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On the Gross-Prasad conjecture for unitary groups
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Abstract. We propose a new approach to the Gross-Prasad conjecture for

unitary groups. It is based on a relative trace formula. As evidence for the

soundness of this approach, we prove the infinitesimal form of the relevant
fundamental lemma in the case of unitary groups in three variables.
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1. Introduction

Consider a quadratic extension of number fields E/F . Let η be the corre-
sponding quadratic idele-class character of F . Denote by σ the non trivial element
of Gal(E/F ). We often write σ(z) = z and Nr(z) = zz. Let Un be a unitary
group in n variables and Un−1 a unitary group in (n − 1) variables. Suppose that
ι : Un−1 → Un is an embedding. In a precise way, let β be an Hermitian non-
degenerate form on an E vector space Vn and let en ∈ Vn be a vector such that
β(en, en) = 1. Let Vn−1 be the orthogonal complement of en. Then let Un be the
automorphism group of βn and let Un−1 be the automorphism group of β|Vn−1 .
Then ι is defined by the conditions ι(h)en = en and ι(h)v = hv for v ∈ Vn−1.

Let π be an automorphic cuspidal representation of Un and σ an automorphic
cuspidal representation of Un−1. For φπ in the space of π and φσ in the space of σ
set

(1) AU (φπ, φσ) :=
∫

Un−1(F )\Un−1(FA)

φπ(ι(h))φσ(h)dh .

Suppose that this bilinear form does not vanish identically. Let Π be the standard
base change of π to Gln(E) and let Σ be the standard base change of σ to Gln−1(E).
For simplicity, assume that Π and Σ are themselves cuspidal. The conjecture of
Gross-Prasad for orthogonal groups extends to the present set up of unitary groups
and predict that the central value of the L−function L(s,Π× Σ) does not vanish.
Cases of this conjecture have been proved by Jiang, Ginzburg and Rallis, at least
in the context of orthogonal groups ([15] and [16]). The conjecture has to be
made much more precise. One must ask to which extent the converse is true. One
must specify which forms of the unitary group and which element of the packets
corresponding to Π and Σ are to be used in the formulation of the converse. Finally,
the relation between AU (or rather AUAU ) and the L−value should be made more
precise.

We will not discuss the general case, where there is no restriction on the repre-
sentations. We remark however that the case where σ is trivial or one dimensional
is already very interesting even in the case n = 2 (See [10]) and n = 3 (See [18],
[19], [20], also [3], [4]).

In this note we propose an approach based on a relative trace formula. The
results of this note are quite modest. We only prove the infinitesimal form of
the fundamental lemma for the case n = 3. We do not claim this implies the
fundamental lemma itself or the smooth matching of functions. We hope, however,
this will interest other mathematicians. In particular, we feel the fundamental
lemma itself is an interesting problem.

We now describe in rough form the relative trace formula at hand. Let fn and
fn−1 be smooth functions of compact support on Un(FA) and Un−1(FA) respectively.
We introduce the distribution

(2) Aπ,σ(fn ⊗ fn−1) :=
∑

AU (π(fn)φπ, σ(fn−1)φσ)AU (φπ, φσ) ,

where the sum is over orthonormal bases for each representation.
Let ι : Gln−1 → Gln be the obvious embedding. For φΠ in the space of Π and

φΣ in the space of Σ, we define

(3) AG(φΠ, φΣ) :=
∫

Gln−1(E)\Gln−1(EA)

φΠ(ι(g))φΣ(g)dg
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Thus the bilinear form AG is non-zero if and only if L( 1
2 ,Π × Σ) 6= 0. In fact we

understand completely the relation between the special value and the bilinear form
AG.

Say that n is odd. Let us also set

Pn(φΠ) =
∫

Gln(F )\Gln(FA)

φΠ(g0)dg0(4)

Pn−1(φΣ) =
∫

Gln−1(F )\Gln−1(FA)

η(det g0)φΣ(g0)dg0(5)

Strictly speaking, the first integral should be over the quotient of

{g ∈ Gln(FA) : |det g| = 1}

by Gln(F ). Similarly for the other integral. The study of the poles of the Asai
L−function and its integral representation (see [2] and [3], also [9]) predict that Pn

and Pn−1 are not identically 0. If n is even, then η must appear in the definition
of Pn and not appear in the definition of Pn−1. This will change somewhat the
following discussion but will lead to the same infinitesimal analog.

Let f ′n and f ′n−1 be smooth functions of compact support on Gln(EA) and
Gln−1(EA) respectively. Consider the distribution

(6) AΠ,Σ(f ′n ⊗ f ′n−1) :=∑
AG(Π(f ′n)φΠ, σ(f ′n−1)φΣ)Pn(φΠ)Pn−1(φΣ) ,

where the sum is over an orthonormal basis of the representations.
One should have an equality

(7) Aπ,σ(fn ⊗ fn−1) = AΠ,Σ(f ′n ⊗ f ′n−1) ,

for pairs (fn, fn−1) and (f ′n, f ′n−1) satisfying an appropriate condition of matching
orbital integrals. In turn, the equality should be used to understand the precise
relation between the L value and the bilinear form AU .

To continue, we associate to the function fn ⊗ fn−1 in the usual way a kernel
Kfn⊗fn−1(g1 : g2, h1 : h2) on

(Un(FA)× Un−1(FA))× (Un(FA)× Un−1(FA)) .

The kernel is invariant on the left by the group of rational points. We consider the
(regularized) integral

(8)
∫
(Un−1(F )\Un−1(FA))2

Kfn⊗fn−1(ι(g2) : g2, ι(h2) : h2)dg2dh2 .

Likewise, we associate to the function f ′n⊗ f ′n−1 a kernel K ′
f ′n⊗f ′n−1

(g1 : g2, h1 :
h2) on

(Gln(EA)×Gln−1(EA))× (Gln(EA)×Gln−1(EA))

and we consider the (regularized) integral

(9)
∫

K ′
f ′n⊗f ′n−1

(ι(g2) : g2, h1 : h2)dg2dh1η(deth2)dh2

where

g2 ∈ Gln−1(E)\Gln−1(EA) , h1 ∈ Gln(F )\Gln(FA) , h2 ∈ Gln−1(F )\Gln−1(FA) .
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The conditions of matching orbital integrals should guarantee that (8) and (9) are
equal. In turn this should imply (7).

In more detail, (8) is equal to∫ ∑
γ∈Un(F )

fn

(
ι(g2)−1γ ι(h2)

)
)

∑
ξ∈Un−1(F )

fn−1

(
g−1
2 ξh2

)
)dg2dh2

or ∫ ∑
γ∈Un(F )

fn (ι(g2)γ ι(h2)))
∑

ξ∈Un−1(F )

fn−1 (g2ξh2))dg2dh2 .

In the sum over γ we may replace γ by ι(ξ)γ. Then ι(g2ξ) appears. Now we combine
the sum over ξ and the integral over g2 ∈ Un−1(F )\Un−1(EA) into an integral for
g2 ∈ Un−1(EA) to get∫ ∑

γ

fn (ι(g2)γι(h2)))fn−1 (g2h2))dg2dh2 .

After a change of variables, this becomes∫ ∑
γ

fn

(
ι(g2)ι(h2)−1γ ι(h2)

)
fn−1 (g2) dg2dh2 .

At this point, we introduce a new function fn,n−1 on Un(FA) defined by

(10) fn,n−1(g) :=
∫

Un−1(FA)

fn(ι(g2)g)fn−1(g2)dg2 .

Then we can rewrite the previous expression as∫
Un−1(F )\Un−1(FA)

∑
γ

fn,n−1

(
ι(h2)−1γ ι(h2)

)
dh2 .

The group Un−1 operate on Un by conjugation:

γ 7→ ι(h)−1γι(h)

For regular elements of Un(F ) the stabilizer is trivial. Thus, ignoring terms which
are not regular, the above expression can be rewritten

(11)
∑

γ

∫
Un−1(FA)

fn

(
ι(h)−1γι(h)

)
dh ,

where the sum is now over a set of representatives for the regular orbits of Un−1(F )
in Un(F ).

Likewise, we can write (9) in the form∫ ∑
γ∈Gln(E)

f ′n(ι(g2)−1γh1)
∑

ξ∈Gln−1(F )

f ′n−1(g
−1
2 ξh2)η(deth2)dg2dh1dh2 .

The same kind of manipulation as before gives

=
∫ ∑

γ∈Gln(E)

f ′n(ι(g2)γh1)f ′n−1(g2h2)dg2dh1η(deth2)dh2

where now g2 is in Gln−1(EA). If we change variables, this becomes

=
∫ ∑

γ∈Gln(E)

f ′n(ι(g2)ι(h2)−1γh1)f ′n−1(g2)dg2dh1η(deth2)dh2 .
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We introduce a new function f ′n,n−1 on Gln(EA) defined by

f ′n,n−1(g) :=
∫

Gln−1(EA)

f ′n(ι(g2)g)f ′n−1(g2)dg2 .

The above expression can be rewritten∫ ∑
γ∈Gln(E)

f ′n,n−1(ι(h2)−1γh1)dh1η(deth2)dh2 ,

where h1 is in Gln(F )\Gln(FA) and h2 is in Gln−1(F )\Gln−1(FA). We also write
this as

(12)
∫ ∑

γ∈Gln(E)/Gln(F )

(∫
f ′n,n−1(ι(h2)−1γh1)dh1

)
η(deth2)dh2

with h1 ∈ Gln(FA).
At this point we introduce the symmetric space Sn defined by the equation

ssσ = 1. Thus

(13) Sn(F ) := {s ∈ Gln(E) : ss = 1 .}

Let Φn,n−1 be the function on Sn(FA) defined by

Φn,n−1(gg−1) =
∫

Gln(FA)

f ′n,n−1(gh1)dh1 .

The expression (12) can be written as∫
Gln−1(FA)/Gln−1(F )

∑
ξ∈Sn(F )

Φn,n−1

[
ι(h2)−1ξι(h2)

]
η(deth2)dh2 .

The group Gln(F ) operates on Sn(F ) by

s 7→ ι(g)−1sι(g) .

Again, for regular elements of Sn(F ) the stabilizer under Gln−1(F ) is trivial. Thus,
at the cost of ignoring non regular elements, we get

(14)
∑

ξ

∫
Gln−1(FA)

Φn,n−1

(
ι(h)−1ξι(h)

)
η(deth)dh ,

where the sum is over a set of representatives for the regular orbits of Gln−1(F ) in
Sn(F ).

To carry through our trace formula we need to find a way to match regular
orbits of Un−1(F ) in Un(F ) with regular orbits of Gln−1(F ) in Sn(F ). We will
use the notation ξ → ξ′ for such a matching. The global condition of matching
orbital integrals is then∫

Un−1(FA)

fn,n−1(ι(h)−1ξι(h))dh =∫
Gln−1(FA)

Φn,n−1(ι(h)−1ξ′ι(h))η(deth)dh

if ξ → ξ′. If ξ′ does not correspond to any ξ then∫
Φn,n−1(ι(h)−1ξ′ι(h)η(deth)dh = 0 .
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A formula of this type is discussed in [6], [7], [8] for n = 2. Or rather, the results
of these papers could be modified to recover a trace formula of the above type.

As a first step, we consider the infinitesimal analog of the above trave formula.
Now n needs not be odd. We set Gn = M(n × n, E). We often drop the index n
if this does not create confusion. We let Un ⊂ Gn be the Lie algebra of the group
Un. Then Un−1 operates on Un by conjugation. Likewise, we consider the vector
space Sn tangent to Sn at the origin. This is the vector space of matrices X ∈ Gn

such that X + X = 0. Again the group Gln−1(F ) operates by conjugation on Sn.
The trace formula we have in mind is

(15)
∫

Un−1(F )\Un−1(FA)

∑
ξ∈Un(F )

f
(
ι(h)−1ξι(h)

)
dh =

∫
Gln−1(F )\Gln−1(FA)

∑
ξ′∈Sn(F )

Φ
(
ι(h)−1ξ′ι(h)

)
η(deth)dh ,

where f is a smooth function of compact support on Un(FA) and Φ a smooth
function of compact support on Sn(FA). Once more, the integrals on both sides
are not convergent and need to be regularized. The equality takes place if the
functions satisfy a certain matching orbital integral condition. We will define a
notion of strongly regular elements and a condition of matching of strongly regular
elements noted

ξ → ξ′ .

Then the global condition of matching between functions is as before: if ξ → ξ′

then ∫
Un−1(FA)

f
(
ι(h)ξι(h)−1

)
dh

=
∫

Gln−1(FA)

Φ
(
ι(h)ξ′ι(h)−1

)
η(deth)dh ;

if ξ′ does not correspond to a ξ then∫
Gln−1(FA)

Φ
(
ι(h)ξι(h)−1

)
η(deth)dh = 0 .

We now investigate in detail the matching of orbits announced above.

2. Orbits of Gln−1(E)

Let E be an arbitrary field. We first introduce a convenient definition. Let
Pn, Pn−1 be two polynomials of degree n and n − 1 respectively in E[X]. We will
say that they are strongly relatively prime if the following condition is satisfied.
There exists a sequence of polynomials Pi of degree i, n ≥ i ≥ 0, where Pn and
Pn−1 are the given polynomials, and the Pi are defined inductively by the relation

Pi+2 = QiPi+1 + Pi .

In particular, P0 is a non-zero constant. In other words, we demand that the Pn and
Pn−1 be relatively prime and the Euclidean algorithm which gives the (constant)
G.C.D. of Pn and Pn−1 have exactly n−1 steps. Of course the sequence, if it exists,
is unique. Moreover, for each i, the polynomials Pi+1, Pi are strongly relatively
prime.
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Let Vn be a vector space of dimension n over the field E. We often write Vn(E)
for Vn. We set G = HomE(Vn, Vn). Let en ∈ Vn and e∗n ∈ V ∗

n (dual vector space).
Assume 〈e∗n, en〉 6= 0. Let Vn−1 be the kernel of e∗n. Thus

Vn = Vn−1 ⊕ Een .

We define an embedding ι : Gl(Vn−1(E)) → Gl(Vn(E)) by

ι(g)vn−1 = gvn−1 for vn−1 ∈ Vn−1 ,

ι(g)en = en .

We let Gl(Vn(E)) acts on V ∗
n on the right by

〈v∗g, v〉 = 〈v∗, gv〉 .
Then ι(Gl(Vn−1(E))) is the subgroup of Gl((Vn)(E)) which fixes e∗n and en.

Suppose An ∈ G. We can represent An by a matrix(
An−1 en−1

e∗n−1 an

)
,

with An−1 ∈ Hom(Vn−1, Vn−1), en−1 ∈ Vn−1, e∗n−1 ∈ V ∗
n−1, an ∈ E. This means

that, for all vn−1 ∈ Vn−1(E),

An(vn−1) = An−1(vn−1) + 〈e∗n−1, vn−1〉en

and
An(en) = en−1 + anen .

In particular
An(en−1) = An−1(en−1) + 〈e∗n−1, en−1〉en .

The group Gl(Vn−1(E)) acts on G by

A 7→ ι(g)Aι(g)−1 .

The operator ι(g)Aι(g)−1 is represented by the matrix(
gAn−1g

−1 gen−1

e∗n−1g
−1 an

)
.

Thus the scalar product 〈e∗n−1, en−1〉 is an invariant of this action. We oft3en call
it the first invariant of this action. Moreover, if we replace en and e∗n by scalar
multiples, the spaces Vn−1, Een and the scalar product 〈e∗n−1, en−1〉 do not change.
We will say that An is strongly regular with respect to the pair (en, e∗n) (or
with respect to the pair (Vn−1, en)) if the polynomials

det(An − λ) and det(An−1 − λ)

are strongly relatively prime.
Now assume that An is strongly regular with respect to (en, e∗n). We have

det(An − λ) = (an − λ) det(An−1 − λ) + R(λ)

with R of degree n − 2. The leading term of R is −〈e∗n−1, en〉(−λ)n−2. Thus
〈e∗n−1, en〉 is non-zero. Thus we can write

Vn−1 = Vn−2 ⊕ Een−1

where Vn−2 is the kernel of e∗n−1 and represent An−1 by a matrix(
An−2 en−2

e∗n−2 an−1

)
,
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with An−2 ∈ Hom(Vn−2, Vn−2), en−2 ∈ Vn−2, e∗n−1 ∈ V ∗
n−2, an−1 ∈ E. As before,

this means that

An−1(vn−2) = An−2(vn−2) + 〈e∗n−2, vn−2〉en−1

An−1(en−1) = en−2 + an−1en−1 .

Choose a basis εi, 1 ≤ i ≤ n− 2 of Vn−2. Since 〈e∗n−1, εi〉 = 0 we have

An(εi) = An−1(εi) + 〈e∗n−1, εi〉en = An−1(εi) = An−2(εi) + 〈e∗n−2, εi〉en−1 .

On the other hand,

An(en−1) = en−2 + an−1en−1 + 〈e∗n−1, en−1〉en .

Thus the matrix of An with respect to the basis

(ε1, ε2, . . . , εn−2, en−1, en)

has the form

(16)

 Mat(An−2) ∗n−2 0n−2

∗n−2 an−1 1
0n−2 〈e∗n−1, en−1〉en an


where Mat(An−2) is the matrix of An−2 with respect to the basis (ε1, ε2, . . . , εn−2).
The index n−2 indicates a column of size n−2 and the exponent n−2 a row of size
n−2. Likewise the matrix of An−1 with respect to the basis (ε1, ε2, . . . , εn−2, en−1)
has the form (

Mat(An−2) ∗n−2

∗n−2 an−1

)
.

It follows that

det(An − λ) = det(An−1 − λ)(an − λ)− 〈e∗n−1, en−1〉det(An−2 − λ) .

Thus the polynomials det(An−1 − λ) and det(An−2 − λ) are strongly relatively
prime and the operator An−1 is strongly regular with respect to (en−1, e

∗
n−1). At

this point we proceed inductively. We construct a sequence of subspaces

V1 ⊂ V2 ⊂ · · · ⊂ Vn−1 ⊂ Vn

with dim(Vi) = i, vectors ei ∈ Vi, and linear forms e∗i ∈ V ∗
i such that Vi−1 is the

kernel of e∗i . The matrix of An with respect to the basis

(e1, e2, . . . , en−1, en)

is the tridiagonal matrix

(17)



a1 1 0 0 · · · 0 0 0 0
c1 a2 1 0 · · · 0 0 0 0
0 c2 a3 1 · · · 0 0 0 0
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · cn−3 an−2 1 0
0 0 0 0 · · · 0 cn−2 an−1 1
0 0 0 0 · · · 0 0 cn−1 an


where ci = 〈e∗i , ei〉 6= 0. We note the relations

det(Ai − λ) = det(Ai−1 − λ)− ci−1 det(Ai−2 − λ) , i ≥ 2 .
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Now suppoe
(e′1, e

′
2, . . . , e

′
n−1)

is a basis of Vn−1 and the matrix of An with respect to the basis

(e′1, e
′
2, . . . , e

′
n−1, en)

has the form

a′1 1 0 0 · · · 0 0 0 0
c′1 a′2 1 0 · · · 0 0 0 0
0 c′2 a′3 1 · · · 0 0 0 0
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · c′n−3 a′n−2 1 0
0 0 0 0 · · · 0 c′n−2 a′n−1 1
0 0 0 0 · · · 0 0 c′n−1 a′n


.

Thus, for i ≥ 1
Ane′i = e′i−1 + a′ie

′
i + ci−1ei+1

(where e′n = en, e−1 = 0 and e′n+1 = 0) Call A′
i the sub square matrix obtained by

deleting the last n− i rows and the last n− i columns. Then we have

det(A′
i − λ) = det(A′

i−1 − λ)− c′i−1 det(A′
i−2 − λ) , i ≥ 2 .

Also
det(An − λ) = det(A′

n − λ) , det(An−1 − λ) = det(A′
n−1 − λ) .

It follows inductively that ai = a′i, cj = c′j , e′i = ei.
We have proved the following Proposition.

Proposition 1. If A is strongly regular with respect to the pair (Vn−1, en)
there is a unique basis

(e1, e2, . . . en−1)
of Vn−1 such that the matrix of A with respect to the basis

(e1, e2, . . . en−1, en)

has the form (17). In particular, the ai, 1 ≤ i ≤ n, and the cj, 1 ≤ j ≤ n− 1, are
uniquely determined.

Remark. If we demand that the matrix have the form

a′1 b′1 0 0 · · · 0 0 0 0
c′1 a′2 b′2 0 · · · 0 0 0 0
0 c′2 a′3 b′3 · · · 0 0 0 0
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · c′n−3 a′n−2 b′n−2 0
0 0 0 0 · · · 0 c′n−2 a′n−1 b′n−1

0 0 0 0 · · · 0 0 c′n−1 a′n


,

with respect to a basis of the form

(e′1, e
′
2, . . . e

′
n−1, en) ,

where (e′1, e
′
2, . . . e

′
n−1) is a basis of Vn−1, then a′i = ai, 1 ≤ i ≤ n, b′jc

′
j = cj ,

1 ≤ i ≤ n− 1 and the e′i are scalar multiple of the ei.
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According to [21], an element An ∈ G is regular if the vectors

Ai
n−1en−1 , 0 ≤ i ≤ n− 2

are linearly independent and the linear forms

e∗i A
i
n−1 , 0 ≤ i ≤ n− 2

are linearly independent. This is equivalent to the condition that the stabilizer
of An in Gl(Vn(E)) be trivial and the orbit of An under Gl(Vn(E)) be Zariski
closed. A strongly regular element is regular. The above and forthcoming discus-
sion concerning strongly regular elements should apply to regular elements as well.
However, we have verified it is so only in the case n = 2, 3.

3. Orbits of Gln−1(F )

Now suppose that E is a quadratic extension of F . Let σ be the non trivial
element of the Galois group of E/F .

Suppose that Vn is given an F form. For clarity we often write Vn(E) for Vn

and Vn(F ) for the F−form. We denote by v 7→ vσ the corresponding action of σ
on Vn(E). Then Vn(F ) is the space of v ∈ Vn(E) such that vσ = v. We assume
eσ
n = en and V σ

n−1 = Vn−1. We have an action of σ on HonE(Vn, Vn) noted A 7→ Aσ

and defined by
Aσ(v) = A(vσ)σ .

We denote by S the space of A ∈ HonE(Vn, Vn) such that

Aσ = −A .

The group Gl(Vn−1(F )) can be identified with the group of g ∈ Gl(Vn−1(E)) fixed
by σ. It operates on S.

We say that an element of Sn is strongly regular if it is strongly regular as an
element of HonE(Vn, Vn). We study the orbits of Gl(Vn(F )) in the set of strongly
regular elements of S.

We fix
√

τ such that E = F (
√

τ). If A is strongly regular, there is a unique
basis (e1, e2, . . . , en−1) of Vn(F ) such that the matrix of A with respect to the basis

(e1, e2, . . . , en−1, en)

has the form

(18)



a1
√

τ 0 0 · · · 0 0 0 0
c1√

τ
a2

√
τ 0 · · · 0 0 0 0

0 c2√
τ

a3
√

τ · · · 0 0 0 0
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · cn−3√

τ
an−2

√
τ 0

0 0 0 0 · · · 0 cn−2√
τ

an−1
√

τ

0 0 0 0 · · · 0 0 cn−1√
τ

an


.

Then the ai and the cj are the invariants of A. Furthermore, ai ∈ F
√

τ and
cj ∈ F×. Two strongly regular elements A and A′ of Sn are conjugate under
Gl(Vn−1(F )) if and only they are conjugate under Gl(Vn−1(E)), or, equivalently,
if and only if they have the same invariants. Finally, given ai ∈ F

√
τ , 1 ≤ i ≤ n,

and cj ∈ F×, 1 ≤ j ≤ n − 1, there is a strongly regular element of Sn with those
invariants.
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4. Orbits of Un−1

Let Vn be a E−vector space of dimension n and β a non-degenerate Hermitian
form on Vn. Let en be an anisotropic vector, that is,

β(en, en) 6= 0 .

Usually, we will scale β by demanding that β(en, en) = 1.
Let Vn−1 be the subspace orthogonal to en. Thus

Vn = Vn−1 ⊕ Een .

Let U(β) be the unitary group of β. Let θ be the restriction of β to Vn−1. and U(θ)
the unitary group of θ. Thus we have an injection ι : U(θ) → U(β). We have the ad-
joint action of U(β) on Lie(U(β)) and thus an action of U(θ) on Lie(U(β)). We have
an embedding of Lie(U(β)) into Hom(Vn, Vn). We say that an element of Lie(U(β))
is strongly regular if it is strongly regular as an element of HomE(Vn, Vn). As
before to An ∈ HomE(Vn, Vn) we associate a matrix(

An−1 en−1

e∗n−1 an

)
.

The condition that An be in Lie(U(β)) is

An−1 ∈ Lie(U(θ)), an + an = 0

and

〈e∗n−1, v〉 = −β(v, en−1)
β(en, en)

,

for all v ∈ Vn−1. Thus the first invariant of the matrix is

〈e∗n, en〉 = −β(en−1, en−1)
β(en, en)

.

Assume that An is strongly regular. Then β(en−1, en−1) 6= 0 and Vn−1 is an
orthogonal direct sum

Vn−1 = Vn−2 ⊕ Een−1 .

We can then repeat the process and obtain in this way an orthogonal basis

(e1, e2, . . . , en−1, en−1)

such that β(ei, ei) 6= 0 and the matrix of An with respect to the basis

(e1, e2, . . . , en−1, en)

has the form (17). Moreover, it is the only orthogonal basis with this property. In
addition, for 1 ≤ i ≤ n− 1,

ci = − β(ei, ei)
β(ei+1, ei+1)

.

Finally, ai ∈ F
√

τ for 1 ≤ i ≤ n and cj ∈ F× for 1 ≤ j ≤ n−1. Two strongly regular
elements of Lie(U(β)) are conjugate under U(θ) if and only if they are conjugate
under Gl(Vn−1), or, what amounts to the same, have the same invariants.

From now on let us scale β by demanding that β(en, en) = 1. Then θ determine
β and we write β = θe.
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Given ai ∈ F
√

τ , 1 ≤ i ≤ n, cj ∈ F×, 1 ≤ j ≤ n− 1 there is a non degenerate
Hermitian form θ on Vn−1, a strongly regular element A of Lie(U(θe)) whose in-
variants are the ai and the cj . The isomorphism class of θ is uniquely determined
and for any choice of θ the conjugacy class of A under U(θ) is uniquely determined.

The determinant of θ is equal to

(−1)
(n−1)n

2 c1c
2
2 · · · cn−1

n−1 .

5. Comparison of the orbits, the fundamental lemma

We now consider a E−vector space Vn and a vector en 6= 0, a linear complement
Vn−1 of en. We are also given a F−form of Vn or what amounts to the same an
action of σ on Vn. We assume that eσ

n = en and V σ
n−1 = Vn−1. For an Hermitian

form θ on Vn−1 we denote by θe the Hermitian form on Vn such that Vn−1 and
En are orthogonal, θe|Vn−1 = θ, θe(en, en) = 1. Then U(θ) ⊂ Gl(Vn−1(E)) and
Gl(Vn−1(F )) ⊂ Gl(Vn−1(E)). Let ξ be a strongly regular element of Lie(U(θe))
and ξ′ a strongly regular element of S we say that ξ′ matches ξ and we write

ξ → ξ′

if ξ and ξ′ have the same invariants, or, what amounts to the same, are conjugate
under Gl(Vn(E)). Every ξ matches a ξ′. The converse is not true. However, given
ξ′ there is a θ and a strongly regular element ξ of Lie(U(θe)) such that ξ → ξ′.
The form θ is unique, within equivalence, and the element ξ is unique, within
conjugation by U(θ).

For instance, suppose that E is a quadratic extension of F , a local, non-
Archimedean fields. Up to equivalence, there are only two choices for θ. Let θ0

be a form whose determinant is a norm and θ1 a form whose determinant is not
a norm. Let ξ′ be a strongly regular element of S(F ) and ci, 1 ≤ i ≤ n − 1 the
corresponding invariants. If

(−1)
(n−1)n

2 c1c
2
2 · · · cn−1

n−1

is a norm then ξ′ matches an element Lie(U(θe
0)). Otherwise it matches an element

of Lie(U(θe
1)).

We have a conjecture of smooth matching. If Φ is a smooth function of
compact support on S(F ) and ξ′ is strongly regular, we define the orbital integral

ΩG(ξ′,Φ) =
∫

Gl(Vn−1(F ))

Φ
(
ι(g)ξ′ι(g)−1

)
η(det g)dg .

Likewise, if fi, i = 0, 1, is a smooth function of compact support on Lie(U(θe
i )(F ),

ξi a strongly regular element, we define the orbital integral

ΩUi
(ξi, fi) =

∫
U(θe

i )(F )

fi(ι(g)ξiι(g)−1)dg .

Conjecture 1 (Smooth matching). There is a factor τ(ξ′), defined for ξ′

strongly regular with the following property. Given Φ there is a pair (f0, f1) and
conversely such that

ΩG(ξ′,Φ) = τ(ξ′)ΩUi
(ξi, fi)

if ξi → ξ′.
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We have a conjectural fundamental lemma. Assume that E/F is an unram-
ified quadratic extension and the residual characteristic is odd. Thus −1 is a norm
in E. To be specific let us take Vn = En, Vn(F ) = Fn,

en =


0
0
∗
0
1

 ,

Vn−1(E) ' En−1 the space of column vectors whose last entry is 0. Finally let θ0

be the form whose matrix is the identity matrix. Thus Lie(U(θe
0)) is the space of

matrices A ∈ M(n× n, E) such that A + tA = 0. On the other hand S(F ) is the
space of matrices A such that A + A = 0.

Let f0 (resp. Φ0) be the characteristic function of the matrices with integral
entries in Lie(U(θe

0)) (resp. S(F )). Choose the Haar measures so that the standard
maximal compact subgroups have mass 1.

Conjecture 2 (fundamental lemma). Let ξ′ be a strongly regular element of
S(F ) and ai, cj the corresponding invariants. If

c1c
2
2 · · · cn−1

n−1

has even valuation, then

ΩG(ξ′,Φ0) = τ(ξ′)ΩU0(ξ, f0) ,

where ξ ∈ Lie(U(θe
0)) matches ξ′ and τ(ξ′) = ±1. Otherwise

ΩG(ξ′,Φ0) = 0 .

Before we proceed we remark that in the general setting the linear forms

An 7→ Tr(An) , 7→ Tr(An−1)

are invariant under Gl(Vn−1(E)). Thus in the above discussion and conjectures we
may replace G := Hom(Vn, Vn) by the space

g := {An : Tr(An) = 0 , Tr(An−1) = 0} .

Then Lie(U(θ0)e) is replaced by

uθ0 := Lie(U(θe
0)) ∩ g

and S by
s := S ∩ g .

6. Smooth matching and the fundamental Lemma for n = 2

Let E/F be an arbitrary quadratic extension. We choose τ such that E = F
√

τ .
For n = 2 we take V2 = E2 and V1 = E. Then

g =
{(

0 b
c 0

)
: b, c ∈ E

}
.

The only invariant is the determinant. There is no difference between between
regular and strongly regular. The above element is regular if and only if bc 6= 0.

Similarly,

s =
{(

0 b′

c′ 0

)
: b′ + b′ = 0 , c′ + c′ = 0

}
.
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The matrix of β has the form (
θ 0
0 1

)
with θ ∈ F×. The isomorphism class of β depends on the class of θ modulo the
subgroup Nr(E×) of norms. The corresponding vector space uθ(F ) is the space of
matrices of the form (

0 b

−bθ 0

)
.

Such an element is regular if b 6= 0. The group U1(F ) = {t : tt = 1} operates by
conjugation. The action of t is given by:(

0 b

−bθ 0

)
7→
(

0 bt

−btθ 0

)
.

The only invariant of this action is the determinant. Two regular elements(
0 b1

−b1θ 0

)
,

(
0 b2

−b2θ 0

)
are in the same orbit if and only if b1b1 = b2b2. The only non-regular element is
the 0 matrix.

On the other hand s(F ) is the space of matrices of the form(
0 b

√
τ

c√
τ

0

)
, b, c ∈ F .

Such an element is regular if and only if bc 6= 0. The group F× operates by
conjugation. The action of t ∈ F× is given by(

0 b
√

τ
c√
τ

0

)
7→

(
0 bt

√
τ

t−1c√
τ

0

)
.

The orbits of non-regular elements are the 0 matrix and the orbit of the following
elements (

0
√

τ
0 0

)
,

(
0 0
1√
τ

0

)
.

The only invariant of this action is the determinant. Two regular elements(
0 b1

√
τ

c1√
τ

0

)
,

(
0 b2

√
τ

c2√
τ

0

)
are conjugate if and only if b1c1 = b2c2.

The correspondence between regular elements is as follows:(
0 b

−bθ 0

)
→

(
0 b′

√
τ

c′√
τ

0

)
if bbθ = −b′c′. Thus we have a bijection between the disjoint union of the regular
orbits of the spaces uθ(F ), θ ∈ E×/NrF

×), and the regular orbits in s(F ).
Now suppose that E/F is a local extension. Modulo the group of norms we

have two choices θ0 and θ1 for θ. For fi smooth of compact support on ui := uθi

the orbital integral evaluated on

ξi =
(

0 b

−θib 0

)
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has the form

ΩU (fi, ξi) =
∫

U1

fi

(
0 bu

−θibu 0

)
du .

The integral depends only on bb and can be written as

ΩU (fi,−θibb) .

For Φ smooth of compact support on ∫ the orbital integral evaluated on

ξ′ =
(

0 a
√

τ
1√
τ

0

)
takes the form

Ω(Φ, a) := ΩG(f, ξ′) =
∫

F×

(
0 a

√
τt

1√
tτ

0

)
η(t)d×t .

We appeal to the following Lemma

Lemma 1. Let E/F be a quadratic extension of local fields and η the corre-
sponding quadratic character. Given a smooth function of compact support φ on
F 2, there are two smooth functions of compact support on F φ1, φ2 such that∫

φ(t−1, at)η(t)d×t = φ1(a) + η(a)φ2(a)

and
φ1(0) =

∫
φ(x, 0)η(x)d×x , φ2(0) =

∫
φ(0, x)η(x)d×x .

Conversely, given φ1, φ2 there is φ such that the above conditions are satisfied.

Here we recall that the local Tate integral∫
φ(x)η(x)|x|sd×x

converges absolutely for <s > 0 and extends to a meromorphic function of s which
is holomorphic at s = 0. The improper integral∫

φ(x)η(x)d×x

is the value at s = 0.
The lemma implies that

ΩG(Φ, a) = φ1(a) + η(a)φ2(a)

where φ1, φ2 are smooth functions of compact support on F . Then the condition
that the pair (f0, f1) matches Φ becomes

ΩU (fi,−bbθi) = φ1(−bbθi) + η(−θi)φ2(−bbθi) .

It is then clear that given Φ there is a matching pair (f0, f1) and conversely.
We pass to the fundamental lemma. We assume the field are non Archimedean,

the residual characteristic is odd, and the extension is unramified. We take τ to
be a unit. We also take θ0 = 1. On the other hand θ1 is any element with odd
valuation. Let f0 be the characteristic function of the integral elements of u0. Then,
with the previous notations,

Ω(f0,−bb) = Ω(f0, ξ0) = f0

(
0 b

−b 0

)
.
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This is zero unless |bb| ≤ 1 in which case it is 1. On the other hand, let Φ0 be the
characteristic function of thee integrals elements of s. Then

ΩG(Φ0, a) =
∫

1≤|t|≤|a|−1
η(t)d×t .

This is zero unless |a| ≤ 1. Then it is zero unless a is a norm in which case it is
one.

Thus if ξ0 → ξ′, that is, a = −bb, we get

Ω(f0, ξ) = Ω(Φ0, ξ
′) .

Otherwise, we get
Ω(Φ0, ξ

′) = 0 .

The fundamental lemma is established.

7. The trace formula for n = 2

In general, it will be convenient to consider all pairs (Un, Un−1) simultaneously.
We illustrate this idea for the case n = 2. Let E/F a quadratic extension of number
fields.

The trace formula we want to consider has the following shape:

(19)
∑

θ∈E×/NrE×)

∫
U1(F )\U1(FA)

∑
ξ∈Uθ(F )

fθ

(
ι(h)−1ξι(h)

)
dh =

∫
Gl2(F )\Gl2(FA)

∑
ξ′∈s(F )

Φ
(
ι(h)−1ξ′ι(h)

)
η(deth)dh .

The left hand side converges and is equal to

∑
θ

fθ(0)Vol(U1(F )\U1(FA)) +
∑

β∈E×/NrE×)

∫
U1(FA)

fθ

(
0 tβ

−βtθ 0

)
dt

 .

The right hand side msut be interpreted as an improper integral. It is equal to∫
F×

Φ
(

0 t
√

τ
0 0

)
η(t)d×t +

∫
F×

A

Φ
(

0 0
t√
τ

0

)
η(t)d×t

+
∑

α∈F×

∫
Φ
(

0 αt
√

τ
1

t
√

τ
0

)
η(t)d×t .

For the two first terms, we recall that if φ is a Schwartz-Bruhat function on FA
then the global Tate integral ∫

φ(t)|t|sη(t)d×t

converges for <s > 1 and has analytic continuation to an entire function of s. The
improper integral ∫

φ(t)η(t)d×t

is the value of this function at s = 0. The remaining terms are absolutely conver-
gent.
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The matching condition is between a family (fθ) and a function Φ. The global
matching condition has the following form:∫

U1(FA)

fθ

(
0 tβ

−βtθ 0

)
dt =

∫
F×

A

Φ
(

0 αt
√

τ
1

t
√

τ
0

)
η(t)d×t

if −ββθ = α. At a place of F inert in E, the corresponding local matching condition
is described in the previous section. At a place which splits in E, it is elementary.
The local matching conditions imply∑

θ

fθ(0)Vol(U1(F )\U1(FA)) =

∫
F×

Φ
(

0 t
√

τ
0 0

)
η(t)d×t +

∫
F×

A

Φ
(

0 0
t√
τ

0

)
η(t)d×t .

We will not give the proof. It can be derived from [8].

8. Orbits of Gl2(E)

We take V3(E) = E3 (column vectors). We set

e3 =

 0
0
1

 .

We identify V ∗
3 to the space of row vectors with 3 entries. We take e∗3 = (0, 0, 1).

Then V2(E) = E2 is the space of row vectors whose last component is 0. We denote
by G the space HomE(V3, V3) and by g the subspace of A such that Tr(A) = 0 and
Tr(A|V2) = 0. Thus g(E) is the space of 3× 3 matrices X with entries in E of the
form:

X =

 a b x1

c −a x2

y1 y2 0


The group Gl2(E) operates on g(E). We introduce several invariants of this action:

A1(X) = det
(

a b
c −a

)
,(20)

A2(X) = (y1, y2)
(

x1

x2

)
,(21)

B1(X) = detX .(22)

We denote by R(X) the resultant of the following polynomials in λ:

det
[(

a b
c −a

)
− λ

]
, −det[X − λ] .

It is also an invariant. More explicitly,

A1(X) = −a2 − bc(23)
A2(X) = x1y1 + x2y2(24)
B1(X) = (x1y1 − x2y2)a + x1y2c + x2y1b(25)
R(X) = A1(X)A2(X)2 + B1(X)2(26)
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Clearly, X is strongly regular if and only if A2(X) 6= 0 and R(X) 6= 0. If
X is strongly regular the invariants c1, c2 and a1, a2, a3 introduced earlier can be
computed in terms of the new invariants as follows:

c2 = A2(X)(27)
−c1c

2
2 = R(X)(28)

a1 = −B1(X)A−1
2 (X)(29)

a2 = −a1(30)
a3 = 0(31)

We also introduce

B2(X) :=
(
−x2 x1

)( a b
c −a

)(
x1

x2

)
(32)

B3(X) :=
(

y1 y2

)( a b
c −a

)(
−y2

y1

)
(33)

Explicitly,

B2(X) = −2x1x2a + x2
1c− x2

2b

B3(X) = −2y1y2a + y2
1b− y2

2c

We remark that if we replace
(

x1

x2

)
by h

(
x1

x2

)
with h ∈ Sl(2, F ) then (−x2, x1)

is replaced by (−x2, x1)h−1. It follows that B2 is Sl2(E) invariant. Likewise for
B3.

We let g(E)′ be the set of X such that A2(X) 6= 0 and g(E)s the set of
X ∈ g(E)′ such that R(X) 6= 0. Thus g(E)s is the set of strongly regular elements.

Lemma 2. Every Sl2(E) orbit in g(E)′ contains a unique element of the form

X =

 a b 0
c −a 1
0 t 0


and then A1(X) = −a2 − bc, A2(X) = t 6= 0, B1(X) = −at, B2(X) = −b,
B3(X) = −t2c, R(X) = −t2bc. In particular, A2, B1, B2, B3 form a complete set
of invariants for the orbits of Sl2(E) in g(E)′.

Proof: If A2(X) 6= 0 then a fortiori
(

x1

x2

)
6= 0. Since Sl2(F ) is transitive

on the space of non-zero vectors in F 2, we may as well assume

X =

 a b 0
c −a 1
y1 y2 0


Then y2 = A2(X) 6= 0. We now conjugate X by

ι

(
1 0

−y1
y2

1

)
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and obtain a matrix like the one in the lemma. In Gl2(E) the stabilizer of the

column
(

0
1

)
and the row

(
0 t

)
(where t 6= 0) is the group

H =
{(

α 0
0 1

)
, α ∈ E×

}
Thus the stabilizer in Sl2(E) of a matrix like the one in the lemma is indeed trivial.
The remaining assertions of the lemma are easy. 2

Lemma 3. If X is in g(E)′ then X is strongly regular if and only if it is regular.

Proof: We may assume that

X =

 a b 0
c −a 1
0 t 0

 ,

with t 6= 0. Then X is strongly regular if and only R(X) = −t2bc 6= 0. On the
other hand, it is regular if and only if the column vectors(

0
1

)
,

(
b
−a

)
are linearly independent and the row vectors

(0, t), (ct,−ta)

are linearly independent. It is so if and only if b 6= 0 and c 6= 0. Our assertion
follows. 2

Lemma 4. Every orbit of Gl2(E) in g(E)s contains a unique element of the
form

X =

 a b 0
1 −a 1
0 t 0

 ,

where b 6= 0 and t 6= 0. Then

A1(X) = −a2 − b

A2(X) = t

B1(X) = −at

R(X) = −bt2

If the invariants A1, A2, B1 take the same values on two matrices in g(E)s, then
they are in the same orbit of Gl2(E). Finally, given a1, a2, b1 in E with a2 6= 0
and a1a

2
2 + b2

1 6= 0 there is X ∈ g(E)s such that A1(X) = a1, A2(X) = a2 and
B1(X) = b1.

Proof: The first assertion follows from the general case, or more simply, from
the previous Lemma. Indeed, by the previous lemma, every orbit contains an
element of the form

X =

 a b 0
c −a 1
0 t 0
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and then −bct2 = R(X). Thus bc 6= 0. Conjugating by

ι

(
c 0
0 1

)
we obtain an element of the required form. The stabilizer of this element in Gl2(E)
is trivial. The remaining assertions are obvious. 2

9. Orbits of Gl2(F )

Now we consider the orbits of Gl2(F ) in s. Of course, s =
√

τg(F ). We define
s′ = s ∩ g(E)′ and ss = s ∩ g(E)s. For Y ∈ g(F ), we have

A1(
√

τY ) = τA1(Y )
A2(

√
τY ) = τA2(Y )

B1(
√

τY ) = τ
√

τB1(Y ) .

Also
R(
√

τY ) = τ3R(Y ) .

Thus, on ss, the functions A1, A2 (with values in F ) together with the function B1

(with values in F
√

τ) form a complete set of invariants for the action of Gl2(F ).
Conversely, given a1 ∈ F , a2 ∈ F× and b1 ∈ F

√
τ such that a1a

2
2 + b2

1 6= 0 there is
X ∈ ss with those numbers for invariants.

10. Orbits of the unitary group

We formulate the fundamental lemma in terms of the Hermitian matrix

θ0 =
(

0 1
1 0

)
,

rather in terms of the Hermitian unit matrix. Then

θe
0 =

 0 1 0
1 0 0
0 0 1

 .

We let U2,1 be the unitary group for the Hermitian matrix θe
0. Thus the Lie algebra

of U2,1 is the space U(F ) of matrices Ξ of the form

Ξ =

 a b z1

c d z2

−z2 z1 e


with a + d = 0, b ∈ F

√
τ , c ∈ F

√
τ , e ∈ F

√
τ . We let U1,1 be the unitary group for

the Hermitian matrix θ0. The corresponding Hermitian form is

Q(z1, z2) = z1z2 + z2z1

We embeds U1,1 into U2,1 by

ι(u) =
(

u 0
0 1

)
.
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We obtain an action of U1,1(F ) by conjugation. As before, we set u = U ∩ g. Thus
u is the space of matrices Ξ of the form

(34) Ξ =

 a b z1

c −a z2

−z2 −z1 0

 , a ∈ F, b ∈ F
√

τ , c ∈ F
√

τ .

Then

A1(Ξ) = −a2 − bc

A2(Ξ) = −Q(z1, z2)
B1(Ξ) = a(z1z2 − z2z1)− bz2z2 − cz1z1

We set u′ = u ∩ g′ and us = u ∩ gs. We study directly the orbits of U1,1 on us.

Lemma 5. For t ∈ F× choose (z1,0, z2,0) such that Q(z1,0, z2,0) = −t. Any
orbit of SU1,1 in u′ on which A1 takes the value t contains a unique element of the
form  a b z1,0

c −a z2,0

−z2,0 −z1,0 0


Proof: Since SU1,1 acting on E2 is transitive on the sphere S−t = {v ∈

E2|Q(v) = −t} and each point of the sphere has a trivial stabilizer in SU1,1, our
assertion is trivial. 2

Lemma 6. For t ∈ F× choose (z1,0, z2,0) such that Q(z1,0, z2,0) = −t. Any
orbit of U1,1 in us on which A1 takes the value t contains an element of the form

Ξ =

 a b z1,0

c −a z2,0

−z2,0 −z1,0 0


The stabilizer in U1,1 of such an element is trivial. Moreover A1(Ξ) ∈ F , A2(Ξ) ∈
F , B1(Ξ) ∈ F

√
τ and −R(Ξ) is a non-zero norm. A1(Ξ), A2(Ξ), B1(Ξ) completely

determine the orbit of Ξ. Finally, if a1 ∈ F , a2 ∈ F and b1 ∈ F
√

τ are such that
a2 6= 0, a1a

2
2 + b2

1 6= 0 and −(a1a
2
2 + b2

1) is a norm, then there is Ξ in us such that
A1(Ξ) = a1, A2(Ξ) = a2 and B1(Ξ) = b1.

Proof: As before, the orbit in question contains a least one element of this
type, say Ξ0. To prove the remaining assertions we introduce the matrix

M =
(
−z1,0t

−1 z1,0

z2,0t
−1 z2,0

)
∈ Sl2(E) .

Then
tM

(
0 1
1 0

)
M =

(
t−1 0
0 −t

)
.

It follows that ι(M)−1U ι(M) is the Lie algebra of the unitary group for the Her-
mitian matrix  t−1 0 0

0 −t 0
0 0 1
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Then ι(M)−1uι(M) becomes the space of matrices of the form α β z1

βt−2 −α z2

−z1t
−1 z2t 0

 , α ∈ F
√

τ .

and Ξ1 = ι(M)−1Ξ0ι(M) is a matrix of the form

Ξ1 =

 α1 β1 0
β1t

−2 −α1 1
0 t 0

 .

We have

A1(Ξ0) = A1(Ξ1) = −α2
1 − β1β1t

−2

A2(Ξ0) = A2(Ξ1) = t

B1(Ξ0) = B1(Ξ1) = −α1t

R(Ξ0) = R(Ξ1) = −β1β1

The stabilizer H of the column (0, 1) and the row (0, t) in the group ι(M)−1U1,1ι(M)
is the group (

u 0
0 1

)
, u ∈ U1 .

Since Ξ1 is in g(E)s we have β1 6= 0. Thus the stabilizer of Ξ1 of Ξ1 in H or in
ι(M)−1U1,1ι(M) is trivial. If the invariants A1, A2, B1 take the same value on two
such elements Ξ1 and Ξ2 of ι(M)−1uι(M), then we have t1 = t2, α1 = α2 and
β1β1 = β2β2. Then β1 = β2u with u ∈ U1. Then Ξ1 and Ξ2 are conjugate by an
element of H. 2

11. Comparison of orbits

In accordance with our general discussion, we match the orbit of Ξ ∈ us with
the orbit of X ∈ ss and we write Ξ → X if the matrices are conjugate by Gl2(E),
or, what amounts to the same, if they have the same invariants A1, A2, B1. In
particular, we have the following Proposition.

Proposition 2. Given X ∈ ss, there is a matrix Ξ in us which matches X if
and only if −R(X) is a (non-zero) norm.

12. The fundamental lemma for n = 3

We now let E/F be an unramified quadratic extensions of non-Archimedean
fields. We assume the residual characteristic is not 2. We let fu be the charac-
teristic function of the matrices with integral entries in u and Φs be similarly the
characteristic function of the set of matrices with integral entries in s. For Ξ ∈ us

we set

(35) ΩU (Ξ) =
∫

U1,1

fu(uΞu−1)du

Likewise, for X ∈ ss we set

(36) ΩG(X) =
∫

Gl2(F )

Φ0(gXg−1)η(det g)dg
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The fundamental lemma asserts that if Ξ matches X then

(37) ΩU (Ξ) = τ(X)ΩG(X)

where τ(X) = ±1 is the transfer factor. If, on the contrary, X matches no Ξ then

ΩG(X) = 0 .

To prove the fundamental lemma we exploit the isomorphism between U1,1 and
Sl(2, F ). Now U1,1 is the product of the normal subgroup SU1,1 and the torus

T =
{

t =
(

z 0
0 z−1

)
, z ∈ E×

}
.

with intersection

T ∩ SU1,1 =
{

t =
(

a 0
0 a−1

)
, a ∈ F×

}
.

Let T0 be the subgroup of t ∈ T with |z| = 1. Then U1,1 = SU1,1T0.
The function fu is invariant under T0. Thus, in fact,

ΩU (Ξ) =
∫

SU1,1

fu(uΞu−1)du .

To establish the fundamental lemma we will use the isomorphism θ : SU1,1 →
Sl2(F ) defined by

(38) θ(g) =
( √

τ 0
0 1

)
g

( 1√
τ

0
0 1

)
and a compatible F−linear bijective map Θ : u → g(F ) defined as follows. If

Ξ =

 α β z1

γ −α z2

−z2 −z1 0

 , α ∈ F, β ∈
√

τF, γ ∈
√

τF

then

(39) Θ(Ξ) = X , X =

 a b x1

c −a x2

y1 y2 0


where

a = α b = β
√

τ c = γ√
τ

x1 = z1+z1
2 y1 = z2+z2

2

x2 = z2−z2
2
√

τ
y2 = −

√
τ(z1−z1)

2

The inverse formulas for z1, z2 read

z1 = x1 −
y2√
τ

, z2 = y1 + x2

√
τ .

Note that (
a b
c −a

)
=
( √

τ 0
0 1

)(
α β
γ −α

)( 1√
τ

0
0 1

)
.

The linear bijection Θ has the following property of compatibility with the isomor-
phism θ:

Θ(ι(g)Ξι(g)−1) = ι(θ(g))Θ(Ξ)ι(θ(g))−1

for g ∈ SU(1, 1).
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We can use Θ to define an action µ of T on g. It is defined by

Θ
(
ι(t)Ξι(t)−1

)
= µ(t) (Θ(Ξ)) .

Explicitly if t = diag(z, z−1), z = p +
√

τ , then

µ(t)

 a b x1

c −a x2

y1 y2 0

 =

 a bzz px1 − qy2

c(zz)−1 −a px2+qy1
p2−q2τ

py1+qτx2
p2−q2τ py2 − qτx1 0


For t ∈ T ∩ SU1,1 = T ∩ Sl2(F ) µ(t)t is the conjugation by ι(t). Again T =
T0(T ∩ Sl2(F )).

We compare the invariants of Ξ and X = Θ(Ξ). From

−z2z1 − z1z2 = −2(x1y1 + x2y2)

and
α(z1z2 − z2z1)− βz2z2 − γz1z1 =

√
τ(2ax1x2 + bx2

2 − cx2
1) +

1√
τ

(2ay1y2 − by2
1 + cy2

2)

we get

A1(Ξ) = A1(Θ(Ξ))(40)
A2(Ξ) = −2A2(Θ(Ξ))(41)

B1(Ξ) = −
√

τB2(Θ(Ξ))− 1√
τ

B3(Θ(Ξ))(42)

Also

R(Ξ) = 4A1(X)A2(X)2 + τB2(X)2 +
1
τ

B3(X)2 + 2B2(X)B3(X) .

We let g̃(F ) be the image of us under Θ. Thus g̃(F ) is contained in g(F )′. The
functions A1, A2 and −

√
τB2 − 1√

τ
B3 form a complete set of invariants for the

action of Sl2(F ) and T0 on g̃.
We will let Φ0 be the characteristic function of the set of integers in g(F ). For

X ∈ g′ we set

(43) ΩSl2(X) =
∫

Sl2(F )

Φ0(ι(g)Xι(g)−1)dg .

Thus ΩU (Ξ) = ΩSl2(Θ(Ξ)).
We match the orbits of U2,1 in us with the orbits of Gl2(F ) in ss by matching

the invariants: for Ξ in us and Y ∈ g(F )s, Ξ →
√

τY if

A1(Ξ) = A1(
√

τY )
A2(Ξ) = A2(

√
τY )

B1(Ξ) = B1(
√

τY )

This leads to the following relation in terms of X = Θ(Ξ) and Y :

A1(X) = τA1(Y )

−2A2(X) = τA2(Y )
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−
√

τB2(X)− 1√
τ

B3(X) = τ
√

τB1(Y )

The last relation can be simplified:

−τB2(X)−B3(X) = τ2B1(Y )

To make this relation explicit, we may replace X ∈ g̃(F ) by a conjugate under
Sl2(F ) and thus assume:

(44) X =

 a1 b1 0
c1 −a1 1
0 t1 0


The condition that X be in g̃(F ) reads

t1 6= 0 , τb2
1 +

t41c
2
1

τ
− 2b1c1t

2
1 − 4a2

1t
2
1 6= 0 .

The second condition can also be written as

(
√

τb1 −
t21c1√

τ
)2 − 4a2

1t
2
1 6= 0 .

As a matter of fact, assuming t1 6= 0, the second condition fails only if a1 = 0 and
τb1 = t21c1.

Likewise, we may assume:

(45) Y =

 a b 0
c −a 1
0 t 0


Then

A1(Y ) = −a2 − bc

A2(Y ) = t

B1(Y ) = −ta

Moreover R(
√

Y ) = τ3R(Y ) = −bcτ3t2. This matrix is in g(F )s if and only if t 6= 0
and bc 6= 0. It matches some X if and only if −R(

√
Y ) is a norm. Since −τ is a

norm this is equivalent to −bc being a norm.
The condition of matching of orbits becomes: X → Y if

a2
1 + b1c1 = τ(a2 + bc)(46)

−2t1 = τt(47)
τb1 + t21c1 = −τ2ta(48)

In a precise way, this system of equations for (a1, b1, c1, t1) has a solution if and
only if −bc is a norm. If we write

(49) −τ2bc = y2 − τa2
1

then we can take a1 for the first entry of X, and then take t1 = − τt
2 ,

(50) b1 = − t

2
(y + τa) , c1 =

2
tτ

(y − τa) .

Note that a1 = 0 and τb1 = t21c1 would imply y = 0 and thus bc = 0. Thus X is
indeed in g̃(F ).

The fundamental lemma takes then the following form.
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Theorem 1 (The fundamental lemma for n = 3). For Y ∈ g(F )s of the
form (45) define

(51) ΩGl2(Y ) =
∫

Gl2(F )

Φ0(gY g−1)η(det g)dg .

If −bc is not a norm then ΩGl2(Y ) = 0. If −bc is a norm, let (a1, b1, c1, t1) satisfying
the conditions (46) and let X be the element of g̃(F ) defined by (44). Then

ΩGl2(Y ) = η(c)ΩSl2(X)

We now prove the fundamental lemma.

13. Orbital integrals for Sl2(F )

In this section we compute the orbital integral ΩSl2(X) where

(52) X =

 a b 0
c −a 1
0 t 0

 .

Suppose ΩSl2(X) 6= 0. This implies that the orbit of X intersects the support of
Φ0 we get that the invariants of X are integral. In particular a2 + bc, t, at, b, t2c are
all integers.

We set

g = k

(
m 0
0 m−1

)(
1 u
0 1

)
, k ∈ Gl2(OF ) ,

dg = dk|m|2d×mdk

The integration over k is superfluous. Thus we get

ΩSl2(X) =∫ ∫
Φ0

 a + cu m2(b− 2au− u2c) mu
cm−2 −a− cu m−1

0 tm 0

 du|m|2d×m .

Lemma 7. The integral converges absolutely, provided t 6= 0.

Proof: Indeed the range of u and m are limited by

|u| ≤ |m|−1 , 1 ≤ |m| ≤ |t|−1 .

Thus the integral is less than the integral∫ ∫
|u|≤|m|−1,1≤|m|≤|t|−1

du|m|2d×m

=
∫

1≤|m|≤|t|−1
|m|d×m

which is finite. 2

Explicitly, the integral is equal to∫ ∫
du|m|2d×m

over  |a + cu| ≤ 1 |u| ≤ |m|−1

|c| ≤ |m|2 1 ≤ |m| ≤ |t|−1

|b− 2au− u2c| ≤ |m|−2
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We first compute the integral for c 6= 0. We may change u to uc−1 to get

|c|−1

∫ ∫
du|m|2d×m |a + u| ≤ 1 |u| ≤ |cm−1|

|c| ≤ |m|2 1 ≤ |m| ≤ |t|−1

|a2 + bc− (a + u)2| ≤ |cm−2|
Since |a2 + bc| ≤ 1 and |cm−2| ≤ 1 we see that the condition |a + u| ≤ 1 is
superfluous. We may then change u to u− a to obtain

(53) ΩSl2(X) = |c|−1

∫ ∫
du|m|2d×m{

|u− a| ≤ |cm−1| |a2 + bc− u2| ≤ |cm−2|
|c| ≤ |m|2 1 ≤ |m| ≤ |t−1|

Before embarking on the computation, we prove a lemma which will show that the
orbital integral ΩGl2 converges absolutely.

Lemma 8. Let ω be a compact set of F×. Then, with the previous notations,
the relations A2(X) ∈ ω, R(X) ∈ ω and ΩSl2(X) 6= 0 imply that c is in a compact
set of F×.

Proof: Indeed, both t and bc are then in compact sets of F×. If ΩSl2(X) 6= 0
then there are m and u satisfying the above conditions. We have then |c| ≤ |t−2| so
that |c| is bounded above. If |bc| ≤ |cm−2| then, since |m−1| ≤ 1 we have |c| ≥ |bc|
and |c| is bounded below. If |cm−2| < |bc| then |a2 − u2| = |bc|. Now |a2 + bc| ≤ 1
so |a| is bounded above. Thus |u| is also bounded above. Hence |a + u| is bounded
above by A say. Then |bc| ≤ A|a − u| ≤ |cm−1|A ≤ |c|A. Hence |c| ≥ |bc|A−1.
Thus |c| is bounded below, away from zero, in all cases. 2

We have now to distinguish various cases depending on the square class of
−A1(X) = a2 + bc.

13.1. Some notations. To formulate the result of our computations in a
convenient way, we will introduce some notations.

For A ∈ F× we set

(54) µ(A) :=
∫

1≤|m|≤|A|
|m|d×m

Thus µ(A) = 0 if |A| < 1. Otherwise µ(A) = |A|−q−1

1−q−1 . In particular, if |A| = 1,
then µ(A) = 1. Note that the above integral can be written as a sum∑

1≤|m|≤|A|

|m|

where the sum is over powers of a uniformizer satisfying the required inequalities.
If A,B,C, . . . , are given then we set

(55) µ(A,B,C, . . . ) := µ(D) where |D| = inf (|A|, |B|, |C|, . . .)
We also define

µ(A : B) :=
∫
|B|≤|m|≤|A|

|m|d×m .

Thus µ(A : 1) = µ(A). We also define

µ(A,B,C, · · · : P,Q,R, . . .) = µ(D : S)
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where |D| = inf (|A|, |B|, |C|, . . . ) while |S| = sup (|P |, |Q|, |R|, . . .). Then

µ(A,B,C · · · : D) = |D|µ(AD−1, BD−1, CD−1 · · · ) .

Clearly, if 1 ≤ |C| ≤ inf(|A|, |B|), then

(56) µ(A,B : C$−1) + µ(C) = µ(A,B) .

We will use frequently the following elementary lemma.

Lemma 9. The difference

µ(A,B, C)− µ(A$,B,C)

is 0 unless 1 ≤ |A| ≤ inf(|B|, |C|), in which case, the difference is |A|.

For A ∈ F× we set

(57) ν(A) :=
∫

1≤|m|≤|A|
d×m

Thus ν(A) = 0 if |A| < 1. Otherwise ν(A) = 1 − v(A). In particular, if |A| = 1,
then ν(A) = 1. If A,B,C, . . . , are given then we set

(58) ν(A,B, C, . . . ) = ν(D) , |D| = inf (|A|, |B|, |C|, . . .)
We also define

ν(A : B) =
∫
|B|≤|m|≤|A|

d×m

Thus ν(A : 1) = ν(A). We define also

ν(A,B,C, · · · : P,Q,R, . . .) = ν(D : S)

where
|D| = inf (|A|, |B|, |C|, . . . ) , |S| = sup (|P |, |Q|, |R|, . . .) .

Clearly,

(59) ν(A,B,C · · · : D) = ν(AD−1, BD−1, CD−1 · · · ) .

We will use frequently the following elementary lemma:

Lemma 10. The difference

ν(A,B,C)− ν(A$,B,C)

is zero unless 1 ≤ |A| ≤ inf(|B|, |C|) in which case it is 1.

If x ∈ F× is an element of even valuation, then we denote by v
√

x any element
of F× whose valuation is one-half the valuation of x. If x has odd valuation then
v
√

x$ is defined but not v
√

x. With this convention, the condition

|a| ≤ |x2| ≤ |b|
is equivalent to

(60)
∣∣∣∣{ v

√
a

v
√

a$−1

}∣∣∣∣ ≤ |x| ≤
∣∣∣∣{ v

√
b

v
√

b$

}∣∣∣∣ .

If |a| ≤ |b| then

(61) |a| ≤
∣∣∣∣{ v

√
ab

v
√

ab$

}∣∣∣∣ ≤ ∣∣∣∣{ v
√

ab
v
√

ab$−1

}∣∣∣∣ ≤ |b| .
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13.2. Case where a2+bc is odd. Suppose first a2 +bc has odd valuation, or,
as we shall say, is odd. Then there is a uniformizer $ such that a2 + bc = δ2$. In
the range (53) for the integral the quadratic condition becomes |δ2$−u2| ≤ |cm−2|
and, in turn, this is equivalent to |δ2$| ≤ |cm−2| and |u2| ≤ |cm−2|. Thus the
integral is equal to

(62) |c|−1

∫ ∫
du|m|2d×m

over  |u| ≤
∣∣∣∣{ v

√
c

v
√

c$

}∣∣∣∣ |m−1| |u− a| ≤ |cm−1|

1 ≤ |m| ≤ |t−1| |c| ≤ |m2| ≤ |cδ−2$−1|
If |c| ≤ 1 then the condition |c| ≤ |m2| is superfluous. Moreover

|c| ≤
∣∣∣∣{ v

√
c

v
√

c$

}∣∣∣∣ .

Thus the two conditions on u can be rewritten

|u− a| ≤ |cm−1| , |a| ≤
∣∣∣∣{ v

√
c

v
√

c$

}∣∣∣∣ |m−1|

The integral over u is then equal to |cm−1| and so we are left with

(63)
∫
|m|d×m

over the domain
1 ≤ |m|

|m| ≤ |t−1| , |m| ≤
∣∣∣∣{ v

√
c

v
√

c$

}∣∣∣∣ |a−1| , |m| ≤
∣∣∣∣{ v

√
c

v
√

c$−1

}∣∣∣∣ |δ−1| .

With the notation (55) we have, for |c| ≤ 1,

ΩSl2(X) = µ

(
t−1, δ−1

{
v
√

c
v
√

c$−1

}
, a−1

{
v
√

c
v
√

c$

})
.

We pass to the case |c| > 1. Then the condition |c| ≤ |m2| implies the condition
1 ≤ |m|. On the other hand, since∣∣∣∣{ v

√
c

v
√

c$

}∣∣∣∣ ≤ |c| .

the conditions on u become

|u| ≤
∣∣∣∣ v
√

c
v
√

c$

∣∣∣∣ |m−1| , |a| ≤ cm−1| .

The integral over u is then equal to∣∣∣∣ v
√

c
v
√

c$

∣∣∣∣ |m−1|

and so we are left with

(64)

∣∣∣∣∣ 1
v
√

c
1

v√
c$−1

∣∣∣∣∣
∫
|m|d×m

over ∣∣∣∣ v
√

c
v
√

c$−1

∣∣∣∣ ≤ |m|
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|m| ≤ |ca−1| , |m| ≤ |t−1| , |m| ≤
∣∣∣∣ v
√

c
v
√

c$−1

∣∣∣∣ |δ−1|

We change m to

m

{
v
√

c
v
√

c$−1

}
and we get ∫

|m|d×m

over
1 ≤ |m|

|m| ≤
∣∣∣∣ v
√

c
v
√

c$

∣∣∣∣ |a−1| , |m| ≤

∣∣∣∣∣ 1
v
√

c
1

v√
c$−1

∣∣∣∣∣ |t−1| , |m| ≤ |δ−1|

Thus, for |c| > 1, we find

ΩSl2(X) = µ

(
t−1

{
1
v
√

c
1

v√
c$−1

}
, δ−1, a−1

{
v
√

c
v
√

c$

})
Proposition 3. In summary, if a2 +bc = δ2$, (or more generally if a2 +bc =

δ2$ε where ε is a unit and $ a uniformizer), then

(65) ΩSl2(X) =


µ

(
t−1 , δ−1

{
v
√

c
v
√

c$−1

}
, a−1

{
v
√

c
v
√

c$

})
if |c| ≤ 1

µ

(
t−1

{
1
v
√

c
1

v√
c$−1

}
, δ−1 , a−1

{
v
√

c
v
√

c$

})
if |c| > 1

.

We note that if a = 0 the identity is to be interpreted as

ΩSl2(X) =


µ

(
t−1 , δ−1

{
v
√

c
v
√

c$−1

})
if |c| ≤ 1

µ

(
t−1

{
1
v
√

c
1

v√
c$−1

}
, δ−1

)
if |c| > 1

.

13.3. Case where a2 + bc is even but not a square. We now assume that
a2 + bc has even valuation but is not a square. T hus a2 + bc = δ2τ where τ is a
unit and a non-square. In the range for the integral (53) the quadratic condition
on u becomes |δ2τ − u2| ≤ |cm−2|. In turn this is equivalent to |δ2| ≤ |cm−2| and
|u2| ≤ |cm−2|. Thus the integral is equal to

(66) |c|−1

∫
du|m|2d×m

over  |u| ≤
∣∣∣∣{ v

√
c

v
√

c$

}∣∣∣∣ |m−1| |u− a| ≤ |cm−1|

1 ≤ |m| ≤ |t−1| |c| ≤ |m2| ≤ |cδ−2|
If |c| ≤ 1 then the condition |c| ≤ |m2| is superfluous. The conditions on u can

be rewritten

|u− a| ≤ |cm−1| , |a| ≤
∣∣∣∣{{ v

√
c

v
√

c$

}}∣∣∣∣ |m−1|
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After integrating over u we find

(67)
∫
|m|d×m

over
1 ≤ |m|

|m| ≤ |t−1| , |m| ≤
∣∣∣∣{ v

√
c

v
√

c$

}∣∣∣∣ |a−1| , |m| ≤
∣∣∣∣{ v

√
c

v
√

c$

}∣∣∣∣ |δ−1|

Thus, for |c| ≤ 1,

ΩSl2(X) = µ

(
t−1 , δ−1

{
v
√

c
v
√

c$

}
, a−1

{
v
√

c
v
√

c$

})
If |c| > 1, then the condition 1 ≤ |m| is superfluous. On the other hand, the

conditions on u become

|u| ≤
∣∣∣∣{ v

√
c

v
√

c$

}∣∣∣∣ |m−1| , |a| ≤ |cm−1|

After integrating over u we find∣∣∣∣∣
{

1
v
√

c
1

v√
c$−1

}∣∣∣∣∣
∫
|m|d×m

over ∣∣∣∣{ v
√

c
v
√

c$−1

}∣∣∣∣ ≤ |m|

|m| ≤ |t−1| , |m| ≤ |ca−1| , |m| ≤ |δ−1|
∣∣∣∣{ v

√
c

v
√

c$

}∣∣∣∣
We change m to

m

{
v
√

c
v
√

c$−1

}
to get ∫

|m|d×m

over
1 ≤ |m|

|m| ≤ |a−1|
∣∣∣∣{ v

√
c

v
√

c$

}∣∣∣∣ , |m| ≤ |δ−1|
∣∣∣∣{ 1

$

}∣∣∣∣ , |m| ≤ |t−1|

∣∣∣∣∣ 1
v
√

c
1

v√
c$−1

∣∣∣∣∣
Thus, for |c| > 1 we get

ΩsL2(X) = µ

(
t−1

{
1
v
√

c
1

v√
c$−1

}
, δ−1

{
1
$

}
, a−1

{
v
√

c
v
√

c$

})
.

We have proved the following Proposition.

Proposition 4. If a2 + bc = δ2τ where τ is a non square unit and δ 6= 0, then
(68)

ΩSl2(X) =


µ

(
t−1 , δ−1

{
v
√

c
v
√

c$

}
, a−1

{
v
√

c
v
√

c$

})
if |c| ≤ 1

µ

(
t−1

{
1
v
√

c
1

v√
c$−1

}
, δ−1

{
1
$

}
, a−1

{
v
√

c
v
√

c$

})
if |c| > 1
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The meaning of the notations is that if c is even, then the formula is true with

the top element of each column
{
•
•

}
. On the contrary, if c is odd, then the

formula is true with the bottom element of each column
{
•
•

}
.

13.4. Case where a2 + bc is a square and c 6= 0. We now assume that
a2 + bc = δ2 with δ ∈ F× and c 6= 0. Then a ± δ 6= 0. In (53), the quadratic
condition on u becomes |δ2 − u2| ≤ |cm−2|. This condition is satisfied if and only
if one of the three following conditions is satisfied:

(69)
I |δ2| ≤ |cm−2| |u2| ≤ |cm−2|
II |cm−2| < |δ2| |u− δ| ≤ |cm−2δ−1|
III |cm−2| < |δ2| |u + δ| ≤ |cm−2δ−1|

Accordingly, we write the integral as a sum of three terms ΩI
Sl2

, ΩII
Sl2

, ΩIII
Sl2

.
The term ΩI

Sl2
is given by the same expression as before namely (68).

It clear that the term ΩIII
Sl2

is obtained from the term ΩII
Sl2

by exchanging δ and
−δ. Thus we have only to compute ΩII

Sl2
:

(70) ΩII
Sl2 = |c|−1

∫
|m|2d×m

over  |u− a| ≤ |cm−1| |u− δ| ≤ |cm−2δ−1|
|cδ−2| < |m2| |c| ≤ |m2|
1 ≤ |m| |m| ≤ |t−1|

We remark that |a2 + bc| ≤ 1 implies |δ| ≤ 1 and so the condition |cδ−2| < |m2|
implies |c| ≤ |m2|. We further divide the domain of integration into two sub
domains defined by |m| ≤ |δ−1| and |δ−1| < |m| respectively. The last condition
implies 1 ≤ |m|. Correspondingly, we write ΩII

Sl2
as the sum of two terms ΩII.1

Sl2
and

ΩII.2
Sl2

defined respectively by

(71) ΩII.1
Sl2 = |c|−1

∫
|m|2d×m

over  |u− a| ≤ |cm−1| |u− δ| ≤ |cm−2δ−1|
|cδ−2| < |m2| 1 ≤ |m|
|m| ≤ |δ−1| |m| ≤ |t−1|

and

(72) ΩII.2
Sl2 = |c|−1

∫
|m|2d×m

over  |u− a| ≤ |cm−1| |u− δ| ≤ |cm−2δ−1|
|cδ−2| < |m2| |δ−1| < |m|
|m| ≤ |t−1|

In ΩII.1
Sl2

the conditions on u are equivalent to

|u− a| ≤ |cm−1| , |a− δ| ≤ |cm−2δ−1|
The second condition can be written

|m| ≤
∣∣∣∣{ δ−1 v

√
cδ(a− δ)−1

δ−1 v
√

cδ(a− δ)−1$

}∣∣∣∣ .
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After integrating over u, we find:

(73) ΩII.1
Sl2 =

∫
|m|d×m

over 
|m| ≤ |δ−1| |m| ≤ |t−1|
1 ≤ |m| |cδ−2| < |m|2

|m| ≤
∣∣∣∣{ δ−1 v

√
cδ(a− δ)−1

δ−1 v
√

cδ(a− δ)−1$

}∣∣∣∣
If |cδ−2| < 1 then the condition |cδ−2| < |m2| is implied by 1 ≤ |m|. Thus we

find, for |cδ−2| < 1,

ΩII.1
Sl2 = µ

(
t−1, δ−1, δ−1

{
v
√

cδ(a− δ)−1

v
√

cδ(a− δ)−1$

})
If |cδ−2| ≥ 1 then the condition |cδ−2| < |m2| implies the condition 1 ≤ |m|.

On the other hand, the conditions |cδ−2| < |m2| is equivalent to∣∣∣∣{ δ−1$−1 v
√

c

δ−1 v
√

c$−1

}∣∣∣∣ ≤ |m| .

Thus we find, for |cδ−2| ≥ 1,

ΩII.1
Sl2 = µ

(
t−1 , δ−1 , δ−1

{
v
√

cδ(a− δ)−1

v
√

cδ(a− δ)−1$

}
:
{

δ−1$−1 v
√

c

δ−1 v
√

c$−1

})
We pass to the computation of ΩII.2

Sl2
. The conditions on u read:

|u− δ| ≤ |cm−2δ−2| , |a− δ| ≤ |cm−1| .

Thus, after integrating over u, we find

(74) ΩII.2
Sl2 = |δ−1|

∫
d×m

over {
|δ−1| < |m| |cδ−2| < |m2|
|m| ≤ |t−1| |m| ≤ |c(a− δ)−1|

If |c| ≤ 1 then the condition |cδ−2| < |m2| is already implied by |δ−1| < |m|.
Thus we find the domain of integration is

|δ−1$−1| ≤ |m| , |m| ≤ |t−1| , |m| ≤ |c(a− δ)−1| .

Thus after a change of variables, we get

|δ−1|
∫

d×m

over
1 ≤ |m| , |m| ≤ δ$|t−1| , |m| ≤ |δ$c(a− δ)−1|

or
|δ−1|ν

(
cδ$(a− δ)−1, δ$t−1

)
.

If |c| > 1 then the relation |δ−1| < |m| is implied by |cδ−2| < |m2|. This
relation is equivalent to ∣∣∣∣{ v

√
cδ−1$−1

v
√

c$$−1δ−1

}∣∣∣∣ .
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After a change of variables, we find, for |c| > 1,

(75) ΩII.2
Sl2 = |δ−1|ν

({
v
√

cδ(a− δ)−1$
v
√

c$δ(a− δ)−1

}
,

{
δ$t−1

v
√

c
δ$t−1

v
√

c$

})
.

In summary, we have proved:

Proposition 5. If a2 + bc = δ2 with δ 6= 0 and c 6= 0 then ΩSl2(X) is the sum
of
(76)

ΩI
Sl2(X) =


µ

(
t−1 , δ−1

{
v
√

c
v
√

c$

}
, a−1

{
v
√

c
v
√

c$

})
|c| ≤ 1

µ

(
t−1

{
1
v
√

c
1

v√
c$−1

}
, δ−1

{
1
$

}
, a−1

{
v
√

c
v
√

c$

})
|c| > 1

(77) ΩII.1
Sl2 =

µ

(
t−1, δ−1, δ−1

{
v
√

cδ(a− δ)−1

v
√

cδ(a− δ)−1$

})
|cδ−2| < 1

µ

(
t−1 , δ−1 , δ−1

{
v
√

cδ(a− δ)−1

v
√

cδ(a− δ)−1$

}
:
{

δ−1$−1 v
√

c

δ−1 v
√

c$−1

})
|cδ−2| ≥ 1

(78) ΩII.2
Sl2 =


|δ−1|ν

(
cδ$(a− δ)−1, δ$t−1

)
|c| ≤ 1

|δ−1|ν

({
v
√

cδ(a− δ)−1$
v
√

c$δ(a− δ)−1

}
,

{
δ$t−1

v
√

c
δ$t−1

v
√

c$

})
|c| > 1

plus the terms ΩIII.1
Sl2

and ΩIII.2
Sl2

obtained by changing δ into −δ.

We also note that if δ = 0 but c 6= 0 then the conditions (69) become |u2| ≤
|cm−2| so that ΩSl2 = ΩI

Sl2
with |δ−1| = ∞. We record this as a Proposition.

Proposition 6. If a2 + bc = 0 but c 6= 0 then

(79) ΩSl2(X) =


µ

(
t−1 , a−1

{
v
√

c
v
√

c$

})
if |c| ≤ 1

µ

(
t−1

{
v
√

c−1

v
√

c−1$

}
, a−1

{
v
√

c
v
√

c$

})
if |c| > 1

In particular if a = 0, b = 0 but c 6= 0 then

(80) ΩSl2(X) =


µ
(
t−1
)

if |c| ≤ 1

µ

(
t−1

{
v
√

c−1

v
√

c−1$

})
if |c| > 1

13.5. Case where c = 0. We will need the corresponding result when c = 0
(and a = δ).

Proposition 7. If c = 0 then

ΩSl2(X) =

µ

(
t−1, a−1,

{
1
v√

b
1

v√
b$−1

})
+ |a−1|ν(at−1$, a2$b−1)
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Proof:

ΩSl2(X) =
∫ ∫

du|m|2d×m

over

|u|,≤ |m−1| , | b

2a
− u| ≤ |m−2a−1|

1 ≤ |m| , |m| ≤ |t−1|

Since A1(X) is a integer we have |a| ≤ 1.
We first consider the contribution of the terms for which |m| ≤ |a−1|. Then

the condition on u become

|u| ≤ |m−1| , | b

2a
| ≤ |m−2a−1| .

After integrating over u we find ∫
|m|d×m

over
1 ≤ |m| |m| ≤ |t−1| , |m2| ≤ |b−1|

that is,

µ

(
t−1, a−1,

{
1
v√

b
1

v√
b$−1

})
.

Next, we consider the contributions of the terms for which |a−1$−1| ≤ |m|.
Then the conditions on u become:

|u| ≤ |m−2a−1| , | b

2a
| ≤ |m−1| .

After integrating over u we find

|a−1|
∫

d×m

over
1 ≤ |m| , |a−1$−1| ≤ |m| ,
|m| ≤ |t−1| , |m| ≤ |ab−1| .

However, |a| =≤ 1. Thus the condition 1 ≤ |m| is superfluous. Thus this is

ν(t−1, ab−1 : a−1$−1) = ν(at−1$, a2$b−1) .

The Proposition follows. 2

14. Proof of the fundamental lemma for n = 3

We let

(81) Y =

 a b 0
1 −a 1
0 t 0


with t 6= 0 and b 6= 0. Then:

ΩGl2(Y ) =
∫

F×
ΩSl2

 a bs−1 0
s −a 1
0 t 0

 η(s)d×s
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Since the integrand depends only on the absolute value of s, this integral can be
computed as a sum: ∑

s

ΩSl2

 a bs−1 0
s −a 1
0 t 0

 η(s) ,

where s is summed over the powers of a uniformizer $. It follows from lemma (8)
that the sum is finite, that is, the integral converges absolutely, provided Y is in
g(F )s. In the two next sections, we compute this integral and check Theorem (1).
That is, if −b is not a norm we show that ΩGl2(Y ) = 0. Otherwise we solve the
equations (46), define X by (44) and check that

(82) ΩSl2(X) = ΩGl2(Y ) .

Before we proceed we remark that ΩGl2(Y ) 6= 0 implies |A1(Y )| ≤ 1 and |A2(Y )| ≤
1. Likewise, if X is defined, ΩSl2(X) 6= 0 implies |A1(X)| ≤ 1 and |A2(X)| ≤ 1.
Finally, if X is defined then |A1(X)| = |A1(Y )| and |A2(X)| = |A2(Y )|. Thus if
|A1(Y )| > 1 or |A2(Y )| > 1 our assertions are trivially true. Thus we may assume
|A1(Y )| ≤ 1 and |A2(Y )| ≤ 1, that is, |a2 + b| ≤ 1 and |t| ≤ 1.

As before, the discussion depends on the square class of a2 + b = −A1(Y ).

15. Proof of the fundamental Lemma: a2 + b is not a square

15.1. Case where a2 + b is odd. We consider the case where a2 + b =
−A1(Y ) is odd (that is has odd valuation) and we write a2 + b = δ2$ where $
is a uniformizer. The integral ΩGl2 is then the sum of two terms ΩA

Gl2
and ΩB

Gl2
corresponding to the contributions of |s| ≤ 1 and |s| > 1 respectively. If |s| ≤ 1 we
write s = r2 or s = r2$ with |r| ≤ 1. Then

(83) ΩA
Gl2 =

∑
|r|≤1

[
µ(t−1, δ−1r, a−1r)− µ(t−1, δ−1r, a−1r$)

]
.

By Lemma 9, expression ΩA
Gl2

is equal to∑
|a−1r|

over
|r| ≤ 1 , 1 ≤ |a−1r| ≤ inf(|t−1|, |δ−1r|) .

This is zero unless |δ| ≤ |a|. If |δ| ≤ |a|, after changing r to ra, we find∑
1≤|r|≤inf(|a−1|,|t−1|)

|r| .

In other words, we find:

(84) ΩA
Gl2 =

{
µ(a−1, t−1) if |δ| ≤ |a|
0 if |δ| > |a|

We pass to the contribution of |s| > 1. We write s = r2 or s = r2$ with |r| > 1.
Then

(85) ΩB
Gl2 =

∑
1<|r|

[
µ(t−1r−1, δ−1, a−1r)− µ(t−1r−1, δ−1, a−1r$)

]
.

Applying lemma (9) we get ∑
|a−1r|
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over
1 < |r| , 1 ≤ |a−1r| ≤ inf(|δ−1|, |t−1r−1|)

This is zero unless |δ| < |a|. If |δ| < |a|, after changing r to ra, we find this is∑
|r|

over
sup(|a−1$−1|, 1) ≤ |r| , |r| ≤ |δ−1| , |r2| ≤ |t−1a−1|

Thus we find

(86) ΩB
Gl2 =

 µ

(
δ−1,

{
v
√

t−1a−1

v
√

t−1a−1$

}
: 1, a−1$−1

)
if |δ| < |a|

0 if |δ| ≥ |a|
We can combine both results to obtain

Proposition 8. If a2 + b = δ2$ then

ΩGl2(Y ) =

 µ

(
t−1, δ−1,

{
v
√

t−1a−1

v
√

t−1a−1$

})
if |δ| ≤ |a|

0 if |δ| > |a|

Proof: Clearly, our integral is 0 if |δ| > |a|. If |δ| = |a| then the integral
reduces to µ(t−1, δ−1). However,∣∣∣∣{ v

√
t−1δ−1

v
√

t−1δ−1$

}∣∣∣∣
belongs to the interval determined by |t−1| and |δ−1| and so the integral can be
written in the stated form.

Assume now |δ| < |a|. If |a| > 1 then µ(a−1, t−1) = 0 and |a−1$−1| ≤ 1. Thus
ΩA

Gl2
= 0 and ΩB

Gl2
reduces to

µ

(
δ−1,

{
v
√

t−1a−1

v
√

t−1a−1$

})
.

Since |t| ≤ 1 we have |at| > |t2| or

|t−1| >
∣∣∣∣{ v

√
t−1a−1

v
√

t−1a−1$

}∣∣∣∣
so that the result can again being written in the required form.

Finally, assume |δ| < |a| ≤ 1. Then |a−1ω−1| > 1 and

ΩGl2 = µ

(
δ−1,

{
v
√

t−1a−1

v
√

t−1a−1$

}
: a−1$−1

)
+ µ(a−1, t−1) .

Suppose first |t| ≤ |a|. Then µ(a−1, t−1) = µ(a−1). Then |a−1$−1| ≤ |δ−1| and

|a−1| ≤
∣∣∣∣{ v

√
t−1a−1

v
√

t−1a−1$

}∣∣∣∣
The sum for ΩGl2 is then by (56) equal to

µ

(
δ−1,

{
v
√

t−1a−1

v
√

t−1a−1$

})
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Since ∣∣∣∣{ v
√

t−1a−1

v
√

t−1a−1$

}∣∣∣∣ ≤ |t−1|

this can be written in the required form.
Suppose now |t| > |a|. Then µ(a−1, t−1) = µ(t−1). On the other hand,∣∣∣∣{ v

√
t−1a−1

v
√

t−1a−1$

}∣∣∣∣ < |a−1$−1|

so that ΩB
Gl2

vanishes. On the other hand, since |δ|−1 ≥ |t−1| and∣∣∣∣{ v
√

t−1a−1

v
√

t−1a−1$

}∣∣∣∣ ≥ |t−1|

the expression given in the Proposition is indeed equal to µ(t−1). 2.
We now check the fundamental lemma in the case at hand. If −b = a2− δ2$ is

not a norm, then the valuation of b is odd and |δ| > |a|. Then ΩGl2(Y ) = 0. Now
suppose that −b is a norm, that is, |a| ≥ |δ|. Then −b is in fact a square. Thus we
may solve the equations of matching (46) in the following way. If |u| < 1 we denote
by

√
1 + u the square root of 1+u which is congruent to one modulo $OF . Recall

τ is a non-square unit. Then we write

−τ2b = y2 , y = −τa
√

1− δ2a−2$ ;

Then we take

a1 = 0 , b1 = − t

2
(y + τa) , c1 =

2
τt

(y − τa) , t1 = −τt

2
.

We have then a2
1 + b1c1 = τ(a2 + b) = δ2$τ . Thus a2

1 + b1c1 is odd. We have also
|c1| = |at−1| and |t1| = |t|. Let X be as in (44). We then have by Proposition 3,

ΩSl2(X) =


µ

(
t−1, δ−1

{
v
√

at−1

v
√

at−1$−1

})
if |a| ≤ |t|

µ

(
t−1

{
1

v√
at−1

1
v√

at−1$−1

}
, δ−1

)
if |a| > |t|

Suppose first |a| ≤ |t|. Since |δ| ≤ |a| we easily get

|t−1| ≤
∣∣∣∣δ−1

{
v
√

at−1

v
√

at−1$−1

}∣∣∣∣
and so the expression for ΩSl2(X) reduces to µ(t−1). But the same is true of the
expression for ΩGl2(Y ).

Now suppose |a| > |t|. Then the expression for ΩSL2(X) becomes

µ

({
v
√

t−1a−1

v
√

t−1a−1$

}
, δ−1

)
.

Since

|t−1| ≥
∣∣∣∣{ v

√
t−1a−1

v
√

t−1a−1$

}∣∣∣∣
this is also the expression for ΩGl2(Y ) and we are done. 2
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15.2. Case where a2 + b is even and not a square. Suppose now that
a2 + b = δ2τ where τ is, as before, a non-square unit.

Proposition 9. Suppose a2 + b = δ2τ . Then ΩGl2(Y ) is the sum of

|δ−1|ν
(
δt−1, $δ2t−1a−1

)
and  µ

(
δ−1 ,

{
v
√

t−1a−1

v
√

t−1a−1$

}
,

)
if |a| ≥ sup(|δ|, |t|)

µ(t−1, δ−1$) if |a| < sup(|δ|, |t|)

Proof: We proceed as before and write ΩGl2(Y ) as the sum of ΩA
Gl2

and ΩB
Gl2

,
these being respectively the contributions of the terms corresponding to |s| ≤ 1
and |s| > 1. For |s| ≤ 1, we set aside the term |s| = 1 and we write s = r2$2 or
s = r2$ with |r| ≤ 1. We find

ΩA
Gl2

= µ(t−1, δ−1, a−1)

+
∑
|r|≤1

[
µ(t−1, δ−1r$, a−1r$)− µ(t−1, δ−1r$, a−1r$)

]
= µ(t−1, δ−1, a−1)

For |s| > 1 we write s = r2 or s = r2$ with |r| > 1. We find

(87) ΩB
Gl2 =

∑
|r|>1

[
µ(t−1r−1, δ−1, a−1r)− µ(t−1r−1, δ−1$, a−1r$)

]
If we add to this ΩA

Gl2
we find

ΩGl2

= µ(t−1, δ−1$, a−1$)(88)

+
∑
|r|≥1

[
µ(t−1r−1, δ−1, a−1r)− µ(t−1r−1, δ−1$, a−1r$)

]
(89)

Applying lemma (9), the second sum can be computed as

(90)
∑

inf
(
|δ−1|, |a−1r|

)
the sum over

|r| ≥ 1 , 1 ≤ inf
(
|δ−1|, |a−1r|

)
≤ |t−1r−1|

We first consider the contribution of the terms with |a−1r| ≤ |δ−1|:

(91)
∑

|a−1r|
over

1 ≤ |r| , |a| ≤ |r|
|r| ≤ |aδ−1| , |r2| ≤ |at−1|

If we change r to ra this becomes

(92) µ

(
δ−1,

{
v
√

t−1a−1

v
√

t−1a−1$

}
: 1, a−1

)
Next, we consider the contribution of the terms with |δ−1| < |a−1r|:∑

|δ−1|
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over
1 ≤ |r| , |δ−1a| < |r|

|r| ≤ |δt−1|
After a change of variables, this can be written as

|δ−1|
∑

1

over
1 ≤ |r| ≤ inf

(
|δt−1|, |$δ2t−1a−1|

)
so that this is

|δ−1|ν
(
δt−1, $δ2t−1a−1

)
In summary we have found that ΩGl2 is the sum of

µ(t−1, δ−1$, a−1$)(93)

µ

(
δ−1,

{
v
√

t−1a−1

v
√

t−1a−1$

}
: 1, a−1

)
(94)

|δ−1|ν
(
δt−1, $δ2t−1a−1

)
(95)

If |a| < |δ| then the second term is zero and the first can be written as
µ(t−1, δ−1$).

If |a| < |t| then

|a−1| >
∣∣∣∣{ v

√
t−1a−1

v
√

t−1a−1$

}∣∣∣∣
so that the second term is 0 and the first can be written again as µ(t−1, δ−1$).

Now assume |a| ≥ sup(|δ|, |t|). Then µ(t−1, δ−1$, a−1$) = µ(a−1$). If |a| ≥ 1
then µ(a−1$) = 0 while the second term reduces to

µ

(
δ−1 ,

{
v
√

t−1a−1

v
√

t−1a−1$

})
and we obtain the Proposition. If |a| < 1 then the second term is in fact

µ

(
δ−1 ,

{
v
√

t−1a−1

v
√

t−1a−1$

}
: a−1

)
.

Adding µ(a−1$) to this and using (56) we obtain the Proposition. 2

We now check the fundamental lemma for the case at hand. Of course −b =
a2 − δ2τ is a norm. Thus we may solve the conditions of matching (46) as follows:

a1 = δτ , c1 = 0 , b1 = −τta , t1 = −τt

2
.

Then a2
1 + b1c1 = a2

1 = δ2
1 where δ1 = δτ . Thus by section 6.3,

ΩSl2(X) =

µ

(
t−1, δ−1 ,

{
v
√

t−1a−1

v
√

t−1a−1$

})
+ |δ−1|ν(δt−1$, δ2t−1a−1$) .

If |a| ≥ sup(|δ|, |t|) then

|t−1| ≥
∣∣∣∣{ v

√
t−1a−1

v
√

t−1a−1$

}∣∣∣∣ ,

|δ2t−1a−1$| ≤ |δt−1$| < |δt−1| .
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Hence ΩSL2 is equal to

µ

(
δ−1 ,

{
v
√

t−1a−1

v
√

t−1a−1$

})
+ |δ−1|ν(δt−1, δ2t−1a−1$)

which is ΩGl2 in this case.
Now assume |a| < sup(|δ|, |t|). Suppose first |t| ≤ |a| < |δ|. Then |δa−1| > 1,

|δt−1| > 1 and |δ2| > |ta|. Thus

|δ−1| ≤
∣∣∣∣{ v

√
t−1a−1

v
√

t−1a−1$

}∣∣∣∣ .

Recall |δ| ≤ 1. Hence

ΩSl2 = µ(δ−1) + |δ−1|ν(δt−1$)

=
|δ−1| − q−1

1− q−1
+ |δ−1|(−v(δt−1))

while

ΩGl2 = µ(δ−1$) + |δ−1|ν(δt−1)

If |δ| < 1 then we find

ΩGl2 =
|δ−1|q−1 − q−1

1− q−1
+ |δ−1|(1− v(δt−1))

If |δ| = 1 then we find

ΩGl2 = 1− v(δt−1)

In any case the two expressions are indeed equal.
Now assume |δ| ≤ |a| < |t|. Then

|t−1| ≤
∣∣∣∣{ v

√
t−1a−1

v
√

t−1a−1$

}∣∣∣∣
and both orbital integrals are equal to

µ(t−1) + |δ−1|ν(δ2t−1a−1$) .

Finally assume |a| < |δ| and |a| < |t|. Then again

|t−1| ≤
∣∣∣∣{ v

√
t−1a−1

v
√

t−1a−1$

}∣∣∣∣
and ΩSl2 is equal to

µ(t−1, δ−1) + |δ−1|ν(δt−1$)
while ΩGl2 is equal to

µ(t−1, δ−1$) + |δ−1|ν(δt−1) .

If 1 > |δ| > |t| then

ΩSl2 = µ(δ−1) + |δ−1|ν(δt−1$) =
|δ−1| − q−1

1− q−1
+ |δ−1|(−v(δt−1)

while

ΩGl2 = µ(δ−1$) + |δ−1|ν(δt−1) =
|δ−1|q−1 − q−1

1− q−1
+ |δ−1|(1− v(δt−1))

and those two expressions are indeed equal.
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If 1 = |δ| > |t| then

ΩSl2 = µ(δ−1) + |δ−1|ν(δt−1$) = 1− v(t−1)

while

ΩGl2 = |δ−1|ν(δt−1) = 1− v(t−1)

and the two expressions are indeed equal.
Now suppose |δ| = |t|. Recall |δ| ≤ 1. Then

ΩSl2 = µ(δ−1) =
|δ|−1 − q−1

1− q−1

while

ΩGl2 = µ(δ−1$) + |δ|−1ν(1) =
|δ|−1q−1 − q−1

1− q−1
+ |δ|−1

and the two expressions are indeed equal.
If |δ| < |t| then both orbital integrals are equal to µ(t−1). So the fundamental

lemma has been completely checked in this case. 2

16. Proof of the fundamental Lemma: a2 + b is a square

Finally we consider the case where a2 + b = δ2, δ 6= 0. Recall we compute
ΩGl2(Y ) as the sum

∑
s

ΩSl2

 a bs−1 0
s −a 1
0 t 0

 η(s)

and a2 + bs−1s = a2 + b = δ2. Recall we have written the orbital integral ΩSL2 as
a sum of terms labeled ΩI

Sl2
, ΩII.1

Sl2
, ΩII.2

Sl2
, ΩIII.1

Sl2
, ΩIII.2

Sl2
respectively. Correspond-

ingly, we write ΩGl2(Y ) as the sum of terms labeled ΩI
Gl2

, ΩII.1
Gl2

and so on. For
instance,

ΩI
Gl2 =

∑
s

ΩI
Sl2

 a bs−1 0
s −a 1
0 t 0

 η(s) .

16.1. Computation of ΩI
Gl2

. The term ΩI
Gl2

can be computed as ΩGl2 in the
previous case (where a2 + b is even and not a square). We write it as a sum

(96) ΩI
Gl2 = ΩI.1

Gl2 + ΩI.2
Gl2

where

(97) ΩI.1
Gl2 =

 µ

(
δ−1 ,

{
v
√

t−1a−1

v
√

t−1a−1$

})
if |a| ≥ sup(|δ|, |t|)

µ(t−1, δ−1$) if |a| < sup(|δ|, |t|)

and

(98) ΩI.2
Gl2 = |δ−1|ν(δt−1, δ2t−1a−1$)
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16.2. Computation of ΩII.1
Gl2

. After changing s into sδ2 we see that

ΩII.1
Gl2 =

∑
s

ΩII.1
Sl2

 a bs−1δ−2 0
sδ2 −a 1
0 t 0

 η(s)

and so, by Proposition 5, we get ΩII.1
Gl2

= ΩII.1.1
Gl2

+ ΩII.1.2
Gl2

where

(99) ΩII.1.1
Gl2 =

∑
|s|<1

η(s)µ
(

t−1, δ−1,

{
v
√

sδ(a− δ)−1

v
√

sδ(a− δ)−1$

})
and

(100) ΩII.1.2
Gl2 =

∑
|s|≥1

η(s)µ
(

t−1, δ−1,

{
v
√

sδ(a− δ)−1

v
√

sδ(a− δ)−1$

}
:
{

$−1 v
√

s
v
√

s$−1

})
Suppose first that δ(a − δ)−1 is even. For ΩII.1.1

Gl2
we write s = r2$2 or s = r2$

with |r| ≤ 1. We find, for |r| ≤ 1, each term

µ(t−1, δ−1, $r v
√

δ(a− δ)−1)

once with a + sign and once with a − sign. So we get zero. For ΩII.1.2
Gl2

we write
s = r2 or s = r2$−1 with |r| ≥ 1. We find, for |r| ≥ 1, each term

µ(t−1, δ−1, r v
√

δ(a− δ)−1) : $−1r)

one with a + sign and once with a − sign. So we get 0. Thus ΩII.1
Gl2

= 0 if δ(a−δ)−1

is even.
Now we assume δ(a− δ)−1 is odd. For ΩII.1.1

Gl2
we write s = r2 or s = r2$ with

|r| ≤ 1. We have then added a term corresponding to s = r2 with |r| = 1 that we
must subtract. We find

−µ
(
t−1, δ−1, v

√
δ(a− δ)−1$

)
+∑

|r|≤1

µ
(
t−1, δ−1, r v

√
δ(a− δ)−1$

)
−
∑
|r|≤1

µ
(
t−1, δ−1, r v

√
δ(a− δ)−1$

)
or

ΩII.1.1
Gl2 = −µ

(
t−1, δ−1, v

√
δ(a− δ)−1$

)
.

In particular, this is 0 unless |δ(a − δ)−1$| ≥ 1. For ΩII.1.2
Gl2

we write s = r2 or
s = r2$−1 with |r| ≥ 1. We find∑

|r|≥1

(
µ
(
t−1, δ−1, r v

√
δ(a− δ)−1$ : $−1r

)
−

µ
(
t−1, δ−1, r v

√
δ(a− δ)−1$−1 : $−1r

))
= |$−1|

∑
|r|≥1

|r|
(
µ
(
t−1r−1$, δ−1r−1$,$ v

√
δ(a− δ)−1$

)
−

µ
(
t−1r−1$, δ−1r−1$, v

√
δ(a− δ)−1$

))
.

Once more we apply Lemma 9. We find this is zero unless |δ(a− δ)−1$| ≥ 1. Then
this is equal to

= −|$−1|
∣∣∣ v
√

δ(a− δ)−1$
∣∣∣∑

r

|r|
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where the sum is for

1 ≤ |r| , |r| ≤

∣∣∣∣∣ t−1$
v
√

δ(a− δ)−1$

∣∣∣∣∣ , |r| ≤

∣∣∣∣∣ δ−1$
v
√

δ(a− δ)−1$

∣∣∣∣∣
Thus

ΩII.1.2
Gl2 =

−|$−1|
∣∣∣ v
√

δ(a− δ)−1$
∣∣∣µ( t−1$

v
√

δ(a− δ)−1$
,

δ−1$
v
√

δ(a− δ)−1$

)
.

Hence we find that ΩII.1
Gl2

is zero unless δ(a− δ)−1 is odd and |δ(a− δ)−1$| ≥ 1. It
is then given by

−|$−1|
∣∣∣ v
√

δ(a− δ)−1$
∣∣∣µ( t−1$

v
√

δ(a− δ)−1$
,

δ−1$
v
√

δ(a− δ)−1$

)

−µ
(
t−1, δ−1, v

√
δ(a− δ)−1$

)
.

We claim this is −µ(t−1, δ−1). Indeed, this is clear if∣∣∣ v
√

δ(a− δ)−1$
∣∣∣ ≥ inf(|t−1|, |δ−1|)

because the first term is then 0 and the second term equal to −µ(t−1, δ−1). Now
assume that

∣∣∣ v
√

δ(a− δ)−1$
∣∣∣ < inf(|t−1|, |δ−1|). Recall |δ| ≤ 1 and |t| ≤ 1. To be

definite assume |t−1| ≤ |δ−1|. Then our sum is

−|$−1|
∣∣∣ v
√

δ(a− δ)−1$
∣∣∣µ( t−1$

v
√

δ(a− δ)−1$

)

−µ
(

v
√

δ(a− δ)−1$
)

=
q−1 − |t−1|

1− q−1
= −µ(t−1)

as was claimed. We have proved:

Proposition 10. ΩII.1
Gl2

(Y ) = 0 unless δ(a− δ)−1 is odd and |(a− δ)| ≤ |δ$|.
Then

ΩII.1
Gl2 (Y ) = −µ(t−1, δ−1) .

16.3. Computation of ΩII.2
Gl2

. As before

ΩII.2
Gl2 (Y ) =

∑
s

ΩII.2
Sl2

 a bs−1 0
s −a 1
0 t 0

 η(s)

and we denote by ΩII.2.1
Gl2

and ΩII.2.2
Gl2

the respective contributions of the terms |s| ≤ 1
and |s| > 1. Then

ΩII.2
Gl2 (Y ) = ΩII.2.1

Gl2 + ΩII.2.2
Gl2 .

We now appeal to Proposition 5. To compute ΩII.2.1
Gl2

we write s = r2 or s = r2$
with |r| ≤ 1. We find:

ΩII.2.1
Gl2 = |δ−1|

∑
|r|≤1

[
ν
(
r2$δ(a− δ)−1, δt−1$

)
− ν

(
r2$2δ(a− δ)−1, δt−1$

)]
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By Lemma 10 this is
|δ−1|

∑
1

over
|r| ≤ 1 , 1 ≤ |r2$δ(a− δ)−1| ≤ |δt−1$| .

This is 0 unless |a − δ| ≤ |$δ| and |t$−1| ≤ |δ|. It can then be written as |δ−1|
times

ν

(
1,

{
v
√

(a− δ)t−1

v
√

(a− δ)t−1$

}
:
{

$−1 v
√

(a− δ)δ−1

v
√

$−1(a− δ)δ−1

})
or

ν


{

$ v
√

(a− δ)−1δ
v
√

$(a− δ)−1δ

}
,

{
v
√

(a− δ)t−1

v
√

(a− δ)t−1$

}
{

$−1 v
√

(a− δ)δ−1

v
√

$−1(a− δ)δ−1

}
 .

This can be further simplified

(101) ΩII.2.1
Gl2 = |δ−1|×

ν

(
$ v
√

δ(a− δ)−1,

{
$

v
√

δt−1

$
v
√

δt−1$

})
if δ(a− δ) is even

ν

(
v
√

$δ(a− δ)−1,

{
$

v
√

δt−1

v
√

δt−1$

})
if δ(a− δ) is odd

.

To compute ΩII.2.2
Gl2

we write s = r2 or s = r2$ with |r| > 1. We find:

ΩII.2.2
Gl2 = |δ−1|

∑
|r|>1

[
ν
(
$rδ(a− δ)−1, δr−1t−1$

)
− ν

(
$rδ(a− δ)−1, δr−1t−1

)]
.

By Lemma 10 this is
−|δ−1|

∑
1

over
|$−1| ≤ |r| , |$−1(a− δ)t−1| ≤ |r2| , |r| ≤ |δt−1| .

This is 0 unless
|a− δ| ≤ |δ2t−1$| , |t$−1| ≤ |δ|

and can be written then as:

−|δ−1|ν
(

δt−1 : $−1,

{
$−1 v

√
(a− δ)t−1

v
√

$−1(a− δ)t−1

})
or

(102) ΩII.2.2
Gl2 = −|δ−1|ν

(
$δt−1,

{
$δt−1 v

√
t(a− δ)−1

δt−1 v
√

$t(a− δ)−1

})
We can simplify our result:

Proposition 11. Suppose

|a− δ| ≤ |$δ| , |t$−1| ≤ |δ| .
Then

ΩII.2
Gl2 (Y ) = 2−1|δ−1|

v(δt−1) +
δt even δt odd

0 −1 δ(a− δ) even
0 1 δ(a− δ) odd





46 HERVÉ JACQUET AND STEPHEN RALLIS

Suppose
|δ| ≤ |a− δ| ≤ |$δ2t−1| , |t$−1| ≤ |δ| .

Then
ΩII.2

Gl2 (Y ) =

2−1|δ−1|

v
(
δt−1

)
− v

(
(a− δ)δ−1

)
+

δt even δt odd
0 −1 δ(a− δ) even
−1 0 δ(a− δ) odd


In all other cases ΩII.2

Gl2
(Y ) = 0.

Proof: In any case both ΩII.2.1
Gl2

(Y ) and ΩII.2.2
Gl2

(Y ) vanish unless |t$−1| ≤ |δ|.
So we assume this is the case. Suppose |a− δ| ≤ |$δ|. Then ΩII.2.1

Gl2
(Y ) is non-zero.

Since |δt−1$| ≥ 1 we have also |a − δ| < |δ2t−1$| so ΩII.2.2
Gl2

(Y ) is non-zero as
well. We have then to consider 4 cases depending on the parity of (a− δ)δ and tδ.
Suppose for instance that both are even. Then ΩII.2

Gl2
(Y ) is |δ−1| times

ν
(
$ v
√

δ(a− δ)−1, $
v
√

δt−1
)
− ν

(
$δt−1, $δt−1 v

√
t(a− δ)−1

)
If |a− δ| ≤ |t| then this

ν
(
$

v
√

δt−1
)
− ν

(
$δt−1

)
=

(
1− v

(
$

v
√

δt−1
))

−
(
1− v

(
$δt−1

))
=

1
2
v(δt−1) .

If, on the contrary, |t| < |a− δ| then this is

ν
(
$ v
√

δ(a− δ)−1
)
− ν

(
$δt−1 v

√
t(a− δ)−1

)
=

(
1− v

(
$ v
√

δ(a− δ)−1
))

−
(
1− v

(
$δt−1 v

√
t(a− δ)−1

))
=

1
2
v(δt−1) .

The other cases are treated in a similar way and we have proved the first assertion
of the Proposition.

Now assume |δ| ≤ |a − δ|. Then ΩII.2.1
Gl2

= 0 and ΩII.2.2
Gl2

6= 0 if and only if
|a − δ| ≤ |δ2t−1$|. Note that these conditions imply |(a − δ)$| ≥ |t|. Assume
t(a− δ) even. Then ΩII.2.2

Gl2
is equal to |δ−1| times

−ν
(
$δt−1, $δt−1 v

√
t(a− δ)−1

)
.

Since |(a− δ)$| ≥ |t|, this is in fact

−ν
(
$δt−1 v

√
t(a− δ)−1

)
= v(δ)− 1

2
v(t)− 1

2
v(a− δ) .

Assume now t(a− δ) odd. Then ΩII.2.2
Gl2

is equal to |δ−1| times

−ν
(
$δt−1, δt−1 v

√
$t(a− δ)−1

)
.

Since |(a− δ)$| ≥ |t| this is

−ν
(
δt−1 v

√
$t(a− δ)−1

)
= v(δ)− 1

2
v(t)− 1

2
v(a− δ)− 1

2
.
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Thus we have completely proved the Proposition. 2

16.4. Case where −b is odd. We are now ready to compute ΩGl2 completely.

Proposition 12. If a2 + b is a square but −b is not a norm then ΩGl2(Y ) = 0.

Proof: Assume that −b is not a norm, that is, has odd valuation. Recall
−b = (a+ δ)(a− δ). Thus a+ δ and a− δ have different parities. In particular they
have different absolute values. Thus, choosing the sign ± suitably, we must have
|a + δ| = |a| = |δ| and |a − δ| ≤ |$δ|. In particular (a − δ)δ is odd and (a + δ)δ
even. At this point we recall that the terms ΩIII.1 and ΩIII.2 are obtained from
ΩII.1 and ΩII.2 by changing δ into −δ. If |a| = |δ| ≥ |t| then

ΩI.1
Gl2 = µ

(
δ−1,

{
v
√

δ−1t−1

v
√

δ−1t−1$

})
= µ(δ−1) .

If |a| = |δ| < |t| then

ΩI.1
Gl2 = µ(t−1, δ−1$) = µ(t−1) .

Thus, in any case,

ΩI.1
Gl2 = µ(t−1, δ−1) .

On the other hand,

ΩII.1
Gl2 = −µ(t−1, δ−1) , ΩIII.1

Gl2 = 0 .

Thus

ΩI.1
Gl2 + ΩII.1

Gl2 + ΩIII.1
Gl2 = 0 .

We study the remaining terms. We have

ΩI.2
Gl2 = |δ−1|ν(δt−1, δt−1$) = |δ−1|ν(δt−1$) = .

This is 0 unless |δ| ≥ |$−1t|. Similarly, the terms ΩII.2
Gl2

and ΩIII.2
Gl2

vanish unless
|δ| ≥ |$−1t|. Thus we may assume |δ| ≥ |$−1t|. Then

ΩI.2
Gl2 = −|δ−1|v(δt−1) .

Since |a− δ| ≤ |$δ| and (a− δ)δ is odd, we have

ΩII.2
Gl2 = 2−1|δ−1|

{
v(δt−1) +

δt even δt odd
0 1

}
.

On the other hand since |a + δ| = |δ| and |δ| ≤ |δ2t−1$| we get

ΩIII.2
Gl2 = 2−1|δ−1|

{
v(δt−1) +

δt even δt odd
0 −1

}
.

Thus we do get

ΩI.2
Gl2 + ΩII.2

Gl2 + ΩIII.2
Gl2 = 0 .

This concludes the proof. 2
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16.5. Case where b is even. We compute ΩGl2(Y ) when a2 + b = δ2, δ 6= 0
and b is even. Then a + δ and a− δ have the same parity. The result is as follows:

Proposition 13. Suppose a2 + b = δ2, δ 6= 0 and b is even. Then

(103) ΩGl2(Y ) = µ

(
t−1 ,

{
v
√

a−1t−1

v
√

a−1t−1$

})
if |t| ≥ |δ|

(104) ΩGl2(Y ) = µ

(
δ−1,

{
v
√

a−1t−1

v
√

a−1t−1$

})
− ε|δ−1| if |δ| > |t|

where

(105) ε =
{

1 if |a| ≤ |$δ2t−1| , (a± δ)t odd
0 otherwise

Proof: First we claim that ΩII.1
Gl2

and ΩIII.1
Gl2

are both zero. Indeed, if ΩII.1
Gl2

6= 0
then |a−δ| ≤ |$δ| and (a−δ)δ is odd. Then (a+δ)δ is also odd. However |a+δ| = |δ|
and so we get a contradiction and ΩII.1

Gl2
= 0. Likewise ΩIII.1

Gl2
= 0. We compute the

other terms.
We first consider the case |δ| < |t|. Then the terms ΩI.2

Gl2
, ΩII.2

Gl2
, and ΩIII.2

Gl2
all

vanish. Thus
ΩGl2(Y ) = ΩI.1

GL2
.

We use the formula for ΩI.1
GL2

. If |a| ≥ |t| > |δ| we find

ΩGl2(Y ) = µ

(
δ−1,

{
v
√

a−1t−1

v
√

a−1t−1$

})
= µ

({
v
√

a−1t−1

v
√

a−1t−1$

})
.

If |t| > |a| then
ΩGl2(Y ) = µ(t−1, δ−1$) = µ(t−1)

Now assume |δ| = |t|. Then ΩII.2
Gl2

= ΩIII.2
Gl2

= 0. On the other hand,

ΩI.2
Gl2 = |δ−1|ν(1, δa−1$) .

This is zero unless |δ| > |a| in which case this is |δ−1|. Thus, if |a| ≥ |δ| = |t|, we
find

ΩGl2 = ΩI.1
Gl2 = µ

(
δ−1 ,

{
v
√

a−1t−1

v
√

a−1t−1$

})
= µ

(
t−1 ,

{
v
√

a−1t−1

v
√

a−1t−1$

})
.

If |a| < |δ| = |t|, then

ΩGl2 = ΩI.1
Gl2 + ΩI.2

Gl2 = µ(δ−1$) + |δ−1| = µ(δ−1)

Thus if |t| ≥ |δ| we find the first formula of the Proposition.
From now on, we assume |δ| > |t|. Then we find

ΩI.1
Gl2 =

 µ

(
δ−1 ,

{
v
√

a−1t−1

v
√

a−1t−1$

})
if |a| ≥ |δ|

µ(δ−1$) if |a| < |δ|

This can also be written

(106) ΩI.1
Gl2 = µ

(
δ−1 ,

{
v
√

a−1t−1

v
√

a−1t−1$

})
+
{

0 if |a| ≥ |δ|
−|δ−1| if |a| < |δ| .
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Similarly,

ΩI.2
Gl2 =

{
|δ−1|ν(δ2t−1a−1$) if |a| ≥ |δ|
|δ−1|ν(δt−1) if |a| < |δ|

Adding up these results we find:

ΩI
Gl2 = µ

(
δ−1 ,

{
v
√

a−1t−1

v
√

a−1t−1$

})
+ 0 if |a| ≥ |δ| , |a| ≥ |δ2t−1|

−|δ−1|v(δ2t−1a−1) if |a| ≥ |δ| , |a| ≤ |δ2t−1$|
−|δ−1|v(δt−1) if |a| < |δ|

.

We compute the remaining terms.
Suppose |a| ≥ |δ|. Suppose first |a+δ| = |δ−a| = |a| (or for short, |δ±a| = |a|).

Of course, this is always the case if |a| > |δ|. Both ΩII.2
Gl2

and ΩIII.2
Gl2

are 0 unless
|a| ≤ |$δ2t−1|; then they are equal and

ΩII.2
Gl2 + ΩIII.2

Gl2 = |δ−1|
{

v(δ2t−1a−1) +
(a± δ)t even (a± δ)t odd

0 −1

}
.

Now suppose |δ| = |a| but |δ±a| is not equal to |a| = |δ| for both choices of ±. Say
|δ−a| ≤ |$δ| and |δ +a| = |δ|. Both ΩII.2

Gl2
and ΩIII.2

Gl2
are non-zero. In addition we

remark that δ(δ ± a) have the same parity and are thus even. Thus we find again
the same result. Note that here |a| = |δ| ≤ |$δ2t−1|. We conclude that if |a| ≥ |δ|
then ΩII.2

Gl2
+ ΩIII.2

Gl2
= 0 unless |a| ≤ |$δ2t−1|. Then

ΩII.2
Gl2 + ΩIII.2

Gl2 = |δ−1|
{

v(δ2t−1a−1) +
(a± δ)t even (a± δ)t odd

0 −1

}
.

Finally, suppose |a| < |δ|. Then |a± δ| = |δ| so (a± δ)δ is even and both ΩII.2
Gl2

and ΩIII.2
Gl2

are non-zero with the same value. Then

ΩII.2
Gl2 + ΩIII.2

Gl2 = |δ−1|
{

v(δt−1) +
(a± δ)t even (a± δ)t odd

0 −1

}
.

Summing up, we find the second formula of the Proposition.

16.6. Verification of ΩGl2(Y ) = ΩSl2(X). We verify the identity of the fun-
damental lemma when a2 + b = δ2, δ 6= 0 and b is even. We solve the equations of
matching (46) as before. We write

−τ2b = y2 − τa2
1

and then we take

t1 = −τt

2
, c1 =

2
tτ

(y − τa) , b1 = − t

2
(y + τa) .

Then
a2
1 + b1c1 = τ(a2 + b) = τδ2 .

Thus a2
1 + b1c1 is even but not a square. We need to compute |c1|. We have

−τ2b = y2 − τa2
1 = τ2a2 − τ2δ2 .

Suppose |a| ≥ |δ|. If |a| = |δ| we choose δ in such a way that |δ − a| = |a|. We
have |b| = |a2 − δ2| ≤ |a|2. From −τ2b = y2 − τa2

1 we conclude that |y| ≤ |a| and
|a1| ≤ |a|. From

y2 − τ2a2 = τ(a2
1 − τδ2)



50 HERVÉ JACQUET AND STEPHEN RALLIS

we conclude that
|(y − τa)(y + τa)| ≤ |a|2 .

Hence either |y − τa| = |a| or |y + τa| = |a|. Thus we can choose y in such a way
that |y − τa| = |a|. Then

|c1| = |at−1| = |(δ − a)t−1| .

Now suppose |δ| > |a|. Then |b| = |δ|2. From −τ2b = y2 − τa2
1 we conclude

that |y| ≤ |δ| and |a1| ≤ |δ|. Suppose |y| < |δ|. Then |a1| = |δ|. From y2 − τa2
1 =

τ2a2 − τ2δ2 we get

τ =
(

1− a2

δ2

)
τ2δ2

a2
1

+
y2

a2
1

.

Thus τ is congruent to a square unit modulo $OF hence is a square, a contradiction.
Thus |y| = |δ| and we find again

|c1| = |δt−1| = |(δ − a)t−1| .

Now we can write down the formula for ΩSl2(X). It reads as follows.
If |(δ − a)t−1| ≤ 1,

ΩSl2(X) =

µ

(
t−1 , δ−1

{
v
√

(δ − a)t−1

v
√

(δ − a)t−1$

}
, a−1

{
v
√

(δ − a)t−1

v
√

(δ − a)t−1$

})
.

If |(δ − a)t−1| > 1,
ΩSl2(X) =

µ

t−1


1

v
√

(δ−a)t−1

1
v
√

(δ−a)t−1$−1

 , δ−1

{
1
$

}
, a−1

{
v
√

(δ − a)t−1

v
√

(δ − a)t−1$

}
Suppose first |a| ≥ |δ|. Recall that if |a| = |δ| then we choose δ in such a way

that |δ − a| = |a|. Thus |δ − a| = |a| in all cases. Then we find

ΩSl2(X) =
µ

(
t−1 , δ−1

{
v
√

at−1

v
√

at−1$

}
,

{
v
√

a−1t−1

v
√

a−1t−1$

})
if |a| ≤ |t|

µ

(
δ−1

{
1
$

}
,

{
v
√

a−1t−1

v
√

a−1t−1$

})
if |t| < |a|

Consider first the case |a| ≤ |t| so that |δ| ≤ |a| ≤ |t|. This is

ΩSl2(X) = µ

(
t−1 ,

{
v
√

a−1t−1

v
√

a−1t−1$

})
= ΩGl2(Y ) .

Consider now the case |t| < |a|. If |δ| ≤ |t| this is

ΩSl2(X) = µ

({
v
√

a−1t−1

v
√

a−1t−1$

})
= ΩGl2(Y ) .

If |δ| > |t| then we have to distinguish two cases. If |a| > |$δ2t−1| we find

ΩSl2 = µ

({
v
√

a−1t−1

v
√

a−1t−1$

})
= µ

(
δ−1,

{
v
√

a−1t−1

v
√

a−1t−1$

})
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which is again equal to ΩGl2 since ε = 0 in this case. If |a| ≤ |$δ2t−1| and at (or
equivalently (a− δ)t) is even we find

ΩSl2(X) = µ(δ−1) .

Since ε = 0 in this case, this is again ΩGl2 . If |a| ≤ |$δ2t−1| and at (or equivalently
(a− δ)t) is odd we find

ΩSl2(X) = µ(δ−1$) = µ(δ−1)− |δ−1| .

This is again equal to ΩGl2 , since ε = 1 in this case.
We now discuss the case where |a| < |δ|. Then |a− δ| = |δ| and our expression

for ΩSl2 simplifies:
µ

(
t−1 ,

{
v
√

δ−1t−1

v
√

δ−1t−1$

})
if |δ| ≤ |t|

µ

({
v
√

δ−1t−1

v
√

δ−1t−1$

}
, δ−1

{
1
$

}
, a−1

{
v
√

δt−1

v
√

δt−1$

})
if |t| < |δ|

This simplifies further as follows:

ΩSl2(X) =

 µ
(
t−1
)

if |δ| ≤ |t|
µ(δ−1) if |t| < |δ| , δt even
µ(δ−1$) if |t| < |δ| , δt odd

.

Likewise, the expression for ΩGl2(Y ) simplifies as follows:

ΩGl2(Y ) =

 µ
(
t−1
)

if |δ| ≤ |t|
µ(δ−1) if |t| < |δ| , (a± δ)t even
µ(δ−1)− |δ−1| if |t| < |δ| , (a± δt) odd

.

Again δt and (δ − a)t have the same parity and µ(δ−1$) = µ(δ−1) − |δ−1|. Thus
ΩSl2(X) = ΩGL2(Y ) in all cases.

17. Proof of the fundamental Lemma: a2 + b = 0

It remains to treat the case where a2 + b = 0. THen −b = a2 is a norm. We
proceed as before. We write the integral for ΩGl2 as the sum of ΩA

GL2
and GB

Gl2
corresponding respectively to the contributions of |s| ≤ 1 and |s| > 1. We use
Proposition 6. For |s| ≤ 1 we write s = r2 or s = r2$ with |r| ≤ 1. We obtain

ΩA
Gl2 =

∑
|r|≤1

(
µ(t−1, a−1r)− µ(t−1, a−1r$)

)
= µ(t−1, a−1) .

For |s| > 1 we write s = r2 or s = r2$ with |r > |1. We find

ΩB
Gl2 =

∑
|r|>1

(
µ(t−1r−1, a−1r)− µ(t−1r−1, a−1r$)

)
Applying Lemma 9 we find this is ∑

|a−1r|

over
|$−1| ≤ |r| , |a| ≤ |r| , |r2| ≤ |at−1| .
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This is

µ

({
v
√

a−1t−1

v
√

a−1t−1$

}
: a−1$−1, 1

)
.

If |a| ≤ |t| then µ(t−1, a−1) = µ(t−1) and µ

({
v
√

a−1t−1

v
√

a−1t−1$

}
: a−1$−1, 1

)
= 0.

If |a| ≥ |t| then µ(t−1, a−1) = µ(a−1). Moreover, if |a| ≤ 1 then

µ(a−1) + µ

({
v
√

a−1t−1

v
√

a−1t−1$

}
: a−1$−1, 1

)
= µ

({
v
√

a−1t−1

v
√

a−1t−1$

})
.

If |a| > 1 then µ(a−1) = 0 and

µ

({
v
√

a−1t−1

v
√

a−1t−1$

}
: a−1$−1, 1

)
= µ

({
v
√

a−1t−1

v
√

a−1t−1$

})
Thus the above equality remains true. In summary,

ΩGl2(Y ) =


µ(t−1) if |a| ≤ |t|

µ

({
v
√

a−1t−1

v
√

a−1t−1$

})
if |a| > |t|

On the other hand, the conditions of matching (46) can be solved with

a1 = 0 , b1 = 0 , c1 =
−4a

t
, t1 = −τt

2
.

For the corresponding element X we find

ΩSl2(X) =


µ(t−1) if |a| ≤ |t|

µ

(
t−1

{
v
√

a−1t
v
√

a−1t$

})
if |a| > |t|

Clearly ΩSl2(X) = ΩGl2(Y ).
We have now completely proved the fundamental lemma for strongly regular

elements.

18. Other regular elements

Recall the definition of a regular element. A matrix X ∈ M(3×3, E) is regular
if writing X in the form (

A B
C d

)
the column vectors B,AB are linearly independent and the row vectors C,CA are
linearly independent. We have seen that if X is in g(E)′ then it is regular if and
only if it is strongly regular. We consider now the elements X which are regular but
not strongly regular. For such an element we have necessarily A2(X) = CB = 0.

Lemma 11. Any element X ∈ g(E) which is regular but not strongly regular is
conjugate under ιGl2(E) to a unique matrix of the form 0 b 0

c 0 1
1 0 0
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with b 6= 0. In addition

A1(X) = −bc

B1(X) = b

Proof: First B and C are not 0. After conjugation we may assume B =(
0
1

)
. Since CB = 0 we have

C = (t, 0) , t 6= 0 .

Conjugating by a diagonal matrix in Gl2(E) we may assume t = 1. Thus we are
reduced to the case of matrix of the form a b 0

c −a 1
1 0 0

 .

If we conjugate by the matrix ι

(
1 0
a
b 1

)
we arrive at a matrix of the prescribed

form. The other assertions are obvious. 2.
Remark: Similarly, the element is conjugate to a unique matrix of the form 0 b 0

c 0 1
−1 0 0

 .

Any element X of s(F ) which is regular but not strongly regular is conjugate
under Gl2(F ) to a unique element of the form

ξ =

 0 b 0
c 0

√
τ√

τ 0 0


with b, c ∈ F

√
τ and b 6= 0. Then

A1(X) = −bc

A2(X) = bτ

Two such elements are conjugate under Gl2(F ) if and only if they are conjugate
under Gl2(E).

Lemma 12. Any element X of u(F ) which is regular but not strongly regular
is conjugate under ιU1,1 to a unique element of the form 0 b 0

c 0 1
−1 0 0

 ,

with b, c ∈ F
√

τ and b 6= 0. In addition

A1(X) = −bc

B1(X) = −b

Two such elements are conjugate under U1,1 if and only if they are conjugate under
Gl2(E).
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Proof: Write

X =

 a b z1

c −a z2

−z2 −z1 0

 .

By assumption we have z2z1 + z1z2 = 0. Conjugating by a diagonal matrix in U1,1

we may assume z2 = 1. Then z1 + z1 = 0. Conjugating by the matrix
(

1 z1

0 1

)
we are reduced to the case where the matrix has the form a b 0

c −a 1
−1 0 0

 .

We finish the proof as before. 2

We see now that any element ξ′ of s(F ) which is regular but not strongly regular
matches an element ξ of u(F ). Explicitly

ξ =

 0 b 0
c 0 1
−1 0 0


matches

ξ′ =

 0 b′ 0
c′ 0

√
τ√

τ 0 0


if and only

bc = b′c′ , −b = b′τ .

As before we set

ΩU (ξ) =
∫

U

f0(ι(u)ξι(u)−1)du

ΩGl2(ξ
′) =

∫
Gl2(F )

Φ0(ι(g)ξ′ι(g)−1)η(det g)dg

The fundamental lemma asserts that if ξ → ξ′ then

ΩU (ξ) = τ(ξ′)ΩGl2(ξ
′) .

To prove the lemma we proceed as before. We set

X = Θ(ξ) , ξ′ =
√

τY .

Then

X =

 0 b1 0
c1 0 1
−1 0 0


with

b1 = b
√

τ , c1 =
c√
τ

.

On the other hand

Y =

 0 b2 0
c2 0 1
1 0 0


with

b2 =
b′√
τ

, c2 =
c′√
τ

.
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Thus in terms of X and Y the matching conditions become

c2 = −c1τ , b2 = − b1

τ2
.

We have
|b1| = |b2| , |b2| = |c2| .

Moreover, if b1c1 (and thus b2c2) is even, then b1c1 is a square if and only if b2c2 is
not a square.

Theorem 2 (Remaining case of the fundamental Lemma). If X and Y are as
above and

c2 = −c1τ , b2 = − b1

τ2
,

then
ΩSl2(X) = η(b2)ΩGl2(Y ) .

19. Orbital integrals for Sl2

We compute the orbital integral under SL2(F ) of

X =

 0 b 0
c 0 1
−1 0 0

 ,

where b 6= 0, c 6= 0. We also write ΩSl2(X) = ΩSl2(b, c).
We have

ΩSl2(X) =
∫

Φ

 −bu bm2 0
m−2(c− u2b) ub m−1

−m−1 0 0

 du|m|−2d×m .

If the integral is non zero then |b| ≤ 1 and |bc| ≤ 1. Explicitly the domain of
integration is

1 ≤ |m| , |bu| ≤ 1 , |bm2| ≤ 1 ,

|bc− u2b2| ≤ |m2b| ≤ 1 .

Under the assumption |bc| ≤ 1 the condition |ub| ≤ 1 is superfluous. After a change
of variables, we can rewrite the integral as

|b|−1

∫
du|m|−2d×m

over
|bc− u2| ≤ |m2b| ≤ 1 , 1 ≤ |m| .

We divide the integral into the sum of the contribution Ω1
Sl2

(X) of |c| ≤ |m2| and
the contribution Ω2

Sl2
(X) of |m2| < |c|.

We have

Ω1
Sl2(X) = |b|−1

∫
du|m|−2d×m

over
|u2| ≤ |m2b| , sup(1, |c|) ≤ |m2| ≤ |b|−1 .

This integral can be computed as follows

Ω1
Sl2(X) =
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|c| ≤ 1 b even |b|−1/2−q−1

1−q−1

|c| ≤ 1 b odd |$−1b|−1/2−q−1

1−q−1

|c| > 1 bc odd |$−1bc|−1/2−q−1

1−q−1

|c| > 1 b even bc even |bc|−1/2−q−1

1−q−1

|c| > 1 b odd bc even q−1|bc|−1/2−q−1

1−q−1

For Ω2
Sl2

(X) we first compute the integral∫
|bc−u2|≤|m2b|

du .

It is 0 unless bc is a square then it is equal to 2|bc|−1/2|bm2|. We have thus

Ω2
Sl2(X) = |bc|−1/22

∫
1≤|m2|<|c|

d×m .

This is 0 unless |c| > 1. Then it is equal to

Ω2
Sl2(X) = |bc|−1/2

{
c even −v(c)
c odd 1− v(c)

Adding our two results we arrive at the following Proposition.

Proposition 14. ΩSl2(b, c) is given by the following formula.

|c| ≤ 1 b even |b|−1/2−q−1

1−q−1

|c| ≤ 1 b odd |$−1b|−1/2−q−1

1−q−1

|c| > 1 bc odd |$−1bc|−1/2−q−1

1−q−1

|c| > 1 b even bc even non square |bc|−1/2−q−1

1−q−1

|c| > 1 b odd bc even non square q−1|bc|−1/2−q−1

1−q−1

|c| > 1 bc square |bc|−1/2−q−1

1−q−1 − v(c)|bc|−1/2

20. Orbital integrals for Gl2(F )

We let

Y =

 0 b 0
c 0 1
1 0 0

 ,

and we write ΩGl2(Y ) = ΩGl2(b, c). We have

ΩGl2(Y ) =
∫

Gl2(F )

Φ(ι(g)Y ι(g)−1)η(det g)dg

Explicitly this is∫
Φ

 −bαu bαm2 0
m−2(cα−1 − u2bα) bαu m−1

α−1m−1 0 0

 η(α)d×αdu|m|−2d×m .

or ∫
η(α)d×αdu|m|−2d×m

over
|m−1| ≤ 1 , |α−1m−1| ≤ 1
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|bαu| ≤ 1 , |bαm2| ≤ 1
|cb− u2b2α2| ≤ |m2bα| .

As before, if the integral is non zero then |b| ≤ 1 and |bc| ≤ 1. Under these
assumptions the condition |bαu| ≤ 1 is superfluous. After a change of variables this
becomes

|b|−1

∫ ∫
η(α)|α|−1d×αdu|m|−2d×m

over
1 ≤ |m|, |α|−1 ≤ |m| ,
|cb− u2| ≤ |m2bα| ≤ 1 .

After a new change of variables, we get

|b|−1

∫ ∫
η(α)|α|−1d×αdud×m

over
1 ≤ |m| ≤ |α| ≤ |b|−1 ,

|bc− u2| ≤ |αb| .
Now, if |α| ≥ 1 then ∫

1≤|m|≤|α|
d×m = 1− v(α) .

Thus we get

|b|−1

∫
η(α)|α|−1(1− v(α))d×αdu

over
1 ≤ |α| ≤ |b|−1 , |bc− u2| ≤ |αb|

or, after a new change of variables,

η(b)
∫

η(α)|α|−1(1− v(α) + v(b))d×αdu

over
|b| ≤ |α| ≤ 1 , |bc− u2| ≤ |α| ,

We divide the integral into the sum of the contribution Ω1
Gl(Y ) of |bc| ≤ |α| and

the contribution Ω2
Gl(Y ) of |bc| > |α|.

To compute Ω1
Gl(Y ) we may write α = ω2s or α = ω2s+1 with s ≥ 0 and sum

over s. We set A = b or A = bc in such a way that

|A| = sup(|b|, |bc|) .

We get
Ω1

Gl(ξ) =

η(b)
∑

s≥0,|A|≤|$2s|

(1− 2s + v(b))qs

−η(b)
∑

s≥0,|A|≤|$2s+1|

(v(b)− 2s)qs .

If |A| = |$2r| the first sum is for 0 ≤ s ≤ r and the second sum if for 0 ≤ s ≤ r−1.
We find

η(b)

 ∑
0≤s≤r

qs + (v(b)− 2r)qr

 =
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η(b)
(
|A|−1/2 − q−1

1− q−1
+ (v(b)− 2r)|A|−1/2

)
.

If |c| ≤ 1, then A = b, b is even, and we are left with

η(b)
|b−1|1/2 − q−1

1− q−1
.

If |c| > 1 then A = bc, bc is even, and we are left with

η(b)
(
|bc|−1/2 − q−1

1− q−1
− v(c)|bc|−1/2

)
.

If |A| = |$2r+1| then both sums are for 0 ≤ s ≤ r. We are left with

η(b)(
∑

0≤s≤r

qs) = η(b)
|$|1/2|A|−1/2 − q−1

1− q−1
.

Now we compute Ω2
Gl(Y ). Now |b| ≤ |α| < |bc|. Thus in order to have a

non-zero result we need |c| > 1. The integral∫
|bc−u2|≤|α|

du

is 0 unless bc is a square. Then it is equal to 2|α||bc|−1/2. Thus we find

2η(b)|bc|−1/2

∫
|b|≤|α|<|bc|

(1− v(α) + v(b))η(α)d×α

or

2|bc|−1/2

∫
1≤|α|<|c|

(1− v(α))η(α)d×α

= 2|bc|−1/2

∫
1≤|α|<|c|

η(α)d×α + 2|bc|−1/2

∫
|c|−1<|α|≤1

v(α)η(α)d×α .

Let us write |c−1| = |$r| and use the formula
r−1∑
n=0

n(−1)n =
1
4
(−1 + (−1)r − 2(−1)rr) .

The first integral is 0 unless r is odd in which case it is 1. We find

ΩGl2(Y ) =
{

c even |bc|−1/2v(c)
c odd |bc|−1/2(1− v(c))

Adding our two results we arrive at the following Proposition.

Proposition 15. ΩGl2(b, c) is given by the following formula.

|c| ≤ 1 b even η(b) |b|
−1/2−q−1

1−q−1

|c| ≤ 1 b odd η(b) |$
−1b|−1/2−q−1

1−q−1

|c| > 1 bc odd η(b) |$
−1bc|−1/2−q−1

1−q−1

|c| > 1 bc even non square η(b)
(
|bc|−1/2−q−1

1−q−1 − v(c)|bc|−1/2
)

|c| > 1 b even bc square η(b) |bc|−1/2−q−1

1−q−1

|c| > 1 b odd bc square η(b) q−1|bc|−1/2−q−1

1−q−1
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21. Verifcation of ΩSl2(X) = η(b2)ΩGl2(Y )

Under our condition of matching we have

|b1| = |b2| , |c1| = |c2| .

In addition if b1c1 and b2c2 are even then b1c1 is a square if and only b2c2 is not a
square. By direct inspection we find

ΩSl2(b1, c1) = η(b2)ΩGl2(b2, c2) .

This concludes the proof of the fundamental Lemma.
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