A correction to Conducteur des Représentations du groupe linéaire

Hervé Jacquet

December 5, 2011

Nadir Matringe has indicated to me that the paper Conducteur des Représentations du groupe linéaire ([JPSS81a], citeError2) contains an error. I correct the error in this note. The correct proof is actually simpler than the erroneous proof. Separately, Matringe has given a different, interesting proof of the result in question ([Mat11]).

We recall the result in question. Let F be a local field. We denote by α the absolute value, by q the cardinality of the residual field and finally by v the valuation of F. Thus $\alpha(x)=|x|=q^{-v(x)}$. Let ψ be an additive character of F whose conductor is the ring of integers \mathcal{O}_{F}. Let G_{r} be the group $G L(r)$ regarded as an algebraic group. We denote by $d g$ the Haar measure of $G_{r}(F)$ for which the compact group $G_{r}\left(\mathcal{O}_{F}\right)$ has volume 1. Let N_{r} be the subgroup of upper triangular matrices with unit diagonal. We define a character

$$
\theta_{r, \psi}: N_{r}(F) \rightarrow \mathbf{C}^{\times}
$$

by the formula

$$
\theta_{r, \psi}(u)=\psi\left(\sum_{1 \leq i \leq r-1} u_{i, i+1}\right) .
$$

We denote by $d u$ the Haar measure on $N_{r}(F)$ for which $N_{r}\left(\mathcal{O}_{F}\right)$ has measure 1. We have then a quotient invariant measure on $N_{r}(F) \backslash G_{r}(F)$.

Let S_{r} be the algebra of symmetric polynomials in

$$
\left(X_{1}, X_{1}^{-1}, X_{2}, X_{2}^{-1}, \ldots X_{r}, X_{r}^{-1}\right) .
$$

Let H_{r} be the Hecke algebra. Let $\mathcal{S}_{r}: H_{r} \rightarrow S_{r}$ be the Satake isomorphism. Thus for any r-tuple of non-zero complex numbers $\left(x_{1}, x_{2}, \ldots, x_{r}\right)$ we have an homomorphism $H_{r} \rightarrow \mathbf{C}$, defined by

$$
\phi \mapsto \mathcal{S}(\phi)\left(x_{1}, x_{2}, \ldots, x_{r}\right) .
$$

There is a unique function $W: G_{r}(F) \rightarrow \mathbb{C}$ satisfying the following properties:

- $W(g k)=W(g)$ for $k \in G_{r}\left(\mathcal{O}_{F}\right)$,
- $W(u g)=\theta_{\psi}(u) W(g)$ for $u \operatorname{in} N_{r}(F)$,
- for all $\left(x_{1}, x_{2}, \ldots, x_{r}\right)$ and all $\phi \in H_{r}$,

$$
\int_{G_{r}(F)} W(g h) \phi(h) d h=\mathcal{S}(\phi)\left(x_{1}, x_{2}, \ldots, x_{r}\right) W(g),
$$

- $W(e)=1$.

We will denote this function by $W\left(x_{1}, x_{2}, \ldots x_{r} ; \psi\right)$ and its value at g by $W\left(g ; x_{1}, x_{2}, \ldots x_{r} ; \psi\right)$.

Let (π, V) be an irreducible admissible representation of $G_{r}(F)$. We assume that π is generic, that is, there is a non-zero linear form $\lambda: V \rightarrow \mathbf{C}$ such that

$$
\lambda(\pi(u) v)=\theta_{r, \psi}(u) \lambda(v)
$$

for all $u \in N_{r}(F)$ and all $v \in V$. Recall that such a form is unique, within a scalar factor. We denote by $\mathcal{W}(\pi ; \psi)$ the space of functions of the form

$$
g \mapsto \lambda(\pi(g) v),
$$

with $v \in V$. It is the Whittaker model of π. On the other hand, we have the L-factor $L(s, \pi)$ ([GJ72]). We denote by $P_{\pi}(X)$ the polynomial defined by $L(s, \pi)=P_{\pi}\left(q^{-s}\right)^{-1}$. The main result of [JPSS81a] is the following Theorem.

Theorem 1 There is an element $W \in \mathcal{W}(\pi ; \psi)$ such that, for all $r-1$-tuple of non zero complex numbers $\left(x_{1}, x_{2}, \ldots, x_{r-1}\right)$,

$$
\begin{gathered}
\int_{N_{r-1}(F) \backslash G_{r-1}(F)} W\left(\begin{array}{cc}
g & 0 \\
0 & 1
\end{array}\right) W\left(g ; x_{1}, x_{2}, \ldots x_{r-1} ; \bar{\psi}\right)|\operatorname{det} g|^{s-1 / 2} d g \\
=\prod_{1 \leq i \leq r-1} P_{\pi}\left(q^{-s} x_{i}\right)^{-1} .
\end{gathered}
$$

In [JPS] it is shown that if we impose the extra condition

$$
W\left(\begin{array}{cc}
g h & 0 \\
0 & 1
\end{array}\right)=W\left(\begin{array}{ll}
g & 0 \\
0 & 1
\end{array}\right)
$$

for all $h \in G_{r-1}\left(\mathcal{O}_{F}\right)$ and $g \in G_{r-1}(F)$ then W is unique. The vector W is called the essential vector of π and further properties of this vector are obtained in [JPSS81a].

The proof of this theorem is incorrect in [JPS]. We give a simple proof here.

1 Review of some properties of the L-factor

Let $r \geq 2$ be an integer. Let $\left(t_{1}, t_{2}, \ldots, t_{r-1}\right)$ be a $r-1$-tuple of complex numbers. We assume that

$$
\operatorname{Re}\left(t_{1}\right) \geq \operatorname{Re} t_{2} \geq \cdots \geq \operatorname{Re}\left(t_{r-1}\right)
$$

We denote by $\pi\left(t_{1}, t_{2}, \ldots t_{r-1}\right)$ the corresponding principal series representation. It is the representation induced by the characters $\alpha^{t_{1}}, \alpha^{t_{2}}, \ldots \alpha^{t_{r-1}}$. Its space $I\left(t_{1}, t_{2}, \ldots t_{r-1}\right)$ is the space of smooth functions $\phi: G_{r-1}(F) \rightarrow \mathbb{C}$ such that

$$
\begin{gathered}
\phi\left[\left(\begin{array}{ccccc}
a_{1} & * & \ldots & \ldots & * \\
0 & a_{2} & \ldots & \ldots & * \\
0 & 0 & \ldots & \ldots & a_{r}
\end{array}\right) g\right]= \\
\left|a_{1}\right|^{t_{1}+\frac{r-2}{2}}\left|a_{2}\right|^{t_{2}+\frac{r-2}{2}-1} \ldots\left|a_{r-1}\right|^{t_{r-1}-\frac{r-2}{2}} \phi(g) .
\end{gathered}
$$

The space $I\left(t_{1}, t_{2}, \ldots t_{r-1}\right)$ contains a unique vector ϕ_{0} equal to 1 on $G_{r-1}\left(\mathcal{O}_{F}\right)$ and thus invariant under $G_{r-1}\left(\mathcal{O}_{F}\right)$. We recall a standard result.

Lemma 1 The vector ϕ_{0} is a cyclic vector for the representation $\pi\left(t_{1}, t_{2}, \ldots t_{r-1}\right)$.
Proof: Indeed, if $\operatorname{Re}\left(t_{1}\right)=\operatorname{Re}_{2}=\cdots=\operatorname{Re}\left(t_{r-1}\right)$, the representation is irreducible and our assertion is trivial. If not, we use Langlands' construction ([Sil78]). There is a certain intertwining operator N defined on the space of the representation and the kernel of N is a maximal invariant subspace. By direct computation $N \phi_{0} \neq 0$ and our assertion follows.

The representation $I\left(t_{1}, t_{2}, \ldots t_{r-1}\right)$ admits a non-zero linear form λ such that, for $u \in N_{r-1}(F)$,

$$
\lambda(\pi(u) \phi)=\theta_{r-1, \bar{\psi}}(u) \lambda(g) .
$$

We denote by $\mathcal{W}\left(t_{1}, t_{2}, \ldots, t_{r-1} ; \bar{\psi}\right)$ the space spanned by the functions of the form

$$
g \mapsto W_{\phi}(g), W_{\phi}(g)=\lambda\left(\pi\left(t_{1}, t_{2}, \ldots t_{r-1}\right)(g) \phi\right),
$$

with $\phi \in I\left(t_{1}, t_{2}, \ldots t_{r-1}\right)$ We recall the following result ([JS83])

Lemma 2 The map $\phi \mapsto W_{\phi}$ is injective.
It follows that the image W_{0} of ϕ_{0} is a cyclic vector in $\mathcal{W}\left(t_{1}, t_{2}, \ldots, t_{r-1} ; \bar{\psi}\right)$. Up to a multiplicative constant, W_{0} is equal to the function $W\left(x_{1}, x_{2}, \ldots, x_{r-1} ; \bar{\psi}\right)$.

Now let π be a generic representation of $G_{r}(F)$. For $W \in \mathcal{W}(\pi, \psi)$ and $W^{\prime} \in \mathcal{W}\left(t_{1}, t_{2}, \ldots, t_{r-1} ; \bar{\psi}\right)$ we consider the integral

$$
\Psi\left(s, W, W^{\prime}\right)=\int_{N_{r-1} \backslash G_{r-1}} W\left(\begin{array}{cc}
g & 0 \\
0 & 1
\end{array}\right) W^{\prime}(g)|\operatorname{det} g|^{s-1 / 2} d g
$$

The integral converges absolutely if Res $\gg 0$ and extends to a meromorphic function of s. In any case, it has a meaning as a formal Laurent series in the variable q^{-s} (see below). We recall a result from [JPSS83]

Lemma 3 There are functions $W_{j} \in \mathcal{W}(\pi ; \psi)$ and $W_{j}^{\prime} \in \mathcal{W}\left(t_{1}, t_{2}, \ldots, t_{r-1} ; \bar{\psi}\right)$, $1 \leq j \leq k$, such that

$$
\sum_{1 \leq j \leq k} \Psi\left(s, W_{j}, W_{j}^{\prime}\right)=\prod_{1 \leq i \leq r-1} L\left(s+t_{i}, \pi\right) .
$$

Since W_{0} is a cyclic vector we see, after a change of notations, that there are functions $W_{j} \in \mathcal{W}(\pi ; \psi)$ and integers $n_{j}, 1 \leq j \leq k$, such that

$$
\sum_{i} q^{-n_{i} s} \Psi\left(s, W_{i}, W\left(x_{1}, x_{2}, \ldots x_{r-1} ; \bar{\psi}\right)\right)=\prod_{1 \leq i \leq r-1} L\left(s+t_{i}, \pi\right) .
$$

In our discussion $\left|x_{1}\right| \leq\left|x_{2}\right| \leq \cdots \leq\left|x_{r-1}\right|$. However, the functions $W\left(x_{1}, x_{2} \ldots, x_{r-1} ; \bar{\psi}\right)$ are symmetric in the variables x_{i}. Thus we have the following result.

Lemma 4 Given a r-1-tuple of non-zero complex numbers $\left(x_{1}, x_{2}, \ldots x_{r-1}\right)$ there are functions $W_{j} \in \mathcal{W}(\pi ; \psi)$ and integers $n_{j}, 1 \leq j \leq k$, such that

$$
\sum_{j} q^{-n_{j} s} \Psi\left(s, W_{j}, W\left(x_{1}, x_{2}, \ldots x_{r-1} ; \bar{\psi}\right)\right)=\prod_{1 \leq i \leq r-1} P_{\pi}\left(q^{-s} x_{i}\right)^{-1}
$$

2 The ideal I_{π}

First, we can define a function $W\left(X_{1}, X_{2}, \ldots X_{r-1} ; \bar{\psi}\right)$ with values in S_{r-1} such that, n for every g and every r - 1-tuple $\left(x_{1}, x_{2}, \ldots, x_{r-1}\right)$, the scalar $W\left(g ; x_{1}, x_{2}, \ldots x_{r-1}\right)$ is the value of the polynomial $W\left(g ; X_{1}, X_{2}, \ldots X_{r-1} ; \bar{\psi}\right)$ at the point $\left(x_{1}, x_{2}, \ldots, x_{r-1}\right)$. For g in a set compact modulo $N_{r-1}(F)$ the
polynomials $W\left(g ; X_{1}, X_{2}, \ldots X_{r-1} ; \bar{\psi}\right)$ remain in a finite dimensional vector subspace of S_{r-1}. We have the relation

$$
|\operatorname{det} g|^{s} W\left(g ; x_{1}, x_{2}, \ldots, x_{r-1} ; \bar{\psi}\right)=W\left(g ; q^{-s} x_{1}, q^{-s} x_{2}, \ldots, q^{-s} x_{r-1} ; \bar{\psi}\right) .
$$

It follows that if $|\operatorname{det} g|=q^{-n}$ then the polynomial $W\left(g ; X_{1}, X_{2}, \ldots X_{r-1} ; \bar{\psi}\right)$ is homogeneous of degree n. For each integer n define the integral

$$
\begin{gathered}
\Psi_{n}\left(W ; X_{1}, X_{2}, \ldots X_{r-1} ; \psi\right)= \\
\int_{|\operatorname{det} g|=q^{-n}} W\left(\begin{array}{cc}
g & 0 \\
0 & 1
\end{array}\right) W\left(g, X_{1}, X_{2}, \ldots X_{r-1} ; \bar{\psi}\right)|\operatorname{det} g|^{-1 / 2} d g
\end{gathered}
$$

The support of the integrand is contained in a set compact modulo $N_{r-1}(F)$, which depends on W. In addition, there is an integer N_{W} such that the support of the integrand is empty if $n<N(W)$. The polynomial

$$
\Psi_{n}\left(W ; X_{1}, X_{2}, \ldots X_{r-1} ; \psi\right.
$$

is homogeneous of degree n, that is,

$$
X^{n} \Psi_{n}\left(W ; X_{1}, X_{2}, \ldots X_{r-1} ; \psi\right)=\Psi_{n}\left(W ; X X_{1}, X X_{2}, \ldots X X_{r-1} ; \psi\right) .
$$

We consider the formal Laurent series

$$
\Psi\left(X ; W ; X_{1}, X_{2}, \ldots X_{r-1} ; \psi\right)=\sum_{n} X^{n} \Psi_{n}\left(W ; X_{1}, X_{2}, \ldots X_{r-1}, \psi\right)
$$

or, more precisely,

$$
\Psi\left(X ; W ; X_{1}, X_{2}, \ldots X_{r-1} ; \psi\right)=\sum_{n \geq N_{W}} X^{n} \Psi_{n}\left(W ; X_{1}, X_{2}, \ldots X_{r-1} ; \psi\right)
$$

If we multiply, this Laurent series by $\prod_{1 \leq i \leq r-1} P_{\pi}\left(X X_{i}\right)$ we obtain a new Laurent series

$$
\begin{gathered}
\Psi\left(X ; W, X_{1}, X_{2}, \ldots X_{r-1} ; \psi\right) \prod_{1 \leq i \leq r-1} P_{\pi}\left(X X_{i}\right)= \\
\sum_{n \geq N_{1}(W)} X^{n} a_{n}\left(X_{1}, X_{2}, \ldots X_{r-1} ; \psi\right) .
\end{gathered}
$$

where $N_{1}(W)$ is another integer depending on W. We can replace π by its contragredient representation $\widetilde{\pi}, W$ by \widetilde{W}, ψ by $\bar{\psi}$. Recall that \widetilde{W} is defined by

$$
\widetilde{W}(g)=W\left(w_{r}{ }^{t} g^{-1}\right)
$$

where w_{r} is the permutation matrix whose non-zeero entries are on the antidiagonal. The function \widetilde{W} belongs to $\mathcal{W}(\widetilde{\pi}, \bar{\psi})$. We define similarly

$$
\Psi\left(\widetilde{W} ; X_{1}, X_{2}, \ldots, X_{r-1} ; \psi\right)
$$

We have then the following functional equation

$$
\begin{aligned}
& \Psi\left(q^{-1} X^{-1} ; \widetilde{W} ; X_{1}^{-1}, X_{2}^{-1}, \ldots X_{r-1}^{-1} ; \psi\right) \prod_{i=1}^{r-1} P_{\widetilde{\pi}}\left(q^{-1} X^{-1} X_{i}^{-1}\right) \\
= & \prod_{i=1}^{r-1} \epsilon_{\pi}\left(X X_{i}, \psi\right) \Psi\left(X, W, X_{1}, X_{2}, \ldots X_{r-1} ; \bar{\psi}\right) \prod_{1 \leq i \leq r-1} P_{\pi}\left(X X_{i}\right) .
\end{aligned}
$$

The ϵ factors are monomials. Thus there is another integer $N_{2}(W)$ such that in fact

$$
\begin{gathered}
\Psi\left(X, W, X_{1}, X_{2}, \ldots, X_{r-1} ; \psi\right) \prod_{1 \leq i \leq r-1} P_{\pi}\left(X X_{i}\right)= \\
\sum_{N_{2}(W) \geq n \geq N_{1}(W)} X^{n} a_{n}\left(X_{1}, X_{2}, \ldots X_{r-1}\right) .
\end{gathered}
$$

From now on we drop the dependence on ψ from the notation. Hence the product $\Psi\left(X, W, X_{1}, X_{2}, \ldots X_{r-1}\right) \prod_{1 \leq i \leq r-1} P_{\pi}\left(X X_{i}\right)$ is in fact a polynomial in X with coefficients in S_{r-1}. Moreover, because the a_{n} are homogeneous of degree n, there is a polynomial $\Xi\left(W ; X_{1}, X_{2}, \ldots X_{r-1}\right) \in S_{r-1}$ such that

$$
\Psi\left(X ; W ; X_{1}, X_{2}, \ldots X_{r-1}\right) \prod_{1 \leq i \leq r-1} P_{\pi}\left(X X_{i}\right)=\Xi\left(W ; X X_{1}, X X_{2}, \ldots X X_{r-1}\right) .
$$

In a precise way, let us write

$$
\prod_{1 \leq i \leq r-1} P_{\pi}\left(X_{i}\right)=\sum_{m=0}^{R} P_{m}\left(X_{1}, X_{2}, \ldots, X_{r-1}\right)
$$

where P_{m} is homogeneous of degree m. Then

$$
\begin{gathered}
\Psi\left(X ; W ; X_{1}, X_{2}, \ldots X_{r-1}\right) \prod_{1 \leq i \leq r-1} P_{\pi}\left(X X_{i}\right)=. \\
\sum_{n} X^{n} \sum_{m=0}^{R} \Psi_{n-m}\left(W ; X_{1}, X_{2}, \ldots, X_{r-1}\right) P_{m}\left(X_{1}, X_{2}, \ldots X_{r-1}\right) .
\end{gathered}
$$

The polynomial $\Xi\left(W ; X_{1}, X X_{2}, \ldots X_{r-1}\right)$ is then determined by the condition that its homogeneous component of degree $n, \Xi_{n}\left(W ; X_{1}, X_{2}, \ldots, X_{r-1}\right)$ be given by

$$
\begin{gathered}
\Xi_{n}\left(W ; X_{1}, X_{2}, \ldots, X_{r-1}\right)= \\
\sum_{m=0}^{R} \Psi_{n-m}\left(W ; X_{1}, X_{2}, \ldots, X_{r-1}\right) P_{m}\left(X_{1}, X_{2}, \ldots X_{r-1}\right) .
\end{gathered}
$$

Let I_{π} be the vector space spanned by the polynomials $\Xi\left(W ; X_{1}, X_{2}, \ldots X_{r-1}\right)$.
Lemma 5 In fact I_{π} is an ideal.
Proof: Let Q be an element of S_{r-1}. Let ϕ be the corresponding element of H_{r-1}. Then
$\int W\left(g h ; X_{1}, X_{2}, \ldots, X_{r-1}\right) \phi(h) d h=W\left(g ; X_{1}, X_{2}, \ldots, X_{r-1}\right) Q\left(X_{1}, X_{2}, \ldots X_{r-1}\right)$.
Let W be an element of $\mathcal{W}(\pi, \psi)$. Define another element W_{1} of $\mathcal{W}(\pi, \psi)$ by

$$
W_{1}(g)=\int_{G_{r-1}} W\left[g\left(\begin{array}{cc}
h^{-1} & 0 \\
0 & 1
\end{array}\right)\right] \phi(h)|\operatorname{det} h|^{1 / 2} d h .
$$

We claim that

$$
\Xi\left(W_{1} ; X_{1} X_{2}, \ldots X_{r-1}\right)=\Xi\left(W ; X_{1} X_{2}, \ldots, X_{r-1}\right) Q\left(X_{1}, X_{2}, \ldots, X_{r-1}\right) .
$$

This will imply the Lemma.
By linearity, it suffices to prove our claim when Q is homogeneous of degree t. Then ϕ is supported on the set of h such that $|\operatorname{det} h|=q^{-t}$. We have then, for every n,

$$
\begin{gathered}
\Psi_{n}\left(W_{1} ; X_{1}, X_{2}, \ldots, X_{r-1}\right)= \\
\int_{|\operatorname{det} g|=q^{-n}} \int W\left(\begin{array}{cc}
g h^{-1} & 0 \\
0 & 1
\end{array}\right) W\left(g ; X_{1}, X_{2}, \ldots, X_{r-1}\right) \phi(h)|\operatorname{det} h|^{1 / 2} d h|\operatorname{det} g|^{-1 / 2} d g \\
=\int_{|\operatorname{det} g|=q^{-n+t}}\left(W\left(\begin{array}{cc}
g & 0 \\
0 & 1
\end{array}\right) W\left(g h ; X_{1}, X_{2}, \ldots, X_{r-1}\right) \phi(h) d h|\operatorname{det} g|^{-1 / 2} d g\right. \\
=\int_{|\operatorname{det} g|=q^{-n+t}} W\left(\begin{array}{cc}
g & 0 \\
0 & 1
\end{array}\right) W\left(g ; X_{1}, X_{2}, \ldots, X_{r-1}\right)|\operatorname{det} g|^{-1 / 2} d g Q\left(X_{1}, X_{2}, \ldots, X_{r-1}\right) \\
=\Psi_{n-t}\left(W ; X_{1}, X_{2}, \ldots, X_{r-1}\right) Q\left(X_{1}, X_{2}, \ldots, X_{r-1}\right) .
\end{gathered}
$$

Hence

$$
\begin{gathered}
\Xi_{n}\left(W_{1} ; X_{1}, X_{2}, \ldots X_{r-1}\right)= \\
\sum_{m=0}^{R} \Psi_{n-m}\left(W_{1} ; X_{1}, X_{2}, \ldots, X_{r-1}\right) P_{m}\left(X_{1}, X_{2}, \ldots, X_{r-1}\right) \\
=\sum_{m=0}^{R} \Psi_{n-m-t}\left(W ; X_{1}, X_{2}, \ldots, X_{r-1}\right) P_{m}\left(X_{1}, X_{2}, \ldots, X_{r-1}\right) Q\left(X_{1}, X_{2}, \ldots, X_{r-1}\right) \\
=\Xi_{n-t}\left(W ; X_{1}, X_{2}, \ldots X_{r-1}\right) Q\left(X_{1}, X_{2}, \ldots, X_{r-1}\right)
\end{gathered}
$$

Since Q is homogeneous of degree t our assertion follows.

3 Conclusion

Given a r-1-tuple of non-zero complex numbers $\left(x_{1}, x_{2}, \ldots, x_{r-1}\right)$, Lemma 4 shows that we can find W_{j} and integers n_{j} such that

$$
\sum_{1 \leq j \leq k}\left(q^{-s}\right)^{n_{j}} \Xi\left(W_{j}, q^{-s} x_{1}, q^{-s} x_{2}, \ldots, q^{-s} x_{r-1}\right)=1
$$

In particular,

$$
\sum_{1 \leq j \leq k} \Xi\left(W_{j}, x_{1}, x_{2}, \ldots, x_{r-1}\right)=1
$$

Thus the element

$$
Q\left(X_{1}, X_{2}, \ldots X_{r-1}\right)=\sum_{1 \leq j \leq k} \Xi\left(W_{j} ; X_{1}, X_{2}, \ldots X_{r-1}\right)
$$

of I_{π} does not vanish at $\left(x_{1}, x_{2}, \ldots, x_{r-1}\right)$. By the Theorem of zeros of Hilbert $I_{\pi}=S_{r-1}$. In particular, there is W such that

$$
\Xi\left(W ; X_{1}, X_{2}, \ldots X_{r-1}\right)=1
$$

This implies the Theorem.

REmARK 1: The proof in [JPSS81a] is correct if $L(s, \pi)$ is identically 1. In general, the proof there only shows that the elements of I_{π} cannot all vanish on a coordinate hyperplane $X_{i}=x$.

REMARK 2 : Consider an induced representation π of the form

$$
\pi=I\left(\sigma_{1} \otimes \alpha^{s_{1}}, \sigma_{2} \otimes \alpha^{s_{2}}, \ldots, \sigma_{k} \otimes \alpha^{s_{k}}\right)
$$

where the representations $\sigma_{1}, \sigma_{2}, \ldots \sigma_{k}$ are tempered and $s_{1}, s_{2}, \ldots s+k$ are real numbers such that

$$
s_{1}>s_{2}>\cdots>s_{k}
$$

The representation π may fail to be irreducible. But, in any case, it has a Whittaker model ([JS83]) and Theorem 1 is valid for the representation π.

REMARK 3: The proof of Matringe uses the theory of derivatives of a representation. The present proof appears simple only because we use Lemma 3, the proof of which is quite elaborate (and can be obtained from the theory of derivatives).

References

[BZ77] I. N. Bernstein and A. V. Zelevinsky. Induced representations of reductive p-adic groups. I. Ann. Sci. École Norm. Sup. (4), $10(4): 441-472,1977$.
[CPS11] J.W. Cogdell and I.I Piatetski-Shapiro. Derivatives and lfunctions for $G L(n), 2011$.
[GJ72] Roger Godement and Hervé Jacquet. Zeta functions of simple algebras. Lecture Notes in Mathematics, Vol. 260. Springer-Verlag, Berlin, 1972.
[JPSS81a] H. Jacquet, I. I. Piatetski-Shapiro, and J. Shalika. Conducteur des représentations du groupe linéaire. Math. Ann., 256(2):199214, 1981.
[JPSS81b] Hervé Jacquet, Ilja Piatetski-Shapiro, and Joseph Shalika. Conducteur des représentations génériques du groupe linéaire. C. R. Acad. Sci. Paris Sér. I Math., 292(13):611-616, 1981.
[JPSS83] H. Jacquet, I. I. Piatetskii-Shapiro, and J. A. Shalika. RankinSelberg convolutions. Amer. J. Math., 105(2):367-464, 1983.
[JS83] Hervé Jacquet and Joseph Shalika. The Whittaker models of induced representations. Pacific J. Math., 109(1):107-120, 1983.
[JS85] Hervé Jacquet and Joseph Shalika. A lemma on highly ramified ϵ-factors. Math. Ann., 271(3):319-332, 1985.
[Mat11] Nadir Matringe. Essential whitttaker functions for $G L(n)$ over a p-adic field, 2011.
[Sil78] Allan J. Silberger. The Langlands quotient theorem for p-adic groups. Math. Ann., 236(2):95-104, 1978.
[Wal88] Nolan R. Wallach. Real reductive groups. I, volume 132 of Pure and Applied Mathematics. Academic Press Inc., Boston, MA, 1988.
[Zel80] A. V. Zelevinsky. Induced representations of reductive p-adic groups. II. On irreducible representations of GL(n). Ann. Sci. École Norm. Sup. (4), 13(2):165-210, 1980.

