈ V n−i we set

v ∧ v′ = 〈v, v′〉εn.
Then

∆i(g) = 〈πi(g)εi, ηn−i〉.
We denote by ∆(G) the set of these functions. Note that ∆0 = 1 and ∆n(g) = det g.

Lemma 2.1. Suppose w ∈ R(G) and ∆ ∈ ∆(G). Suppose w 6= wG and ∆(wGw) 6=
0. Then ∆ = ∆0 or ∆ = ∆n. Suppose ∆(w) 6= 0. Then ∆(m) 6= 0 for all m ∈Mw.

Proof. For the first assertion suppose that ∆ = ∆i with 1 ≤ i ≤ n − 1 and
∆(wGw) 6= 0. We have

∆(wGw) = ±〈πi(w)εi, εn−i〉.
If ∆(wGw) 6= 0 then πi(w)εi = ±ηi. This implies that w has the form

w =

 0 0 A
0 B 0

A−1 0 0


where A ∈ GL(i) and B ∈ GL(n − i). The only standard Levi subgroup which
contains w is G. Hence w = wG.

For the second assertion, let us write an element m ∈ M = Mw as a diagonal
matrix of square blocks:

m = diag(g1, g2, . . . , gr)

with gi ∈ Gi ' GL(ri). Thus

M ' G1 ×G2 × · · · ×Gr.
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If ∆ ∈ ∆(G) then

∆(m) = ∆′1(g1)∆′2(g2) · · ·∆′r(gr),(24)

where ∆′i ∈ ∆(Gi). In addition

w = diag(w1, w2, . . . , wr)

where wi = wGi . By the previous assertion, each ∆′i is either the determinant
function or the constant function equal to 1 on Gi. The lemma follows.

Recall that N ×N operates on G:

g
n7→ tn1gn2

if n = (n1, n2). The following facts will not be needed but will shed some light
on the definition of Shalika germs. The algebra of polynomial functions on G(F )
invariant under N × N is the polynomial algebra generated by ∆(G) and ∆−1

n .
Similarly, if w is relevant, we consider the closure Fw of the orbit tNAwN (for
the Zariski topology) and the algebra of polynomial functions on Fw which are
invariant under N ×N . Let Pw = MwUw be the standard parabolic subgroup of G
with Levi-factor Mw. Then tNwAN = tNwAUw. To construct such a polynomial
function on Fw it suffices to construct a polynomial function on G invariant under
tN on the left and under Uw on the right and restrict it to Fw. The function
∆w defined by ∆w(g) = ∆(gw) is an example of such a function. The algebra in
question is generated by the functions ∆w with ∆ ∈ ∆(G) and the function ∆−1

n .
These functions separate the closed orbits in Fw (over F for the Zariski topology
or over F for the ordinary topology).

If w is relevant we denote by Ωw the set of g ∈ G(F ) such that ∆(w) 6= 0 implies
∆(g) 6= 0.

Lemma 2.2. The set Ωw is open and the map

(u, v,m) 7→ tumv

from Uw(F )×Uw(F )×Mw(F ) to Ωw is an isomorphism of analytic varieties over
F . If ωM is a compact subset of M(F ) and ωG a compact subset of G(F ) then the
relations

tumv ∈ ωG, m ∈ ωM
imply that u and v are in a compact subset of Uw(F ). If the orbit of a relevant
element w′a intersects Ωw then w′ → w and the orbit is contained in Ωw.

Proof. By the previous lemma, if P = MU is the parabolic subgroup attached to w
then Ωw is just the set of g such that ∆(g) 6= 0 if ∆ does not vanish on M . We first
prove the first assertion of the lemma for a parabolic subgroup P = MU of type
(n1, n2). Then if ∆ ∈ ∆(G) does not vanish on M , we have ∆ = ∆n1 or ∆ = det
or ∆ = 1. Suppose that ∆n1(g) 6= 0. Write

g =

(
m1 v1

v2 m2

)
with mi ∈ M(ni × ni, F ). Since det(m1) = ∆n1(g) 6= 0 we find m1 ∈ GL(n1, F ).
Thus we can write v1 = m1U1 and v2 = tU2m1. With

ui =

(
1 Ui
0 1

)
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we have now g = tu1mu2, ui ∈ U , and m ∈ M . The first assertion of the lemma
follows then from an inductive argument. The second assertion follows from the
proof of the first. The third assertion follows from the uniqueness of the Bruhat
decomposition.

We also set

Zw = tNwAN, Vw = N ∩Mw.

Then Zw is a closed subvariety of Ωw. Indeed, this follows from the previous lemma
and the fact that Zw ∩Mw = wAVw is closed in Mw.

Proposition 2.1. If F is any local field (Archimedean or not) the orbital integral
I(wa,Φ′) converges and defines a smooth function on Aw(F ). Suppose that F is
non-Archimedean and that the conductor of ψ is the ring of integers OF . If f is the
characteristic function of K = GL(n,OF ) and a ∈ Aw(F ) ∩K then I(wa, f) = 1.

By the previous lemma, the map

(u1, u2, v, a) 7→ tu1wavu2

is a diffeomorphism from Uw × Uw × Vw × Aw onto a closed subvariety of Ωw.
On the other hand, if ω is a compact subset of Aw(F ) then the same map is a
homeomorphism from Uw × Uw × Vw × ω onto a closed subset of GL(n, F ). The
first assertion follows.

We prove the second assertion. We will use two lemmas:

Lemma 2.3. Suppose w ∈ R(G) and g ∈ M(n,OF ) with ∆(g) ∈ O×F for all ∆
with ∆(w) 6= 0. Then we have g = tu1mu2 with ui ∈ Uw ∩K, m ∈ Mw ∩K and
∆(m) ∈ O×F for all ∆ with ∆(w) 6= 0.

Proof of the lemma. It suffices to prove our assertion when Pw = MU has type
(n1, n2). We write, as before,

g =

(
m1 v1

v2 m2

)
with mi ∈ M(ni × ni, F ). Since m1 is integral and det(m1) = ∆n1(g) ∈ O×F we
find m1 ∈ GL(n1,OF ). Thus we can write v1 = m1U1 and v2 = tU2m1 where Ui is
integral. With

ui =

(
1 Ui
0 1

)
,

we have now g = tu1mu2. Now ui is in U ∩ K so that m is in K ∩ M and
∆(m) = ∆(g) ∈ O×F for all ∆ which do not vanish on M .

Lemma 2.4. Suppose that g is in K and g = tu1wavu2 with ui ∈ Uw, v ∈ Vw and
a ∈ Aw(F ) ∩K. Then ui and v are in K as well.

Proof of the lemma. We can write

gw = tu1mu
′
2, m = wvwa, u′2 = wu2w.

Since ∆(m) = ∆(a) we can apply the previous lemma. It follows that u1, u
′
2 and

m are in K. In turn, this implies that u2 and v are in K. The lemma follows.
The second assertion of the proposition follows from the two lemmas.
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From now on, we assume F is non-Archimedean.
If w → w′ we denote by Aw

′

w the set of b ∈ Aw(b) such that ∆(b) = ∆(w′w) for
all ∆ ∈ ∆(G) such that ∆(w′w) 6= 0. This is a single coset of a subgroup of Aw.

More precisely, let M ′ = Mw′ and M = Mw. Let AM
′

M be the algebraic subgroup of

AM defined by the equations ∆(a) = 1 if ∆(w′w) 6= 0. Then Aw
′

w is a single coset

of AM
′

M (F ). We need simple properties of this construction.
Lemma 2.1 implies that if w 6= wG then AwGw is the set of b ∈ Aw such that

det(b) = det(wGw). On the other hand, it is clear that Aww = {1} for all w.
Suppose that M = Mw with w ∈ R(G). Let us write an element m ∈ Mw as a

diagonal matrix of square blocks:

m = diag(g1, g2, . . . , gr)

with gi ∈ Gi ' GL(ri) and use the notations of the proof of Lemma 2.1. In
particular:

w = diag(w1, w2, . . . , wr)

where wi = wGi . Similarly, every a in Aw has the form:

a = diag(a1, a2, . . . , ar)

with ai ∈ Awi ⊂ Gi. Thus

Aw '
∏

Awi .

If w′ → w then w′ ∈M and

w′ = diag(w′1, w
′
2, . . . , w

′
r)

where w′i ∈ R(Gi) (and w′i → wi in Gi). We have then

Aw′ '
∏

Aw′
i
.

If ∆(ww′) 6= 0 then, in the notations of (24), ∆′i(wiw
′
i) 6= 0 for each i. Conversely,

if ∆′i ∈ ∆(Gi) is such that ∆′i(wiw
′
i) 6= 0 then there is ∆ ∈ ∆(G) such that

∆(m) = ∆′1(g1)∆′2(g2) · · ·∆′i(gi),
where ∆′j = det on Gj for j < i. It follows that

Aww′ '
∏

Awiw′
i

.

Lemma 2.5. For w′ → w, the set Y w
′

w of c ∈ Aw such that ∆(c) = 1 for ∆(ww′) 6=
0 is finite. Also Aww′A

w′′

w ⊆ Aw′′w′ .

Proof. Writing Mw as a product of linear groups as before, we get that

Y w
′

w =
∏

Y
w′i
wi .

If wi = w′i then

Y
w′i
wi = {1}.

Thus it suffices to prove the lemma when w = wG and w′ 6= wG. Then ∆(wGw
′) 6= 0

implies ∆ = det or ∆ = 1 and Y w
′

wG is the set of scalar matrices c with cn = 1. Thus
it is finite. The proof of the second assertion is similar.
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We can also describe the group AMM′ where M ′ = Mw′ and M = Mw. If M = M ′

then the group is reduced to {1}. If M = G then

AGM′ = {a ∈ AM′ | det a = 1}.
In general, with the previous notations, set M ′i = Mw′

i
and Mi = Mwi . Then

AMM′ '
∏

AMi

M′
i

.

In particular, we remark that if ∆ does not vanish on M then ∆ defines an algebraic
character of M and ∆(ww′) 6= 0 since ww′ is in M . Moreover the group of algebraic
characters of M is generated by the restriction to M of those ∆ which do not vanish

on M . If we let ÃMM′ be the group of a ∈ AM′ such that χ(a) = 1 for any character

χ of M then AMM′ is clearly contained in ÃMM′ . In fact, it is easy to check from the

above description that AMM′ is just the connected component of the identity in ÃMM′
for the Zariski topology. Moreover, the previous lemma amounts to saying that the
group AM′ is the product, almost direct, of AMM′ and AM .

A system of Shalika germs will be a family of smooth functions Kw′

w defined

over the sets Aw
′

w for w → w′ such that, for any function f ∈ C(G(F )), there exist
functions ωw = ωfw ∈ C(Aw(F )) with:

I(wa, f) =
∑

{w′:w→w′}

∑
{a=bc,b∈Aw′w ,c∈Aw′}

Kw′

w (b)ωw′(c).

We note that for each w the set Aww is reduced to the identity. By convention,
we take Kw

w = 1. For w → w′, the sum is over all decompositions a = bc, b ∈
Aw
′

w , c ∈ Aw′ . It is finite by the previous lemma. In particular it is empty hence 0

if a /∈ Aw′w Aw′ .
For a given function f , the above relations determine the functions ωw by a tri-

angular system of linear equations. In particular ωwG(a) is just the orbital integral
I(wGa, f). When we want to emphasize the dependence of the functions on the
system, we will write them as ωK,fw or ωKw . Given a system of germs K and a
family of smooth functions of compact support ωw ∈ C(Aw), there is f ∈ C(G) such
that ωw = ωK,fw . This follows from the following observation. Suppose f ∈ C(Ωw).
Then I(w′a, f) = 0 unless the orbit of w′a intersects Ωw, that is, w′ → w. In

particular, it follows that ωfw′ = 0 unless w′ → w. Moreover ωfw(a) = I(wa, f).
Now I(wa, f) = I(wa, f ′) where f ′ ∈ C(Mw), is given by

f ′(m) =

∫
Uw×Uw

f(tu1mu2)θ(u1u2) du1 du2

and

I(wa, f ′) =

∫
Vw

f ′(wav)θ(v) dv.

Since wAwVw is closed in Mw, it follows that ωw is an arbitrary element of C(Aw).
Our assertion follows now from an easy inductive argument.

Recall that the support of an orbital integral is contained in a set where |∆(a)| ≤
C for all ∆. We note that in the definition of the germs the relation b ∈ Aw′w amounts
to ∆w(w′c) = ∆w(wa). Since the functions ∆w on Fw separate the relevant orbits
of wAw this remark gives some insight in the nature of the germ expansion. Given
w′ with w → w′, the contribution of w′ to the orbital integral I(wa, f) is a function
whose support is contained in a set C1 ≤ |∆(a)| ≤ C2 for all ∆ with ∆(w′w) 6= 0.
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On the other hand, the behavior at infinity of this contribution, that is, the behavior
as ∆(a)→ 0 for those ∆ such that ∆(w′w) = 0, is given by the germ Kw′

w .
The Shalika germs depend on ψ.
It will be convenient to use the following notation: if f and g are functions on

Aw
′

w and Aw′ respectively then we define a new function f ∗ g on Aw by

f ∗ g(a) =
∑

{a=bc,b∈Aw′w ,c∈Aw′}

f(b)g(c).(25)

Then the relations defining the germs read

I(w., f) =
∑
w→w′

Kw′

w ∗ ωw′ .

Theorem 2.1. There exists a system of Shalika germs. If H and K are two sys-
tems of Shalika germs, then there are functions tw

′

w ∈ C(Aw
′

w ) such that tww = 1 for
all w and

Kw′

w =
∑

w→w1→w′
Hw1
w ∗ tw

′

w1
.

Proof. The existence follows from the following proposition:

Proposition 2.2. Suppose 1 ≤ m ≤ d(e, wG). Then there exist functions Kw′

w

on Aw
′

w for w → w′ and d(w′, wG) < m with the following properties : suppose
f ∈ C(G(F )) is given; for any w′ with d(w′, wG) < m, there exists a function

ωw′ ∈ C(Aw′); for any w′ with w′
m→ wG, there exists a function fw′ ∈ C(Ωw′); the

following equalities are satisfied :

I(w., f) =
∑

w′
m→wG

I(w., fw′) +
∑

d(w′,wG)<m,w→w′
Kw′

w ∗ ωw′ .

For m = d(e, wG) this will give the existence of the Shalika germs since I(wa, fe)
= 0 unless w = e in which case I(a, fe) is a smooth function of compact support on
A = Ae. Note that in the first sum over w′ the orbital integral I(wa, fw′) vanishes
unless the orbit of wa intersects Ωw′ , that is, unless w → w′.

We first prove the assertion for m = 1. The above relation then reads

I(w., f) =
∑

w′
1→wG

I(w., fw′) +KwG
w ∗ ωwG .

Let Ω be the complement of ZwG . Restriction of a function on G to ZwG gives us
an exact sequence

0→ C(Ω)→ C(G)→ C(ZwG)→ 0.

We denote by C(C, θ) the subvector space of G(G) spanned by the functions of the
form

f(tn1gn2)− θ(n1n2)f(g)

and by C(G)θ the quotient space (coinvariants). An element of the dual vector space
may be viewed as a distribution on G, relatively invariant under the character θ⊗θ
of N × N . We denote by C(G)∗θ this dual. Examples of such elements are the
orbital integrals. We write f1 ' f2 if f1 and f2 have the same image in C(G)θ.
In particular, we have then I(wa, f1) = I(wa, f2) for all w. Conversely, by the
theorem of density of Bernstein ([B]), if this condition is satisfied then f1 ' f2.
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It is a fundamental observation of Casselman that the functor of coinvariants is
exact. Thus we have an exact sequence

0→ C(Ω)θ → C(G)θ → C(ZwG)θ → 0.

Our first task is to determine the dual space C(ZwG)∗θ. The map

ξ : (n1, n2, a) 7→ tn1wGan2

is surjective and submersive from N × N × A to ZwG . Thus there is a surjective
map α 7→ fα from C(N ×N ×A) to C(ZwG) such that∫

N×N×A
α(n, a)T (ξ(n, a)) dn da =

∫
ZwG

fα(z)T (z) dz,

for T ∈ C(ZwG). Here dz is a measure on ZwG product of an invariant measure on
the orbit of wa and the measure da. It follows that for any T ∈ C(ZwG)∗θ there is
a distribution T ∗ on A such that∫

α(n, a)θ ⊗ θ(n) dn dT ∗(a) =

∫
fα(z) dT (z).

Suppose α1 ∈ C(A) has support in the complement of AwG . Choose a smooth map
a 7→ na from the support of α1 to NwGa with θ ⊗ θ(na) 6= 1, a function α0 ∈ C(N)
with

∫
θ ⊗ θ(n)α0(n) dn = 1. Then the function

α(n, a) = (α0(n)− α0(nan))α1(a)

belongs to C(N ×N ×A). For such a function fα = 0; thus the value of T ∗ on the
function

a 7→ (1− θ(na))α1(a)

vanishes. Thus T ∗ is supported on AwG , that is, for f ∈ C(ZwG),

T (f) =

∫
AwG

I(wGa, f) dT ∗(a).

We conclude that a function f on G has a zero image in C(ZwG)θ if and only if all
its orbital integrals I(wGa, f) are 0. This also follows from the theorem of density
of Bernstein. The above exact sequence asserts there is then a function f0 ∈ C(Ω)
such that

I(wa, f) = I(wa, f0)

for all w and all a ∈ Aw.
We apply this observation as follows: let G1 be the set of g ∈ G with det g =

detwG. We can also define the orbital integrals of a function f0 on G1. If wGa
where a ∈ AwG is in G1 then the scalar matrix a verifies an = 1. In particular, the
orbital integral I(wGj, f0) is defined as a function on the set of j ∈ F which are
n-roots of 1. We can choose f0 in such a way that I(wG, f0) = 1 and I(wGj, f0) = 0
if j 6= 1. Given f define f1 by

f1(g) =
∑

g=hz,z∈AwG ,h∈G1

f0(h)I(wGz, f).

Note that the sum is empty, hence 0, if det g /∈ F×n detwG. This is a smooth
function of compact support. Moreover, for a ∈ AwG :

f1(tn1wGan2) =
∑

{j:jn=1}
f0(tn1wGj

−1n2)I(wGja, f).
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Hence

I(wGa, f1) =
∑
j

I(wGj
−1, f0)I(wGja, f) = I(wGa, f).

Thus there is f2 ∈ C(Ω) such that

f ' f2 + f1.

Next we can find an increasing sequence of open subsets Ωi, 0 ≤ i ≤ r, invariant
under N ×N , such that

Ω0 =
⋃

w
1→wG

Ωw,

Ωr = Ω and each difference Zi = Ωi+1 − Ωi has the form tNwAN for a suitable
irrelevant w. This follows from the fact that N has finitely many orbits in B\G.
We have again exact sequences

0→ C(Ωi)θ → C(Ωi+1)θ → C(Zi)θ → 0.

An argument similar to the one used before shows that the last term on the right
is zero. It follows that

C(Ωi+1)θ = C(Ωi)θ.
Inductively we have then

C

 ⋃
w

1→wG

Ωw


θ

= C(Ω)θ.

Thus we may assume that f2 has support in the union of the sets Ωw with d(w,wG)
= 1. Using now a partition of unity we obtain that

f '
∑

{w:d(w,wG)=1}
fw + f1,

with fw ∈ C(Ωw). Next, we compute the orbital integrals of f . For w′ 6= wG we
have

I(w′a, f) =
∑

d(w,wG)=1

I(w′a, fw) + I(w′a, f1).

To compute I(w′a, f1) we write in all possible ways g = tn1w
′an2 in the form

g = g1c with g1 ∈ G1, c ∈ AwG . We get
tn1w

′an2 = tn1w
′bn2c

with c ∈ AwG and det b = detwGw
′. This amounts to a = bc with b ∈ AwGw′ . We

find then

I(w′a, f1) =
∑
a=bc

I(w′b, f0)I(wGc, f).

We obtain our assertion for m = 1 with

KwG
w′ (b) = I(w′b, f0)

and ωG(z) = I(wGz, f) for z ∈ AwG .
To continue, we assume the assertion of the proposition true for m and prove it

for m + 1. With the notations of the proposition, we consider an element w′ such
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that w′
m→ wG. We recall that the open set Ωw′ is isomorphic to Uw′ × Uw′ ×Mw′.

In particular, there is a function hw′ ∈ C(Mw′) such that

I(wa, fw′) = I(wa, hw′)

for all w → w′. Here we extend in an obvious way the notion of orbital integral to
the Levi subgroups of GL(n). The assertion of the proposition for m = 1 is true
for the factors of Mw′ ; hence, in an obvious sense, it is true for the group Mw′ as
well. Thus there are functions Kw′

w on Aw
′

w for w→ w′ with the following property:

for every w′′
1→ w′ there is a function w′hw′′ ∈ C(Ωw′′ ∩Mw′) such that

I(w., hw′) =
∑

w′′
1→w′

I(w.,w′hw′′) +Kw′

w ∗ ωw′ .

Here the function ωw′ ∈ C(Aw′) is given by

ωw′(a) = I(w′a, fw′) = I(w′a, hw′).

We can find a function w′fw′′ with support in Ωw′′ such that I(wa,w′fw′′) =
I(wa,w′hw′′). We obtain then the assertion of the proposition for m+ 1 by setting:

fw′′ =
∑

{w′:w′′ 1→w′}

w′fw′′

for each w′′ with w′′
m+1→ wG. Note that in the above sum w′

m→ wG. The proposi-
tion and the existence of the germs are established.

We pass to the proof of the uniqueness. Consider first a system Kw′

w of Shalika

germs and a system tw
′

w of functions in C(Aw′w ) (with tww = 1). Then the relations

Kw′

w =
∑

w→w1→w′
Hw1
w ∗ tw

′

w1

form a triangular system of relations which can be solved for the functions Hw′

w .
Moreover:

I(w., f) =
∑

Kw1
w ∗ ω

K,f
w′

=
∑

w→w1→w′
Hw1
w ∗ tw

′

w1
∗ ωK,fw′ .

It follows that the functions H are also a system of germs. More precisely,

ωH,fw1
=

∑
w1→w′

tw
′

w1
∗ ωK,fw′ .

To prove the uniqueness we consider two systems of germs H and K as in the
theorem. It is clear that there are functions tw

′

w on Aw
′

w with tww = 1 for all w such
that

Kw′

w =
∑

w→w1→w′
Hw1
w ∗ tw

′

w1

for any pair w → w′. Indeed this relation reads

Kw′

w = tw
′

w +Hw′

w +
∑

w→w1→w′,w 6=w1 6=w′
Hw1
w ∗ tw

′

w1



REPRESENTATIONS AND QUADRATIC BASE CHANGE FOR GL(3) 931

so that the functions t are determined by a triangular system of equations. Similarly
we have

ωH,fw =
∑
w→w′

tw
′

w ∗ ω
K,f
w′ .

It is clear that the functions t are smooth. What we have to see is that they have
compact support. This is clear for w = w′ since tww = 1. Thus we may assume

that for d(w,w′) ≤ m the functions tw
′

w have compact support and prove the same

assertion for the functions tw
′

w with d(w,w′) = m+ 1. Thus we fix a pair w
m+1→ w′.

To that end, let us consider only functions f ∈ C(Ωw′). Then as before I(w., f) = 0
unless w → w′ and ωK,fw = ωH,fw = 0 unless w → w′. In particular,

ωK,fw′ = ωH,fw′ = I(w′., f)

is an arbitrary function ωw′ ∈ C(Aw′). Moreover,

ωHw =
∑

w→w1→w′,w1 6=w′
tw1
w ∗ ωKw1

+ tw
′

w ∗ ωw′ .

Since the functions tw1
w in the formula have compact support by the induction hy-

pothesis we conclude that the last term has compact support on Aw. Its restriction
to Aw

′

w also has compact support; it can be written as

a 7→
∑
c∈Y

tw
′

w (ac−1)ωw′(c)

where Y = Y ww′ is the finite subset of Aw′ introduced earlier. We can choose ωw′
in such a way that ωw′(1) = 1 and ωw′(c) = 0 for c ∈ Y , c 6= 1. The conclusion
follows.

The proof of existence gives a way to compute inductively the germs Kw′

w in
terms of the germs KwG

w . Indeed, if w 6= wG then M = Mw can be written as a
product of linear groups Gi. For w we get

w = diag(w1, w2, . . . , wr)

with wi = wGi . If w′ → w then

w′ = diag(w′1, w
′
2, . . . , w

′
r)

with w′i → wi in Gi. Now write a in Aww′ as

a = diag(a1, a2, . . . , ar)

with ai ∈ Awiw′
i

. We find (for a suitable system of germs)

Kw
w′(a) =

∏
Kwi
w′
i

(ai).(26)

For n = 2 the relations defining the germs read:

I(a, f) = ω(a) +
∑
a=bc

Kw
e (b)ωw(c),(27)

I(wa, f) = ωw(a),(28)

where

w = wG =

(
0 1
1 0

)
.(29)
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The sum is for b ∈ A with det b = −1 and c ∈ AwG . The set Awe is the set of
matrices of the form (

z 0
0 −z−1

)
.

The germ Kw
e is supported on a set of matrices of the above form with |z| ≤ C. It

is defined within the addition of a smooth function of compact support.

Proposition 2.3. The germ K = Kw
e is given, for |z| small enough, by

K

(
z 0
0 −z−1

)
= ψ

(
2

z

)
γ

(
2

z
, ψ

) ∣∣∣∣ 1

2z

∣∣∣∣1/2
F

where γ is the Weil constant.

We recall the definition of the Weil constant:∫
Φ̂(x)ψ

(
ax2

2

)
dx = |a|−1/2γ(a, ψ)

∫
Φ(x)ψ

(
−x2

2a

)
dx,

where Φ̂ is the Fourier transform of Φ ∈ C(F ). In particular, if O is any open
neighborhood of 0 in F then∫

O

ψ

(
ax2

2

)
dx = |a|−1/2γ(a, ψ)

for |a| large enough.

Proof. Let O be an ideal in F which will be taken as small as needed. We may take
it so small that ψ = 1 on O, 1 6≡ −1 modO, 2−1O is contained in the maximal ideal
of OF and the square root function u 7→

√
1 + u is defined by the Taylor formula

on O; moreover, we may assume that
√

1 + u ∈ 1 + 2−1O for u ∈ O. Let f be
the characteristic function of the set wKO where KO is the congruence subgroup
determined by O. We have

I(wG, f) =

∫
F

f

(
0 1
1 x

)
ψ(x) dx = Meas(O).

Similarly:

I(−wG, f) =

∫
F

f

(
0 −1
−1 −x

)
ψ(x) dx = 0.

On the other hand,

I

((
z 0
0 −z−1

)
, f

)
=

∫
f

(
z zx1

zx2 −z−1 + x1x2z

)
ψ(x1 + x2) dx1 dx2.

This is 0 unless z ∈ O. We change x1 to x1/z and set

x2 =
1 + zu

zx1

where u ∈ O. The integral simplifies at once to

|z|−1
F

∫
x1≡1 mod 0

ψ

(
x1 + x−1

1

z

)
dx1

∫
O

du.

We can set x1 = 1 + v with v ∈ O and then set

y =
v√

1 + v
.
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We find dx1 = dv = dy if O is small enough. The integral becomes

|z|−1
F Meas(O)

∫
O

ψ

(
2 + y2

z

)
dy.

If z is sufficiently small this becomes

1

|2z|1/2F

ψ

(
2

z

)
γ

(
2

z
, ψ

)
I(wG, f).

Our assertion follows.

We pass to the group G = GL(3). Then the germs relations are

I(., f) = ωe +Kw1
e ∗ ωw1 +Kw2

e ∗ ωw2 +KwG
e ∗ ωwG ,(30)

I(w1., f) = ωw1 +KwG
w1
∗ ωwG ,(31)

I(w2., f) = ωw2 +KwG
w2
∗ ωwg ,(32)

I(wG., f) = ωwG .(33)

The germs Kw1
e ad Kw2

e are defined within the addition of a smooth function of
compact support. The set Aw1

e is the subset of A defined by

∆2(b) = −1, ∆3(b) = −1,

in other words, the set of elements of the form:

b =

z 0 0
0 −z−1 0
0 0 1

 .

By formula (26) and the uniqueness, we may assume

Kw1
e (b) = K

(
z 0
0 −z−1

)
where K is the GL(2) germ. Similarly, Aw2

e is the set of matrices of the form

b =

1 0 0
0 z 0
0 0 −z−1

 .

We may assume

Kw2
e (b) = K

(
z 0
0 −z−1

)
.

The set AwGw1
is the set of a ∈ Aw1 with det(a) = 1. The set AwGe is the set of a ∈ A

with det(a) = −1.
Finally, suppose that the orbital integrals of f on wGAwG vanish; then the above

relations simplify to

I(., f) = ωe +Kw1
e ∗ ωw1 +Kw2

e ∗ ωw2 ,(34)

I(w1., f) = ωw1 , I(w2., f) = ωw2 , I(wG., f) = 0.(35)

Moreover, the functions ωe, ωw1 , ωw2 are arbitrary smooth functions of compact
support.
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3. Matching

Now we let E be a quadratic extension of our local field F . The group G(E)

operates on S(F ) by s
g7→ g∗sg. Mutatis mutandis, the discussion of the previous

section applies to the present situation where G(F ) is replaced by S(F ) and the
groupN(F )×N(F ) by the groupN(E) acting on S(F ). As before we can define the

Shalika germs Lw
′

w for the integrals J(wa,Φ) and show they exist and are essentially
unique.

We compute the Shalike germ for GL(2). It is defined within the addition of a
smooth function of compact support. The defining relations read

J(a,Φ) = ω(a) +
∑
a=bc

Lwe (b)ωw(c),(36)

I(wa, f) = ωw(a).(37)

Proposition 3.1. The Shalika germ L = Lwe is given for |z| small enough by

L

(
z 0
0 −z−1

)
=

∣∣∣∣ 1

2z

∣∣∣∣1/2
F

ψ

(
2

z

)
γ

(
2τ

z
, ψ

)
where E = F (

√
τ). In particular

L

(
z 0
0 −z−1

)
= c(E/F, ψ)ηE/F (z)K

(
z 0
0 −z−1

)
,

where

c(E/F, ψ) = γ(τ, ψ)γ(1, ψ)−1ηE/F (2).

For future reference, we remark that we may (and will) assume that the relation
between L and K holds for all z.

Proof. As before we consider a small enough ideal O in E and the characteristic
function Φ of wKO ∩ S(F ). We have

I(w,Φ) = Meas(O ∩ F )

and I(−w,Φ) = 0. Now

I

((
z 0
0 −z−1

)
,Φ

)
=

∫
E

Φ

(
z yz
yz −z−1 + yyz

)
ψ(y + y) dy.

Here dy is the self-dual Haar measure on E. This is 0 unless z ∈ O∩F . We change
y to y/z. The integral becomes

|z|−2
F

∫
ψ

(
y + y

z

)
dy

where y ∈ 1 +O, yy ∈ 1 + zO. We can then set

y =
√

1 + zu(
√

1 + x2τ + x
√
τ)

where u ∈ O∩F and x ∈ O′, where O′ is an open neighborhood of zero in F which
does not depend on z. Then

dy = |z|F du dx|τ |1/2F .
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Here du = dx is the self-dual Haar measure on F . In the formula for y, the first
square root belongs to 1 + 2−1z(O ∩ F ). It follows that the integrand does not
depend on u (if z is small enough). Thus the integral becomes

Meas(O ∩ F )|z|−1
F |τ |1/2

∫
O′
ψ

(
2
√

1 + x2τ

z

)
dx.

We can set

2
√

1 + x2τ = 2 + t2τ

with dx = dt and t ∈ O′′, where O′′ is another neighborhood of zero. In fact, we
can take

t =
x√√

1+x2τ+1
2

.

Then the integral takes the form

I(w,Φ)|z|−1
F |τ |1/2ψ

(
2

z

)∫
O′′

ψ

(
t2τ

z

)
dt.

Then for |z| small enough the integral takes the value

I(w,Φ)

∣∣∣∣ 1

2z

∣∣∣∣1/2 ψ(2

z

)
γ

(
2τ

z
, ψ

)
and the first assertion follows.

For the second assertion, we recall the formulas:

γ(ab, ψ) = γ(a, ψ)γ(b, ψ)γ(1, ψ)−1(a, b), γ(ab2, ψ) = γ(a, ψ)

and the fact that (a, τ) = ηE/F (a). The assertion follows.

For the group GL(3) we simply record the minimum information that we need:
if J(wGa,Φ) = 0 then

J(a,Φ) = ωe(a) +
∑
a=bc

Lw1
e (b)γw1(c) +

∑
a=bc

Lw2
e (b)ωw2(c),(38)

J(w1a,Φ) = ωw1(a), J(w2a,Φ) = ωw2(a), J(wGa,Φ) = 0.(39)

Moreover the functions ωe, ωw1 , ωw2 are arbitrary smooth functions of compact
support. The germs Lwie can be computed as before in terms of L. Taking into
account the previous proposition we see that the first relation can be written as

J(a,Φ) = ωe(a) + c(E/F, ψ)
∑

η(−b2)Kw1
e (b)ωw1(c)

+ c(E/F, ψ)
∑

η(b2)Kw2
e (b)ωw2(c),

or, multiplying by η(a2) and taking into account the relation a2 = b2c2:

η(a2)J(a,Φ) = η(a2)ωe(a) + c(E/F, ψ)
∑

η(−c2)Kw1
e (b)ωw1(c)

+ c(E/F, ψ)
∑

η(c2)Kw2
e (b)ωw2(c).

Since the functions ω∗ are arbitrary the first assertion of the following proposition
follows at once:
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Proposition 3.2. If Φ′ ∈ C(G(F )) has vanishing orbital integrals on wGAwG there
is Φ ∈ C(S(F )) with vanishing orbital integrals on wGAwG such that the matching
conditions (19) to (21) are satisfied. Moreover, if Φ′ is supported on G(F )+ then
we can take Φ supported on S(F )+.

For the second assertion, one simply multiplies Φ by the characteristic function
of S(F )+.

Our last task will be to show that, essentially, we will not lose information
by restricting ourselves to the kind of function considered in the Introduction.
To that end we consider a unitary generic representation π of G = GL(3, F ) (or
G = GL(n, F ) with n odd). As before let G+ be the group of g ∈ G such that
det g ∈ F+. Set also A+ = A ∩ G+ and Z+ = Z ∩ G+. We let λ be a nonzero
linear form on the space of smooth vectors of π such that λ(π(n)v) = θ(n)λ(v) for
all n ∈ N(F ) and all vectors v. We define a distribution Θ on G+ by

Θ(f) =
∑

λ(π(f)vi)λ(vi),

if f is supported on G+. Here vi is any orthonormal basis of π (contained in the
space of smooth vectors). Clearly Θ transforms on the left and on the right under
the character θ of N .

Lemma 3.1. There is at least one function f which is supported on G+ and van-
ishes on A+N such that Θ(f) 6= 0.

Proof. Since n is odd, we have G(F ) = G+Z and the restriction of π to G+ is
irreducible. Suppose there is no function f with the required property. Then the
support of Θ is contained in the group NA+. Since N is normal in NA+ and Z+ is
the stabilizer of the character θ of N the support of Θ is in fact contained in NZ+.
Since Θ transforms under a character ω of Z+, then in fact

Θ(f) = c

∫
NZ+

f(nz)θ(n)ω(z) dn dz,

for a suitable constant c. Now Θ and the integral on the right, call it M(f), are
distributions of positive type. Thus c ≥ 0. Suppose c > 0. Since π restricted to G+

is irreducible, the unitary representation π (restricted to G+) can be reconstructed
from the distribution Θ by considering the positive semidefinite form

(f1, f2) 7→ Θ(f1 ∗ f∗2 ),

where we have set f∗(g) = f(g−1). The corresponding Hilbert space is the space
on which π operates, the action of G+ corresponding to right translations on f1.
The same construction applied to M produces the unitary representation of G+

induced by the character θω of NZ+. If c > 0 then π must be equivalent to this
induced representation which is absurd. Thus c = 0; that is Θ = 0. However,
the irreducibility of π under G+ implies there is a f supported on G+ such that
Θ(f) 6= 0. Thus we get a contradiction.

4. Proof of Theorem 1

We go back to the global situation and the notations of the introduction. If φ is
a cusp form on GL(3, FA) let us set

λ(φ) =

∫
φ(n)θ(n) dn.
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Then ∫
Kcusp

Φ′ (tn1, n2)θ(n−1
1 n2) dn1 dn2 =

∑
π

∑
i

λ(π(Φ′′)φi)λ(φi),(40)

where we have set Φ′′(g) = Φ′(−wGg). The outer sum is over all unitary cuspidal
representations π whose central character is equal to χ on Z+(FA) and which have
a nonzero vector invariant under K ′S =

∏
v/∈SK

′
v. For each such π, the inner sum

is over an orthonormal basis of the space of vectors invariant under K ′S . Since Φ′

and Φ′′ have support in G+(FA), the representations π and π ⊗ η give the same
contribution. For v in S let λv be a linear form on the space of πv transforming
under θv. Then the above expression can be rewritten as:∑

π

π̂S(Φ′S)c(π, S)
∏
v∈S

Θπv(Φ′′v),

where π̂S(Φ′S) is the Hecke eigenvalue associated to the function Φ′S (we set Φ′ =
(
∏
v∈S Φ′v)Φ′S). The constant c(π, S) depends only on π and the choice of the λv.

Finally, for v ∈ S:

Θπv(Φ′′v) =
∑

λv(πv(Φ′′v)Wi)λv(Wi);

the sum is over an orthonormal basis of the space of vectors invariant under K ′v.
Again, each one of these objects gives the same contribution for π and π⊗η. If v is
in S, there is Φ′v such that Θπv(Φ′′v) 6= 0. Indeed, this is clear if v splits and is finite
because there is then no constraint on the function Φ′′v . If v is Archimedean, the
only constraint is that Φ′′v be a quadruple of K ′v finite functions and our assertion
is still true. If v is inert, then it is a finite place and we demand that the orbital
integrals of Φ′v vanish on wGAwG(Fv). This is certainly the case if Φ′′v is supported
on G+

v and vanishes on B(Fv). But by Lemma 3.1 we can choose such a function
in such a way that Θπv(Φ′′v) 6= 0.

Similarly, if φ is a cuspidal automorphic representation of GL(3, EA), we set

µ(φ) =

∫
φ(h) dh, Λ(φ) =

∫
N(E)\N(EA)

φ(n)θ(nn) dn.

Then ∫
Kcusp

Φ (n)θ(nn) dn =
∑
Π

∑
i

µ(Π(f)φi)Λ(φi).(41)

Let T be the set of places of E above the places of S. The outer sum is over all
representations Π having a nonzero vector fixed under KT =

∏
v/∈T Kv and central

character z 7→ χ(zz); for each such Π the inner sum is over an orthonormal basis
of the space of vectors invariant under KT . We can also factor out the Hecke
eigenvalue to obtain ∑

Π

Π̂T (fT )
∑
i

µ(Π(fT )φi)Λ(φi).

Suppose that Π is the base change of a representation π. Then

π̂S(Φ′S) = Π̂T (fT )
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and Π is then the base change of π and π ⊗ η and of no other representation. It
follows from the identity of the spectral contributions (see (23)) that∑

i

µ(Π(fT )φi)Λ(φi) = 2c(π, s)
∏
v∈S

Θπv(Φ′′v).

Choosing the Φ′v, v ∈ S, in such a way that the right-hand side is 6= 0 we see that
µ 6= 0 on the space of Π. This concludes the proof of the theorem.
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