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1. Introduction

We let k be a local non-Archimedean field of characteristic zero with a finite
residual field. We denote by Gn the group GL(n) regarded as an algebraic group
over k. We let p  1, q  1 be two integers with p + q = n and denote by
H = Hp,n the subgroup of Gn of matrices of the form:

Suppose that 03C0 is an admissible irreducible representation of Gn on a complex
vector space V. We let HomH(03C0, 1) be the space of H invariant linear forms on
V, i.e. linear forms T on V such that T(Jr(h)v) = T(v) for all v E V and h E H.
Our main result is the following one:

THEOREM 1.1. For any irreducible admissible representation 7r

dimHomH(03C0, 1)  1.

Furthermore, if dimHomH(03C0, 1) = 1 then 7r is equivalent to the contragredient
representation if.

If dimHOMH(7r, 1) ~ 0, we say that 7r is H distinguished. The importance of this
statement comes from the following result. We consider the special case where
p = q (and n is even). We let k be a number field. Suppose that 7r is an automorphic
cuspidal representation of Gn(A) with trivial central character. For a form 0 in the
space of 7r we consider the ’period integral’

* Partially supported by NSF grant DMS-91-01637
** Partially supported by NSF grant DMS-91-03263
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where Z is the center of Gn. Then the integral P(~) is non-zero for some 0 E 7r if

and only if the (partial) exterior square L-function attached to 7r has a pole at s = 1
and the standard L-function L(s, 03C0) does not vanish at s = 1 2 (see [FJ] and [BF]).
If this is the case, then the integral defines on the space of 7r an H(A) invariant
linear form. The local components 03C0v of 7r are thus Hv-distinguished. The above
integral is then given by an Eulerian product in the following sense. There exists
an embedding r of ~ 03C0v into the space of cusp forms of Gm(A). If

then

where Tv is a certain canonical element of the space

which is one dimensional if v is finite. In the above formula, at almost all finite

places v, the representation 7r, is spherical, the vector 0, is invariant under the
standard maximal compact subgroup and Tv(~v) = 1. This is proved in [FJ]
without using the previous theorem. However, it is clear that the theorem could be
used also to establish (in part) this assertion and will be used in any application of
the period integral to the study of the L-function at 1 2.

At this point it is natural to go back to a local situation and ask for an explicit
construction of a linear form invariant under H. We discuss only the most inter-
esting case where p = q. (For some partial results on the general case see [FJ]).
To that end, we introduce the parabolic subgroup Pp = H Up of type (p, p). Its
unipotent radical Up is the subgroup of matrices of the form:

Let 1b be a non-trivial character of k. We define a character W of Up by:

Then the stabilizer of Bl1 in H is the subgroup Ho of matrices of the form:

Suppose that 03C0 is an admissible irreducible representation of GL(2n) on a complex
vector space V. Then a Shalika functional on V is a linear form 1 such that
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for u e UP and ho E H0. Assuming the existence of a Shalika functional 1 7é 0,
we construct an H invariant linear form as follows. We consider the integral

In order to show this integral converges for J22s sufficiently large, we first establish
an asymptotic expansion for the functions 1(z(a)v) where a is diagonal. Then as
in [FJ], it follows that this integral is an arbitrary holomorphic multiple of L(s, 03C0).
We then set

and Il has the required invariance property. The uniqueness of the linear map Il
implies then the uniqueness of 1. Also, it follows from the above results that an
irreducible representation which has a Shalika model is self-contragredient. This
result has been used by Cogdell and Piatetski-Shapiro in their study of the exterior
square L-function. At any rate, the above local results supplement the global
results of [JS]: there it was proved that an automorphic cuspidal representation 7r
whose exterior square L-function has a pole has a global Shalika model. The local
components of the représentation 7r have thus a local Shalika model.

At this point, we formulate a question: let p = q and suppose that the vec-
tor space HomH0(03C0, 1) is not zero; we ask whether the representation 03C0 is self

contragredient.
In order to prove the above theorem we let u be the involution (antiautomor-

phism of order 2) defined by Q(g) = g-1 and we prove that any distribution T
on Cm which is bi-H-invariant is fixed by Q (see Theorem 4.1 below). This will
imply the theorem as in [G1(]. Indeed, since the automorphism g ~ ig-l takes
H to itself and 03C0 to , the spaces HomH(03C0, 1) and HomH( 1r, 1) have the same
dimension. Let À e HomH( 1r, 1) and Â e HomH(03C0, 1) be non-zero. For every
smooth function of compact support f on the group G, there is a smooth vector
7r(/)A in the space of 03C0 such that for any smooth vector v in 1r we have:

Applying the result to the distribution f ~ (03C0(f)03BB, ), we conclude that

for any two functions f1, f2 smooth of compact support. Since 03C0 is irreducible, this
implies that if 03C0(f)03BB = 0 then 7r(/)Â = 0. Thus there is a linear operator S from
the space of x to the space of 7r such that S(7r(f)A) - (f). It is a non-trivial
intertwining operator. This already establishes the fact that 03C0 is self-contragredient.
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Moreover S is unique within a scalar factor. This proves our contention on the
dimension of HOMH(7r, 1).

In the case at hand, we do not have the property that Q(g) e HgH for
all 9 E G. Thus we cannot apply directly the method of [GK] to prove the
above result. The lack of stability of the double cosets under Q leads us to con-
sider in great detail the structure of the space of double cosets of H. In fact
the method of proof given in our case is an adaptation of ideas presented by
J. Bernstein (see [Be] and [GPSR]). Bernstein proved that if G = GL(n) x GL(n -
1) and H = GL(n - 1) is viewed as the diagonal subgroup of the product, then
dimHom(03C0,1)  1. We remark that if p 0 1, q 0 1 we do not expect this to be true
for G = GL(p + q) x H, where H = GL(p) x GL(q) is viewed as the diagonal
subgroup, because H does not have an open orbit in the flag variety of G.

To study the double cosets of H, we consider the element

Then we form the symmetric space

We also introduce the moment map p: g ~ Y given by

It satisfies the property that

for all g and x in G, and h in H. In particular, if 9 is in H then:

Passing to the quotient, p defines an isomorphism G / H ----+ Y. We can classify the
double cosets of H via the map p. In particular, we show that for any g E Y the
semi-simple part g, and the unipotent part gu of its Jordan decomposition g = gsgu
both belong to Y. Suppose that g is a semi-simple element g E Y and 03C1(x) = g.
Then we show that the double coset H x H is invariant under o, (see Proposition
4.2). Thus ’generically’ the double cosets of H are stable under u. Now let G9 be
the centralizer of g in G. For 03B6 E G9 we have

where £ - çU is a certain involution (antiautomorphism of order 2) of G9 which
leaves H9 = II n G9 invariant. In fact, in order for # to have order 2, it is

necessary to choose suitably. Let Ux be the open set of 03B6 such that the map



69

03A6(h1,03B6,h2) = h103B6xh2 is submersive at (1, 03B6, 1). The image of H  Ux x H
under is an open set 03A9x. The most technical part of this work is to establish the
properties of these objects (see Subsection 5.2): the set Ux is invariant under #; it
is also the set of non-zeroes of a regular function fx on Gg which is bi-invariant
under Hg = H ~ Gg and invariant under #; finally, the set Qx contains any element
y such that the semi-simple part of p( y) is g. Now to prove the theorem it suffices
to show an H invariant distribution T which is also o, skew invariant vanishes.

Suppose that g is semi-simple not central. Then the restriction of the distribution
T to Qx has a pullback PT to Ux which is H9 invariant and # skew invariant. If
1b is a smooth function of compact support on k , then (03C8 0 fx)pT extends to
a distribution on G9 with the same properties of invariance under H9 and #. In
turn, the triple (G9, Hg, #) decomposes into a product of triples (Gi, Hi, 03C3i); here
u, is an involution of Gi which leaves Hi invariant. For each triple, the assertion
corresponding to the theorem is known, either for trivial reasons or inductively
because the triple has the form (GL(n’), Hp’,n’,g ~ g-1 ) with n’  n. Thus

(03C8 o fx)03BCT = 0 and /-lT = 0. It follows that the restriction of T to 03A9x is trivial.
This amounts to saying that the support of such a distribution is contained in the
complement of the union of the sets nx, that is, the set of x such that the semi-
simple part of 03C1(x) is ±1. In other words, the support of T is contained in the
union

where we have set

and NY denotes the set of unipotent elements of Y. Every coset in the first set is
invariant under o,. Thus we can reduce ourselves to the case where the distribution

has support in the second set. Of course, we have then to assume p = q. At this

point we introduce the infinitesimal symmetric space, that is, the set L of matrices
X such that 03B5X03B5 = -X. Clearly L is invariant under conjugation by H and w.
Using the exponential map (or rather the Cayley map) we see that the distribution
T gives rise to a distribution T’ on L which is invariant under conjugation by H
and skew invariant under conjugation by w. Our task is then to show that such
a distribution vanishes (Theorem 2.1). Using the same kind of reduction as in
the group case, we can show that such a distribution has support in the set nL
of nilpotent elements of L. The Fourier transform of T’ has the same property.
This implies that the distribution T’ is invariant under an appropriate oscillator
representation of SL(2, k). In particular, it has a certain property of homogeneity
under the dilations X - tX. Now there are only finitely many orbits of H in
nL. If T’ is not zero, one orbit must carry an invariant distribution with the same

property of homogeneity. We check this is not the case and so prove the theorem
(see Proposition 3.1).
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We did not mention a minor complication. In the group case, in order to carrythe induction, we have to consider also the involution x F--+ wx-1w. Equivalently,
we have to show that any distribution on G invariant under H is also invariant
under conjugation by w (see Subsection 5.3).

It will be clear to specialists that we have imitated some reduction techniques that
Harish Chandra used in his study of invariant distributions. See [RR] where similar
reduction techniques are used in a broader context to study spherical characters.

The paper is organized as follows. In Section 2, we discuss the space of orbits of
H on the infinitesimal symmetric space and reduce the problem on the infinitesimal
symmetric space to the study of distributions on the cone of nilpotent elements.
This study is carried out in Section 3. In Section 4 we discuss the structure of the
set of double cosets. In Section 5, we reduce the problem on the symmetric space to
the problem on the infinitesimal symmetric space. Finally in Section 6, we discuss
the Shalika models.

For a first reading, the reader should read Section 2 and Subsection 3.1, and take
for granted the crucial Lemma 3.1, the proof of which is given in Subsection 3.2.
Then it would be enough to glance at the results in Section 4 and read Subsection
5.1. The results of Subsection 5.2 can be taken for granted at first. Section 5.3 is
similar to Section 5.1. and so can be skipped. Finally, the above introduction gives
a sufficient idea of the contents of Section 6.

2. The infinitésimal symmetric space

We let k be a field of characteristic zero and V be a vector space of dimension m

over with a Z/2Z grading; thus V is written as the direct sum of its homogeneous
components:

We set ri = dim(Vi). We let 03B5 be the element of GL(V) such that s(v) =
(-1)degree(v)v. Let L be the subspace of elements of Endk(V) which are homoge-
neous of degree 1. Thus

L = Hom(V1,V0) ~ Hom(Vo, Vt). (12)

We write an element X of I, as a pair of operators

with Xo E Hom(Yo, Vl) and Xi E Hom(Vl, VO). We set

We let II be the subgroup of g E GL(V) which are homogeneous of degree 0.
Hence



71

We write an element g of H as a pair

with gi e GL(Vi). The group G = GL(V) operates on g = End(V) by the adjoint
representation Adg(X ) = 9 X g-1. In particular, L is stable under H. Explicitly, if
1 = (X1,Xo) and g = (gO,g1) then

Let T be an element of G such that T2 = 1. We have then ro = rI. We then define an
involution o, of L by 03C3(l) = TIT. Our goal in this section is to prove the following
theorem:

THEOREM 2.1. Suppose that V is a Z/2Z graded vector space of dimension
m = 2r whose homogeneous subspaces have the same dimension. Let T be an
involution of V homogeneous of degree 1. Let (J be the corresponding involution
of L, the space of linear maps from V to itself which are homogeneous of degree
1. Let also H be the group of invertible automorphisms of V (of degree 0). Then
any distribution T on L which is H -invariant is invariant under (J.

We first recall some standard facts on the orbits of H on L. The assumption
r0 = ri is not needed there. For X E Endk(V), let

be the Jordan decomposition of X as a sum of a semi-simple element X, and
a nilpotent element Xn which commute with one another. Since L is the -1

eigenspace of Ads, we see that if X is in L then X, and Xn also belong to L.
Now suppose that k is algebraically closed and X E L is semi-simple. If v is an
eigenvector of X belonging to the eigenvalue 03BB let vo, v, be its components. Then
X vo = À VI and X v1 = À vo . In particular, vo - v, is an eigenvector for X belonging
to the eigen value -À. One deduces from this observation that one can choose an
homogeneous basis with respect to which the operators X, have diagonal matrices
with the same non-zero diagonal entries. It follows that if X is semi-simple then
the matrices Xo, X and q(X ) = X1X0 are semi-simple and have the same rank.
This last assertion remains true even if the field is not algebraically closed.

Choosing again a basis of each space Vi, it will be convenient to view the

elements X of L as matrices

Let R be any integer with R x ri, i = 0, 1. For any matrix A of size R x R we let
J(A) be the element of L such that
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Thus J(A) is represented by the matrix

PROPOSITION 2.1. Each semi-simple element X of L is H conjugate to an
element of the form J(A) where 0  R  ri and A is an invertible semi-simple
R x R matrix.

Proof. Let X = (Xl, Xo) be a semi-simple element of L. Let R be the rank of
the matrix Xl. Then Xo and q(X) = X1Xo have also rank R. There is go and gl
in GL(ro, k) and GL( rI, k) such that

At the cost of replacing X by gXg-1 with g = (go, gl ) we may as well assume

Let us write then

where A is an R  R matrix. Then

Since q(X) is semi-simple and of rank R, the matrix A is semi-simple and invert-
ible. We can replace X by gXg-1 where

without changing X1. Then we can compute
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and

Since A is invertible there is (3 and y’ such that y’A + C = 0 and A(3 + B = 0.
Thus there is a g = (go, g1) of the above form such that

Since this matrix has rank R the matrix D must have rank zero, i.e., D = 0. This
proves our contention. ~

Recall G = GL(V). Let g = M(m x m, k) be the Lie algebra of G. For Y e g
we will denote by Gy the centralizer of Y in G and by gy the centralizer of Y
in g.

Let X = (X1,XO) be an element of L. We will denote by Hx its centralizer
H ~ GX in H and by Lx its centralizer gx fl L in L.

LEMMA 2.1. Suppose that

where A is an invertible matrix of size R x R. Then HX is the group of all pairs
oftheform:

where a E GL(R) commutes with A, 6 E GL(ro - R) and 8’ E GL( rI - R).
Similarly, LX consists of all pairs of the form:

where X E M(R x R, k) commutes with A and ç, 03B6’ are arbitrary.
Proof. The first statement is immediate. We prove the second statement. If

(Z, W) E L commutes with X then we write
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where Z, and Wl are R x R matrices. We find at once that Z1A = AZ1 = Wl,
W2 = 0, W3 = 0 and AZ2 = 0 and Z3A = 0. Since A is invertible we conclude
that Z3 = 0 and Z2 = 0 and our conclusion follows. ~

Suppose that X = J(A) as above. Then its centralizer HX in H is isomorphic to
the product

On the other hand, the centralizer Lx in L is isomorphic to the product

The space LX is invariant under the action of HX. With the above identifications
the element g = (a, b, 6’) operates on (X, 03B6, 03B6’) by

Thus we have proved the following proposition:

PROPOSITION 2.2. Let X be a non-zero semi-simple element of L and R the rank
of q(X). Then there is an isomorphism of (HX, LX) with

where A is semi-simple in GL(R, k). Here V’ is a graded vector space whose
graded subspaces have dimension (ro - R, r1 - R), L’ is the space of operators of
degree 1 on V’, H’ the group of automorphisms (of degree 0) of V’. The isomor-
phism is compatible with the respective adjoint actions. 1:1

For X, Y E g, we set 03B2(XY) = Tr(XY). We let gY be the orthogonal comple-
ment of gY for 0. If Y is semi-simple then

For 03B6 e gY, both summands are stable under ad(Y + 03B6). In particular:

LEMMA 2.2. If 03B6 is nilpotent and commutes with Y then ad(Y + 03B6) defines a
bijection of gy on itself.

Proof. This well known result follows from the Jordan normal form for Y +03B6.~

Let Y be a semi-simple element of L. Our goal is to construct an open subset Sty
of L which is a union of orbits under H of elements belonging to LY . Furthermore,
the set S2y to be constructed contains any element of the form Y + 03B6 where 03B6 is
nilpotent in LY. Since LY = L only if Y = 0, it follows that the complement of
the union of the sets S2Y with Y fl 0 and semi-simple is the set nL of nilpotent
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elements of L. We will eventually show that a distribution on L which is 0, skew
invariant and H invariant has a trivial restriction to any of the open sets Qy, that
is, is supported in the set nL.
We let ~ be the space of linear homogeneous operators of degree 0 on V. We

denote by ~Y the centralizer of Y in ~, by Ly the centralizer of Y in L. We set
hY = h n gy and similarly Ly = L n gy. Since is the +1 eigenspace for AdE
and L the -1 eigenspace, we have

and the orthogonal decompositions:

LEMMA 2.3. Suppose Y E L is semi-simple. Then hY and Ly have the same
dimension. The restriction of (3 to each space is non-degenerate.

Proof. Define

Then ~A, B~Y = 0 for all B if and only if A commutes with Y. Thus the radical of
this skew linear form is the centralizer gy of Y. We have in fact gy = hY ~ LY,
and and L are maximal isotropic subspaces for the form (.,.)y. The conclusion
follows. D

We denote by Uy the set of 03B6 E LY such that

is surjective. Since the transpose of this linear map (with respect to (3) is the linear
map

and conversely, the previous lemma implies that UY is also the set of 03B6 E LY such
that

is bijective. In particular:
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LEMMA 2.4. For 03B6 in LY set:

The set Uy is the set of 03B6 in LY such that fY(03B6) ~ 0. It contains all nilpotent
elements of LY. The polynomial fy is invariant under Ad(HY). In particular, the
set Uy is a non-empty open set invariant under Ad HY.

Proof. The first assertion is clear. The second assertion follows from Lem-
ma 2.2. The third assertion follows from the following formula, where h is

in HY :

The last assertion is then an easy consequence.

Consider the map

given by:

The map 0 is clearly submersive on the product G x Uy. Thus the image 03A9Y of
G x UY is open and contains any element of the form Y + 03B6 with 03B6 nilpotent in LY .
We will use these objects to study H invariant distributions on Qy. In a precise
way, there is a surjective map a H fa from C~c(H x LY) to C~c(03A9Y) such that
for any F E C~(03A9Y)

where dg, d03B6, dT are appropriate Haar measure on H, LY, L respectively. It follows
that for every Ad( H ) invariant distribution T on Qy there is a unique distribution
IIT on UY invariant under HY such that

From now on, we assume ro = rl. We consider an element T of G of degree 1
such that T2 = 1. Thus

with To = 03C4-11. We then define an involution 03C3 of L by 03C3(l) = 03C4l03C4 and an involution
03C3 of H by Q(g) = TgT. If we use T to identify Yo to Vi (or use an homogeneous
basis invariant under T to identify operators with matrices) then
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and

We have the following compatibility between the two involutions

We also note the following result:

LEMMA 2.5. If Y is semi-simple in L, then there is z E H such that

Then HY is invariant under the map

Moreover 03C3Y is an involution. The space LY and the open set Uy are both invariant
under the map:

and (J’y is an involution. The involutions are compatible in the sense that

Finally,

In particular, the open set S2y is invariant under o,.
Proof. We may assume

where A is an invertible semi-simple matrix of rank R  r. We define an element
z of H by

Then
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which proves our first assertion. The properties of ôy follow from the explicit
description of HY given above (In fact ôy = 03C3 on fIY).

To continue, we recall that an element 03B6 of LY has the form

where A commutes with X. It follows that

is again in LY . Thus oy is indeed an involution of LY . To continue, we compute

The compatibility of QY and ôy follows from the compatibility of Q and a.
It remains to see that if 03B6 is in UY then Ad(z)03C3(03B6) e Uy. By assumption,

ad(Y + 03B6) is injective on Ly and we have to see that ad(Y + Ad(z)03C3(03B6)) is also
injective on Ly. By the very choice of z we have

Hence

Since Ly is invariant under Ad(zT) the same is true of Ly and our conclusion
follows. D

If we use the notations of the Proposition 2.1, we see that cry = 1  03C3’ and
ôy = 1 x 01 y where u’(X’) = T’X’T’, 03C3’(g’) = T’g’T’; here T’ is an element of
order 2 in GL( Y’ ), homogeneous of degree 1.

Now we apply the above considerations to the map 03B11~03B12 ~ f a /2)a2 previously
defined. If f is a function on Qy (or L) we denote by feT the function defined by
f03C3(X) = f(03C3(X)). If y is any distribution on Qy we denote by 03BC03C3 the distribution
defined by MO’(f ) = 03BC(f03C3). We deduce that

where we have set
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In particular, if T is a distribution on S2y invariant under Ad(H) we have

We say that a distribution y is skew invariant under Q if J-la == - J-l. We have

proved the following lemma:

LEMMA 2.6. Suppose that a distribution T on !1y is AdII invariant. Then if T is
skew invariant under u, the distribution J-lT is skew invariant under uy.

We are now ready to begin the proof of Theorem 2.1.
INDUCTION STEP: Because of the compatibility of the involutions Q and a, any

H invariant distribution can be written as the sum of a Q invariant and a u skew
invariant distributions, each of which is H invariant. It will suffice to show that
the skew invariant component is 0, that is, that a distribution T which is u skew
invariant and H invariant is 0.

Thus let T be such a distribution. Assume that the theorem is true for a graded
vector space of dimension  m. We will show that the support of T is contained
in the set nL of nilpotent elements of L. In view of our previous results, it suffices
to show that for any semi-simple element Y 0 0 of L the restriction of T to the
open set 03A9Y is 0. In turn, it will suffice to show that the distribution PT determined
by T is zero. Recall that PT is a distribution on the open set Uy of LY invariant
under the action of HY and skew invariant under the involution uy introduced
above. Recall also that Uy is the set of non-zeroes of the polynomial fy on Ly.
This polynomial in invariant under Ad(HY). Furthermore fY(03B6) ~ 0 if and only
if fY(03C3Y(03B6)) ~ 0. Thus UY is also the set of non-zeroes of the polynomial

The compatibility of uy and 03C3Y show that the second factor is also invariant under
Ad(HY). Thus the polynomial gy is invariant under Ad HY and (7y. If e is a
smooth function of compact support on FI, the product (03C8 o 9Y)PT extends to
a distribution on the whole vector space LY which is Ad HY invariant and skew
invariant under oy. We will show in the next paragraph that such a distribution
vanishes. This will imply that the distribution PT vanishes and will give us our
conclusion.

Thus we consider now a distribution T on LY which is invariant under HY
and skew invariant under uy. Recall that LY decompose into the direct product
of M(R x R, k)A and the space L’ of homogeneous operators of degree 1 on a
Z/2Z graded vector space V’ of dimension m - 2R. The group HY decomposes
into the product of GL(R)A and the group H’ of homogeneous isomorphisms of
V’. Finally the involution uy is the product of the identity on M(R x R, k)A and
an involutive automorphism u’ of V’ of degree 1, compatible with an involutive
automorphism 03C3’ of H’. We have to show that any distribution y on the product
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M(R x R, k)A x L’ which is invariant under GL(R)A x II‘ and skew invariant
under 1  03C3’ is zero. This is clear if R = rn/2 because the involution is then the
identity. If R  m/2 then for any function 0 of compact support on M(R X R, k)A
the distribution f H J-l( 1j; 0 f ) on L’ is H’ invariant and skew Q’ invariant. By the
induction hypothesis, it vanishes. Hence y vanishes as well and we are done.

Coming back to the proof of our theorem, we have established (under the
induction hypothesis) that the support of T is contained in the set of nilpotent
elements. We will finish the proof of the theorem in the next section.

3. The nilpotent variety

3.1. HOMOGENEITY

We keep to the notations of the previous section. In particular, we assume dim Yp =
dim VI. Suppose that T is a distribution on L which is H-invariant and Q skew
invariant. By the results of the previous section and the induction hypothesis of
the Theorem, the support of T is contained in the set nL. Our task is to show that
T is actually zero. To that end we introduce the restriction f3L of 03B2 to L. Thus
03B2L(X, Y) = Tr(XY). The bilinear form f3L is invariant under Ad H and or, since
these operators are actually conjugation by an element of GL(V). We define the
Fourier transform / of a function f e S(L) by:

where 1b is a non-trivial additive character of k and dY a self-dual Haar measure
on L. The Fourier transform of a distribution p is then defined by (f) = 03BC().
Clearly, the Fourier transform T of T is also invariant under H and u skew
invariant. Thus its support is also contained in nL. Our assertion and the theorem
will be proved if we establish the following proposition:

PROPOSITION 3.1. Let T be any Ad(H) invariant distribution such that T and
T have support in the nilpotent set nL. Then T = 0.

The remainder of this section is devoted to the proof of the proposition. We
first recall results of [KP] on the structure of the set nL. For this discussion, we
need not have dim Ilo = dim V1. Suppose Z is in nL. Then we may regard V as a
k[X]-module, the action of a polynomial p(X ) on a vector v being p(Z)v. We can
write V as a direct sum of indecomposable (cyclic) k[X] -modules. The main result
is that one can choose the generators of these submodules to be homogeneous.
Another result is that H has only finitely many orbits in nL.

Now assume dim Vo = dim V1. The representation Ad of H on L gives us
an imbedding of H into the orthogonal group O(03B2L) of the form (3L. Since
( 0 ((3 L), SL(2, k)) is a dual reductive pair, we have a corresponding oscillator
représentation of SL(2, k) omS(L) which is defined as follows:
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Here dL C k x / k x 2 is the discriminant of the form (3 L; we have denoted by ~.|.~
the canonical pairing on k  /k 2  k /k 2. finally -y is a suitable root of unity.

Consider then the distribution T. It has support in nL. However we have

03B2L(X,X) = Tr(q(X)). If X is nilpotent then X2r = 0. This implies that
q(X)r = 0. Thus q(X) is nilpotent and its trace is zero. As a result, any nilpotent
element is isotropic for 03B2L. It follows from the above formula that T is invariant
under

Since the distribution

is a scalar multiple of the Fourier transform of T it has the same property. Equiva-
lently, T is invariant under the operators

and thus is fixed under the representation 03C9. In particular, it has the following
property of homogeneity

We are led to consider similarly the properties of homogeneity of the invariant
measures carried by the nilpotent orbits of H in L.
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where each Wi is an indecomposable (graded) k[X]-submodule. We let zi be an
homogeneous generator of Wi. Thus Zdim Wi zi = 0 and

is a linear basis of Wi. To continue our study of the homogeneity we introduce an
element Dt E H such that DtZD-1t 1 = tZ. Indeed, we define an operator Dit on Wi
by demanding that Dit(Zk(zi)) = tkZk(zi). Then we can choose for Dt the direct
sum of the Dit. Let ~ be the Lie algebra of H. This is the space of linear operators
of degree 0 on V. Consider the centralizer ~Z of Z in ~. Since Dt transforms Z into
a scalar multiple, it follows that ~Z is invariant under Ad Dt. We want to compute
the determinant of Ad Dt on ~Z:

LEMMA 3.1. There is an integer mz such that

Furthermore

Let us show how this lemma will imply our assertion and the theorem. We can
write

where Xj, 0  j  R, is an increasing sequence of closed H invariant subspaces
of nL, with Xo == 0 and XR = nL and, in addition, the difference Xj+1 - Xj is
a single orbit of H. We have just verified that for any nilpotent element Z and
for any t fl 0, Z and tZ belong to the same orbit of H. Thus the sets Xj are
invariant under dilations. We prove by descending induction on j that T vanishes
on the complement Oj of Xj. For j = R this is the assumption on the support of
T. Assume the restriction of T to Oj+1 is zero. Consider the restriction of T to

Oj. Suppose it is non-zero. Its support is contained in the set Xj+1 - Xj which
is a closed orbit in O j. The orbit may or may not carry an H invariant measure.
If not, there is nothing to prove. Thus we may assume that the orbit carries an
invariant measure and then T is a multiple of this measure. Let Z be any point in
the orbit. Thus there is an invariant measure on the quotient HIHZ such that for
any f ~ C~c(Ok)
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Introduce as before the element Dt; then DtZD-1t = tZ and

Thus we see that

However, we have

Since mz  dim V2 4 we conclude that T( f ) = 0. Thus the restriction of T to Oj
vanishes. Inductively, the restriction of T to Oo vanishes and we are done.

3.2. PROOF OF LEMMA 3.1

It remains to prove Lemma 3.1. Let Z be an element of nL. As a first step, we
determine the centralizer gz of Z in g = End(V). Suppose that B = (bij(X)) is a
matrix in M(1( x 1(, k[X]). We want to associate to B a linear operator ~B on V
such that for any i and any m:

Since Zdim Wi zi = 0, in order for this expression to make sense, we need to have

Assuming the matrix B satisfies condition (30), there is indeed a unique linear
operator 7/B on V with the above property. The operator qB commutes with Z.

Every element of gz is of the form qB for a suitable B. The map q reverses the
order of multiplication:

For p e k[X] and t e k’ we define a polynomial p(t)(p) by p(t)p(X) = p(tX).
For a matrix of polynomials B = (bij) we set p(t)B = (p(t)bij). Then
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Finally qB = 0 if and only if

Thus we can consider instead the space Z of matrices B = (bjj) of truncated
polynomials:

Of course if dim Wi  dim Wj the second condition is empty. The map B ~ ~B
is then a bijection from Z onto gz.

Our next task is to determine the structure of bZ. To that end, we define an
element 03B5 of H by 03B5(v) = (-1)degree(v)v if v is an homogeneous vector. Then X E g
is in ~ if and only if Ad03B5(X) = X. Since each space Wi is a graded subspace, it
is invariant under s. More precisely, define Wi = (-1)degree(zi). Then

The operator ~B is in ~Z if and only if

This relation is equivalent to

or, in view of relation (35),

If we write

the above condition reads:

or, more explicitly:



85

Thus qB determines a bijection from the space Z1 of matrices B = (bij) of
truncated polynomials satisfying conditions (37) and (38) onto ~Z. In view of (31)
we have

We view Z, as the direct sum of spaces Sij of truncated polynomials satisfying the
conditions (37) and (38). Then

The following lemma computes the right hand side. We set ri = dim(Wi).

LEMMA 3.2. (i) Suppose i = j and ri = 2pi. Then

(ii) Suppose i = j and ri = 2pt + 1. Then

(iii) Let i ~ j. Then

is given by the following formulas:

Proof. We consider first the case when i = j. If ri = 2p, then the truncated
polynomials P e S,i have the form

Thus the determinant of p(t) on that space is t raised to the power
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If ri = 2pt + 1 then the truncated polynomials in S,i have the form

Thus the determinant of p(t) on that space is t raised to the power

This gives the two first assertions of the lemma.
Now we consider the case where i 0 j and rj j ri . This time we have

where

where the summation on 1 is restricted by the condition that

We also note in addition to the identities (39) and (40):

The third assertion of the lemma follows then from a lengthy but elementary com-
putation. o

At this point we have proved the first assertion of Lemma 3.1. The integer
m = mz is the sum of the exponents occurring in the previous lemma. It remains
to establish the upper bound for the integer m in term of the dimension d of V. We
have

In general, dim( Wi n V0) = dim( Wi n V1) d= 1. Thus if r, is even, we write ri = 2pt
and then dim( Wi n Vo) = dim(wi n V1) = pi. Suppose that ri is odd. Then we
write r, = 2pi + 1. If 03C9i = 1, then dim( Wi n V0) = p’ and dim( Wi n V1) = pz + 1.
If cvi = -1 then dim(wi n Vo) = pz + 1 and dim(Wi n V1) = p’ + 1. We let X
be the number of indices i such that r, is odd and 03C9i = 1. Since Vo and Vi have
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the same dimension, there must be the same number of indices i such that ri is odd

and 03C9i = -1. Then

Thus

Note that the integer m is determined by the data

without reference to the spaces at hand. The proof of the lemma is by induction
on the number of indices i so that r, is even. First assume the number is zero, that

is, all the integers r, are odd. Then 1( = 2X. We order the ri so that Wi = 1 for

1 x i  X and w, = -1 for X + 1  i  2X. We further assume that p’ is a

decreasing function of i for 1  i  X and for X + 1  i  2X. The previous
lemma gives then

Clearly m is less than

which in turn is strictly less than (43). Thus our assertion is proved in this case.
Now we can arrange the data so that rI1 (the last term) is even. If 1( = 1 then

r 1 = 2p and m = p2 - p which is strictly less than dimV2/4 = p2. By induction on
the number of indices i with r. even, we may assume that the inequality is proved
for the data (r1,03C91, r2, 03C92, ..., rK-1, WK- 1). The induction hypothesis shows that
the contribution of the indices (i,j) with 1  i  j  K - 1 is strictly less
than d’2 /4 where d’ = 03A31iK-1 rt. Thus we must show that the sums of the
contributions of the pairs (i, K) with i  1( is less than or equal to
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The previous lemma shows that the contribution of the pair (K, K) is p2K - pK 
p2K. Consider now the contribution of a pair (i, 1() with i  1(. It is always less
than or equal to 2pipK except when ri 2pi + 1 with rh &#x3E; ri and wiwj = -1;
the contribution is then 2pipK + 2(PK pi ) - 1  2pipK + 2pK. There are at
most X such terms. Thus the contribution of the pairs ( i, K) with i  1( is at most

equal to the right hand side of (44). This proves our contention and concludes the
proof of the lemma and the theorem.

4. The symmetric space

4.1. ORBITS IN THE SYMMETRIC SPACE

We consider here the variety

Under the adjoint action of G = GL(n), this variety decomposes into a finite
number of orbits:

where

with

Note that Zn,n and Zo,n are reduced to a single point. Each Zp,n admits the structure
of a symmetric space. Indeed, let 0p,n be the involution of G defined by

and let Hp,n be the centralizer of 03B5p,n. Then the space

contains the set

The group G operates on Pp,n via the twisted action:

The group Hp,n operates by conjugation; it is the stabilizer of e and Yp,n is the
orbit of e. In particular, we have a surjective polarization map
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It verifies:

In particular Yp.,,, is isomorphic to G / H p,n as a G-space. We can regard kn as a
Z/2Z graded vector space where the homogeneous vectors are the eigenvectors of
sp,n and have eigenvalue ( -1 )degree(v)* .

In what follows, we often drop the second index n or even both indices from
the notations. For instance we write sp or even - for Ep,n, if this does not create
confusion. When n = 2p we also introduce

Recall our goal is to prove the following theorem:

THEOREM 4.1. Suppose T is a distribution on GL(n,k) which is Hp,n bi-invariant.
Then T is invariant under g - g-1. If n = 2p it is also invariant under conjugation
by wp.

We remark that once the first assertion is proved, then the second assertion amounts
to saying that the distribution T is invariant under g - wpg-1 WP .

The proof of the theorem is by induction on n : we assume n  1 and the theorem
true for all groups GL( n’) with n’  n. We first study the orbits of H in Pp.

Let Nn be the set of unipotent elements in GL( n) . We first investigate the
structure of the intersection Nn n Pp. We recall that the exponential map defines
an isomorphism of nn, the set of nilpotent elements in M(n x n, k), onto Nn. In
particular, if u = exp(X) lies in Nn n Pp then the equation spusp = u-1 implies
03B5pX03B5p = - X. The operator 6’p defines a Z/2Z grading of V = k : an eigenvector
v of sp has eigenvalue ( -1 )degree(v) . The above relation means that X is in L
(defined in Section 2). In particular 1 2X is in L and v = exp(1 2X) is in Pp. We have
then

Thus u is actually in Yp. We set NY = Yp n Nn. Recall nL = L ~ nn. Thus

A consequence is the following lemma which describes the Jordan decomposition
of an element of Yp :

LEMMA 4.1. Let x E Pp and x = xsxu = xuxs its Jordan decomposition, where
Xs is semi-simple and xu unipotent. Then Xs and xu are in Pp. If x is in Yk then
Xs and xu are in Yp. More precisely, there is Y E nL and gl E G such that
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p( exp(Y)) == xu, 03C1(g1) = xs; the elements exp(Y) and x commute to one another
and p(exp(Y)gl) = x.

Proof. Assume x is in Pp, that is, EpxEp = x-1. The uniqueness of the Jordan
decomposition shows that xs and zu satisfy the same condition and are thus in Pp.
In fact Xu is in Yp by the arguments above. More precisely, write xu = exp(X).
Then xsXx-1s 1 = X. It follows that v = exp(X/2) commutes with xs and also
with x.

Assume now that x is in Yp. Thus x = pk(g) for some g e G. Suppose that
03B6 ~ G commutes with x. Then 03B503B603B5 commutes with 03B5x03B5 = x-1 and thus commutes
with x as well. As a result:

We can apply this identity to the element v above. We find

Thus xs is in Yp as claimed. If we set Y = X/2 and gl = v-lg we obtain the last
assertion of the lemma. o

Our next task will be to analyze the elements of Pp which are semi-simple.

LEMMA 4.2. Let

with A, B, C, D are matrices ofsize p xp,p X ( n - p), ( n - p) xp, ( n - p) X ( n - p)
respectively. Suppose g is semi-simple. Then the matrices A, D, BC, CB and

are (square) semi-simple matrices.
Proof. We may assume the ground field k is algebraically closed, since the

condition of being semi-simple does not depend on the ground field. Let {Ti} be a
basis of eigenvectors for g. We write Ti = vi + wi where vi (resp. Wi) lies in the
+ 1 (resp. -1) eigenspace of 03B5p. In other words, vi has degree 0 and wi has degree
1. We have then :

Since sgs = g - we have g (ETi) = Ai 1(03B5Ti). Thus sTi is an eigenvector of g with
the eigenvalue 03BB-1i. This gives the relations
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Combining the above relations we obtain

Since the vectors vi (resp. Wi) span Vo (resp. V1), this implies that A and D are
semi-simple. We have also

This implies similarly that CB andBC are semi-simple. In turn (see Section 2)
this implies the last assertion of the lemma. D

Now we want to obtain a canonical form for a semi-simple element of Pp. We
record the algebraic equations defining Pp : if

where A is a p x p matrix, then g is in Pp if and only if

Since the elements of H commute to 03B5, the group H N GL(p) x GL(n- p) operates
on Pp via conjugation:

Thus, at the cost of replacing g by a conjugate under H, we may assume

where v is the rank of B. If g is semi-simple, then C has the same rank as B and
the products CB and BC are semi-simple. Arguing as in the infinitesimal case, we
see that g is H conjugate to an element of the form
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where Cv is a v X v invertible semi-simple matrix. Let us write further

where A1 and JDi 1 are v x v matrices. From the algebraic equations which define
Pp we get

and

Thus so far we have shown that a semi-simple element g of Pk is conjugate to an
element of the form:

where A1 is semi-simple of size v x v, A4 and D4 are elements of order 2; moreover
A2 _ Iv is invertible, that is, ::i: 1 is not an eigenvalue of AI. Note that the extreme
cases v = p and v = 0 may occur.

We first study the case where v = p.

LEMMA 4.3. Let A E M ( r X r, k) be a matrix so that ± 1 is not an eigenvalue of
A. Then the matrix

is invertible. It can be expressed in the form t(A) = pr,2r(g)for some g E GL(2r).
In particular, it is in Y,,2,- . Moreover, there is h E Hr,2r such that

The matrix t(A) does not have the eigenvalue :l: 1. It is semi-simple if and only if
A is semi-simple.

Proof. One checks at once that t(A)st(A)s = I so that t(A) is invertible and in
Pr,2r’ Since A does not have the eigenvalues ± 1, we can write
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where U is a square matrix without the eigenvalues 0 or 1. Then we can check at
once that t(A) = pr(x) where x = x(U) is defined by

In addition x has the form:

where IT - X Y and Ir - YX are invertible (in fact both equal to IT - U). Then

Since the matrix on the right is in H, we get

This establishes the second assertion.

If t(A) is semi-simple we have seen that A is semi-simple. To prove the converse,
we may assume k is algebraically closed. As in the previous proposition, if À is
an eigenvalue of t(A) then (À + 03BB-1)/2 is an eigenvalue of A. Thus 03BB ~ ±1.
Moreover, if v is an eigenvector for the matrix A belonging to the eigenvalue y
then for À = 03BC f 03BC2 - 1 the column vector

is an eigenvector for t(A) belonging to the eigenvalue À. If A is semi-simple we
can choose the vectors v among a basis of eigenvectors for A; then the vectors
Tv,± form a basis of k2r. Thus t(A) is semi-simple. o

REMARK. Similarly, it is easily proved that every element g E Yr,2r of the
form

where A and D are r x r matrices not having ±1 as eigenvalues is H r,2r conjugate
to a matrix of the form
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where A’ does not have the eigen value ±1. In fact, this establishes a bijection
between Hr,2r conjugacy classes of elements g E Yr,2r satisfying the above condi-
tions and conjugacy classes of GL(r) in M ( r x r,k) of elements A’ which do not
have eigenvalues 11. As in the proof of the previous lemma, the Cayley transform
gives a bijection of the latter set with the set of conjugacy classes of GL(r) in
M ( r x r, k) of elements U which do not have eigenvalues 0 and 1.
Now we go back to the general situation of a semi-simple element of Yp,n.

Recall that g e GL(n) is in Yp,n if and only if gsp is conjugate to 03B5p.

PROPOSITION 4.1. Each semi-simple element g E Yp is H conjugate to an
element of the form

where A is a semi-simple element of M(v X v, k) without the eigenvalues ::1: 1 and

~1, ~2 are matrices of the form

with a + (3 = p - v, 03B3 + 6 = n - p - v and (3 = 8. The set of H conjugacy classes of
semi-simple elements of Yp is in bijective correspondence with the set of all triples
(v,{A}, 0), where 0  v  p is an integer, {A} a semi-simple conjugacy class in
M(v X v) without the eigenvalues 11 and (3 is an integer with 0  (3  p - v.

Proof. We may assume that g has the canonical form (52). We can view V = k n
as the direct sum of two graded subspaces V’ and V" ; correspondingly, g = g’ ~ g".
With respect to suitable homogeneous bases of V’ and V", the operator g’ has the
matrix t(A) and the operator g" has the matrix

With obvious notations, the group H contains H’ x H" where H’ ~ GL(v) x GL(v)
and H" = GL(p-v) GL(n-p-v). Since A24 = Ip-v, the matrix A4 is conjugate
under GL(p - v) to a matrix "71 of the above form. Likewise D4 is conjugate under
GL(n - v - p) to a matrix ~2 of the above form. Thus g" is indeed conjugate under
H" to an element with a matrix of the form:
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with ~i of the above form. However, we have still to show that 03B2 = 8. The previous
lemma shows that the product

is GL(2v) conjugate to 03B5v,2v. Since gsp,n is GL(n) conjugate to Epn, this implies
that the product

is GL(n - 2v) conjugate to Ep-v,n-p-v. Comparing the eigenvalues of the products
we get our result. This gives the first assertion of the proposition.

To prove the second assertion of the proposition we need to show that any
matrix of the specified form is actually in Yk. This amounts to showing that the
matrix

is in Yp-v,n-2v. This is easily checked: indeed, if

then (recall f3 = b)

REMARK. Suppose that g is the matrix of the proposition. Let us write again
V = V’ ~ V" and g = g’ ~ g". Since g’ and g" do not have a common eigenvalue,
the centralizer of g in GL(V) consists of all matrices of the form 03B6’ e 03B6" with
03B6’ E GL(V’)9’ and 03B6" E GL(V")g".

Our main result is now:

PROPOSITION 4.2. If g E Yp n is semi-simple and 03C1(x) = g then

Proof. We may assume that g has the form (55). Equivalently, we may assume
that V = V’ ~ V" where V’ and V" are graded subspaces, and g = g’ E9 g" where g’
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has matrix t(A) and g" has matrix ~, with respect to a suitable homogeneous basis.
Similarly, - = E E8 E" where s’ and e" are homogeneous of degree 0. We have then,
with obvious notations, 03C1’(x(U)) = g’ and p"( () = g". Thus if x = x(U) ~ 03B6
then p(x) = g. Since H’x(U)H’ = H’x(U)-1H’ and 03B6-1 we obtain our
assertion. D

4.2. INDUCED SYMMETRIC SPACES

In this subsection, we discuss the symmetric spaces of lower rank which will be
used to carry out the induction step needed in the proof of Theorem 4.1. The
following simple lemma will be very useful:

LEMMA 4.4. Suppose x is in GL(n). Then

Proof. Suppose 1 is in L fl xLx-1. Then

since x -Il x is in L. Thus we find that 1 commutes with 03C1(x). Conversely, suppose
l is in L03C1(x). Then

so that x-1lx is in L and 1 E L ~ xLx-1. The other assertions are proved in a
similar way. ~

Recall the form (3(X, Y) = Tr(XY) on g = M(n x n, k). We have an orthog-
onal decomposition: g = h 0) L. Suppose x E GL(V). Since the orthogonal
complement of h + xhx-1 is L n (xLx-1) - L03C1(x), we have

Let be in G. Suppose that g = 03C1(x) is semi-simple. We consider the map

We denote by Vx the set of 03B6 E G03C1(x) such that 4l is submersive at (1, 03B6, 1) (and
thus at any point (h, 03B6, h’)). In fact Ux is the set of e E G03C1(x) such that
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The previous formula shows that 1 Eux. We will establish additional properties
of the set Vx in Subsection 5.2, in particular, the fact that it is open and invariant
under left and right multiplication by H03C1(x).

Suppose p( x ) is semi-simple. We have H x H = Hx-1H so that we can write
91 xg2 == x-1 with gi E H. In particular, 03C1(x-1) = g103C1(x)g-11. Now x-103C1(x)x =
03B5x-103B5x. Taking in account these relations and the fact that - commutes with gl, g2,
we find

This identity can be written in the form:

or

It follows that if 03B6 belongs to G03C1(x) then x-1çx commutes with x-1p(x)x =
g103C1(x)-1g-11. It therefore commutes with g103C1(x)g-11 1 as well. Equivalently, the
element

is in G03C1(x). Thus 03B6 ~ 03B6# is an antiautomorphism of G03C1(x). We have

Now p(X-1) = glP(x)g11i and similarly g-1203C1(x-1)g2 = p(x). It follows that
g2 lgl commutes with p(x). Also xglxgl = g2 ’gl and

Furthermore, if 03B6 is in HP(x) = H fl xHx-1, then 03B6# is also in H03C1(x), since
xg1 = g-12x-1.
We have

Since X-1p(X)X = 91P(x)-lg11 1 this is also

Since xg2 = g-11x-1 this is also equal to HG03C1(x)xH. Thus this set is invariant
under g - g-1. More precisely, for hi E H , i = 1, 2 :
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or

We will see that the open set Ux is invariant under 03B6 H 03B6#. It will follow that the
image S2x of H x Ux x H under 4l is also invariant under g ~ g-1. We will show
that any distribution T on flx which is H bi-invariant and skew invariant under
g - g-1 gives rise to a distribution PT on the open set Vx which is bi-invariant
under HP(x) and skew invariant under 03B6 ~ 03B6#. Note that in general # needs not be
an involution. However, if y is an H03C1(x) biinvariant distribution on G03C1(x) or on flx
then (03BC#)# = 03BC.

Thus we must now study the triple (GP(x), HP(x), #). First we study gP(x). Since
03B503C1(x)03B5 = 03C1(x)-1 we have

Recall that

We use this observation and the explicit form of the representatives of H orbits
given above.

First suppose that x e GL(2v) has the form

so that in the symmetric space Yv,2v we have pv,2v(x) = t(A) where A = (Iv +
U)(Iv - U)-1. Given Zl, Z2 there are Z’ and Z2 such that

if and only if Zl = Z1, Z2 = Z2 and

The last relation implies that (1 - U)-1 Z1(1 - U)-1 commutes with U. In tum
this implies that Z, commutes with U. Thus we see that L03C1(x) = L ~ xLx-1 is
equal to the set of matrices of the form
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where Z, e M(v x 1/, k)u. Similarly, f) n (xhx-1) is the set of matrices of the
form

where Z, E M(v x v, k)U. It follows that for x = x(U)

The group GL(2v, k)03C1(x) is just the set of invertible matrices of the above form.
The space DP(x) is just the space of matrices of the above form with Z2 = 0 and
the group H03C1(x) the group of matrices of the above form with Z2 = 0 and Z,
invertible.

Now we determine the effect of the map 03B6 ~ 03B6# = g-11x-103B6-1xg1, where
gi E H conjugates p(x) to 03C1(x-1) . Here we can take gl = E v,2v. We have:

where X = (Iv - U)/2 and Y = 2U(I" - U)-1. The matrices X and Y are in
the bicommutant of U and verify X ô = 8X = Y for b = 4U(1 - U)-2. Thus x is
actually in the center of the algebra M(2v x 2v)03C1(x). Thus 03B6# = 03B5v,2v03B6-103B5v,2v in
this case. Explicitly, if ç-l is written in the above form, then

In particular, (03B6#)# = 03B6.
Since the element U is semi-simple in M(v x v, k), there exists a k linear

isomorphism

where Iï7i/k are field extension and the operator U becomes under this identifica-
tion

with
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If we identify kV ~ kv with

then the associative algebra M(2v x 2v, k)03C1(x) can be identified with a direct sum
of associative algebras:

where bi = 403B6i(1 - 03B6i)-2. The group G03C1(x) in this case is then identified to the
product of the multiplicative groups of the algebras. The group H03C1(x) is identified
with the product of the groups

Each factor of GP(x) is invariant under the map (induced by) 03B6 ~ ee. The corre-
sponding map changes an element to its inverse and then changes the matrix Y to
-Y.

Now 03B4i ~ 0 and thus bi is either represented by a square or not from the
multiplicative group 1(iX. In particular, if bi is not a square, then bi determines a
unique quadratic extension Li = Ki(03B4i) of 1(i. Then the algebra

is isomorphic to M(li x 1,, Li) via the map

The multiplicative group is then GL( l i, Li ), the factor of H03C1(x) is GL( l i, Ki) and
the map induced by # is 03B6 ~ 03B6-1, where z indicates the Galois conjugate of an
element z E Li. If bi is a square, then the algebra

is isomorphic to the direct sum M(li x li, 1(i) (B M(li x li , 1(i) via the map
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where b2 = v2. The multiplicative group is then GL(li, Ki) x GL(li,1(i) and
the factor of H03C1(x) is the diagonal group GL(l2, K)0394. The map induced by # is
(z1, z2) - (z-11, z-12).

On the other hand, suppose x = ( where

with Then

and the centralizer of p( (), that is, M(n x n, k)03C1(03B6), is the algebra of matrices of
the form:

with

We have ( = 03B6-1 in this case, so that gi = g2 = 1 and ed = 03B603B6-103B6. Thus if ç-1 is
a matrix of the above form we have

Thus we see that in this case, the triple (GP(x), HP(x), ç ~ çU) decomposes into
a product of two triples:
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and

PROPOSITION 4.3. Let g be a semi-simple element Of Yp,n. Then one can choose
x such that p(x ) = g and gl E H with g1gg-11 1 = g-1 in such a way that the
corresponding antiautomorphism # has order 2.

Proof. Indeed, using the decomposition of V = V’ ~ V" corresponding to
g = g’ ~ g" where g’ does not have the eigenvalue ±1 and g" has only the
eigenvalues ± 1, we see that for a suitable choice of x and g1, the original triple
(GP(x), HP(x), x , x#) is isomorphic to a product of triples of the following
types

This proves our assertion. 0

In addition, we claim that for every one of the above triples (G’, H’, 03C3) we
know that every H’ bi-invariant distribution is also invariant under the involution
03C3. For case (i), this is a result of [yF]; in this case, every double coset is actually
invariant under a. For case (ii), we may identify G’/ H’ to GL(l, K) via the map
( zl , z2) ~ ZI z-12. Then if T is H’ biinvariant on G’ there is a conjugacy invariant
distribution p on GL(l, K) such that

where dh is a Haar Measure on GL(l, 1(). We have

So our assertion is trivial in this case. Finally (iii) and (iv) are just the two cases of
the induction hypothesis, provided the centralizer of 03C1(x) is not the whole group,
i.e. p(x) fl ±1.
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5. Réduction to the infinitésimal symmetric space

5.1. FIRST REDUCTION

We want to prove that a H bi-invariant distribution T is actually invariant under
g ~ g-1. We may as well assume that T is skew invariant under g ~ g-1 and
then show that T = 0.

To that end, we consider a semi-simple element g e Y and an element x such
that p(x) = g. We choose x in such a way that # is an involution. Then we consider
the open set Ux and the image Qx of H x Ux x H under the map 03A6. It is an
open set. We will show that the restriction of T to Qx vanishes. We shall need
another property of the set Ux, namely that it is the set of non-zeroes of a regular
function gx(03B6) on G03C1(x). Furthermore, this function is invariant under right and
left multiplication by HP(x). In particular, if we set fx(03B6) = then Ux
is also the set of non-zeroes of fx and fx is invariant under #, and under left and
right multiplication by H03C1(x).

There exists a surjective map of C~c(H x Ux x H ) onto C~c(03A9x) noted ce f03B1
such that

for all F e C~(03A9x). Here dgl = dg2 is a Haar measure on H and d03B6 a Haar
measure on G03C1(x). In passing we note that GP(x) is reductive, hence unimodular,
because p(x) is semi-simple.
Now suppose that T is a H x H bi-invariant distribution on nx. Then

where IIT is a distribution on U03C1(x) and I(03B1) = ~H a(g) dg. The distribution pT
is uniquely determined by T. It has certain properties of invariance. For instance,
it is invariant under left multiplication by HP(x). It is also invariant under right
multiplication by H n G03C1(x) n xHx-1. Since this group is actually equal to H03C1(x),
we see that IIT is actually bi-invariant under H03C1(x). Recall also the identity which
defines #:

It follows that the distribution IIT is skew invariant under #. If 0 is a smooth function
of compact support on k , then (0 o fx)03BCT extends to a distribution on G03C1(x) which
is H03C1(x) invariant and # skew invariant. Assume that p(x) is not central. Then the
triple (G03C1(x), H03C1(x), #) is a product of triples (Gi, Hi, uç ) for which the theorem is
true: a Hi invariant distribution on Gi which is ai skew invariant is 0. It follows
that (03C8 o fx)03BCT = 0 and then J-lT = 0. Thus the restriction of T to nx is 0. The open
set 03A9x contains the element x and p( x ) is semi-simple. We will show in the next
section that the set Ux also contains all the elements of the form exp(1 2X) where X
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is nilpotent in L and commutes to p(x). Thus 03A9x contains the product exp( 1 2X)x.
However 03C1(exp(1 2X)x) = 03C1(exp(1 2X))03C1(x). Conversely, if g’ is an element of Y
with Jordan decomposition g’ = gg’u then g’ = 03C1(exp(1 2X)x) for a suitable X
(Lemma4.1). Thus nx contains all y such that p(y) has semi-simple part p(x) = g
(and in fact all y such that the semi-simple part of p(y) is H conjugate to g).

Thus T vanishes on the union of these open sets, that is, T vanishes on the open
set of elements y such that the semi-simple part of p(y) is not central. In other
words, the support of T is contained in the union of the closed sets:

Suppose 03C1(x)s = I, that is, p( x ) belongs to the set NY of unipotent elements of
Y. Then we have x = exp(1 2X) with X ~ nL and 03C1(x) = exp( X ) . Thus the first
set is in fact H NY H . The same analysis shows that if g E NY then g-1 = 03B5g03B5.
Thus Hg-1H = HgH. Let Q be the open set of x E G such that 03C1(x)x ~ -I. We
claim the restriction of T to Q is 0. Let Ho be the complement of (73) in 03A9. We can
write Q has a finite union of increasing open sets 03A9j, 0  j  J starting with Qo,
such that Qj - !1j-1 = Hz jH with z j E nL. Since the orbit Hxj H is invariant
under x 1---7 x-1 so is each open set fij. We prove inductively that T vanishes on
03A9j. We already know that T vanishes on Ho’ Thus we may assume that j &#x3E; 0 and
T vanishes on 03C9j-1. Then its restriction Tj to Qj may be viewed as a distribution
on Xj = HxjH invariant under H and skew invariant under x 1---7 x-1. Thus Tj
is in fact an invariant measure on Xj. The map x 1---7 x-1 changes this measure
to a positive multiple hence must leave it invariant. On the other hand, Tj is skew
invariant under the same map. This implies that Tj = 0. Thus Tj = 0 for all j and
T vanishes on Q.
We have now proved that the support of T is contained in the set (74). In order

for this set to be non empty we need -In to be in Yp,n. This happens only if n is
even and p = n/2. Recall the element

We have 03C1(03C9) = -In. It follows that the set (74) is actually the set

We introduce the Cayley map A from

to
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defined by

Note that W is invariant under Z - - Z and

The map is -a diffeomorphism of the two given sets. In particular, 03BB carries the
set nn of nilpotent elements of M(n n,k) onto the set NG of unipotent elements
of G. We set WL = L n W and define a map

given by

It is clear that À is submersive at every point of H x WL X H. Let S2 be its image.
Thus Q contains HwNYH. Moreover:

In particular, the open sert 11 is invariant under 9 t-+ 9-1 and the restriction of T
to Q is skew invariant under the same map. Finally the restriction of T to Q has
support in the closed set HwNYH. We want to show that this restriction is 0.

As usual associated to the submersive map 0 there is a surjective map 03B1 ~ fa
from ec(H X WL X H ) to C~c(03A9) such that for T E C~(03A9),

To the invariant distribution T is then associated a distribution PT on WL such
that

As before I(ai) = f ai (h)dh is a Haar measure on H. The distribution is invariant
under conjugation by H. It is also skew invariant under e 1--* -wçw. However we
have 03B5(03B6)03B5 = -03B6 for 03B6 E L and E E H. Thus in fact PT is skew invariant under
03B6 ~ w03B6w. As usual, if 9 is in C~c(F ) the product
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extends to a distribution on L which is invariant under Ad H and skew invariant

under 03B6 H w03B6w. By the result on the infinitesimal symmetric space, it follows that
this distribution vanishes. Hence PT = 0 and T vanishes on S2. This concludes the

proof of the induction step for H bi-invariant distributions skew invariant under
g ~ g-1.

5.2. THE OPEN SET Ux

We let x e G be an element such that 03C1(x) is semi-simple. Recall the map

Recall Ux is the set of 03B6 such that 03A6 is submersive at ( 1, 03B6, 1), or, what amounts to
the same:

a condition which is also equivalent to:

Recall also the decomposition of g into the +1 and -1 eigenspace for Ad E:
g = h ~ L. We call pL the projection on the second factor. Since £ p( X)E = p( X ) -1 ,
we have also

We see that 03B6 is in Ux if and only if

Recall we let g03C1(x) denote the orthogonal complement of g03C1(x). We also set h n
(g03C1(x)) = h03C1(x) and L n (g03C1(x)) = Lp(.,,). Since p(x) is semi-simple, we have the
orthogonal decompositions:

Since 03C1(x-1) = x-103B503C1(x)03B5x, the element p(x-1) is also semi-simple so that we
have similar decompositions for x-1. In particular:
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Recall Then, for

It follows that 03B6 is in Ux if and only if

But we claim that the first term in this sum of spaces is actually contained in L03C1(x).
Indeed, we note that for W e L03C1(x) and T E fJp(x-l) we have

However, Ad(03B6-1)W is still in g03C1(x). On the other hand:

Thus Ad(x-103B6-1)W is in g03C1(x-1) and, in particular, orthogonal to T. Our assertion
follows.

Thus there exists a linear map Oe,

such that

and 03B6 is in U x if and only if the map (80) is surjective.
Next we assert that the spaces in (80) have the same dimension. To that end,

we let 03B6 = 1 in the above discussion. We have already observed that Ad(x) carries
h03C1(x-1) = h n x-1bx to h n xhx-1 = bp(x) which is orthogonal to L. It follows
that the map T H PL(Ad(x)(T» from h to L has kemel f) n x-1bx = h03C1(x-1).
Hence 0, is injective. Now let us find the perpendicular complement of the range
of ~x. So suppose W is orthogonal to pL(Ad(x)T) for all T E h03C1(x-1). Then

Adx-1(pLW) is orthogonal to h03C1(x-1) thus is in L + h03C1(x-1) = L ~ h n x-1hx.
This implies in turn that pL(W) ~ Ad(x)(L) + h fl xbx-l. Thus in fact PL(W)belongs to L n xLx-1 = LP(x). Hence the perpendicular complement of the range
of ~x is h + L03C1(x); that is, the range is L03C1(x). Hence ~x is bijective.
We now choose bases in the spaces of (80). Then we can define the determinant

of the map Oe, and set

Thus 03B6 is in Ux if and only if Sx(03B6) ~ 0.
Next we consider the group HP(x). We claim that
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Proof. We note that

Next we recall that h2 E H03C1(x) = H n xHx-1 implies x-lh2X E H fl x-1Hx =
H03C1(x-1). Thus Ad(x-1h2x) defines a bijection of h03C1(x-1) on itself which is an
orthogonal transformation for the restriction of (3; in particular, it has determinant
b2 (h2) == :l: 1. On the other hand, Ad hl leaves L03C1(x) invariant and define a bijection
of that space onto itself which is an orthogonal transformation for the restriction
of 0, hence has determinant 03B41(h1) = ±1. However, we have seen in the previous
subsection that H03C1(x) is a productof linear groups (over k or an extension). Thus
b1(h1) = b2(h2) = 1 and we are done. D

Our next lemma is:

LEMMA 5.2. The open set Ux is invariant under 03B6 ~ 03B6#.
Proof. Recall that we choose gl E H such that g103C1(x)g-11 1 = p(x-1) and then

03B6# = g-11x-103B6-1xg1. Suppose 03B6 is in Ux, that is,

We have to see that £’ verifies the same condition:

The left hand side can be written as

But Ad(gl) takes 03C1(x) to p(x-1) hence takes g03C1(x) to g03C1(x-1). In turn, Ad x takes
this space to gP(x). Thus the third term in (83) is g03C1(x). For the middle term, we
remark that since g, E H commutes to 03B5 we can write, for T E h:

However, it is easily checked that
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Thus

so that the middle term is contained and in fact equal to h. Finally we see that (83)
can be rewritten in the form:

Thus £à is in Ux as claimed. D

We next give another formula for Sx. It will be convenient to denote by q the
subspace gp(x). It is invariant under Ad E. If 03B6 E G commutes to p(x) then so does
03B6-1; thus q is invariant under Ad(03C1(03B6)). Since p( ç x) = 03C1(03B6)03C1(x) we see that q is
invariant under Ad p( çx).

LEMMA 5.3. Suppose 03C1(x) is semi-simple. Then, there is c E kX such that, for
all e E GP(x):

Proof. We first compare Sxhj and Sx for hl e H. We have 03C1((xh1)-1) =
hl1p(x)h1. Thus

Similarly:

On the other hand p(xhl) = p(x) so that

Since pL o Ad(03B6xh1) o Ad(h1)-1 = pL o Ad(ex) we see that the determinants of
~xh1 and 0,, are equal (for a suitable choice of the bases), that is, Sxh1(03B6) = Sx(03B6).
Thus we have for h1, h2 ~ HP(x) and h E H:

On the other hand, we have
follows that:
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Thus to prove the identity above we may modify x by multiplication on the
right by II and modify 03B6 by multiplication on the left and on the right by H03C1(x).
Furthermore, we may replace k by its algebraic closure. Fix a torus T of G which is
E invariant in the sense that 03B5t03B5 = t-1 for t e T; suppose further that T is maximal
among E invariant tori. Then p(x) is H conjugate to an element of T. Thus we
may as well assume p(x) E T. We can then write o(x) = 03B22 with 0 E T. Then
03C1(03B2) = 03B22 = p(x). It follows that x = 03B2h for some h e H (polar decomposition).
To prove our identity, we may as well assume x = 03B2. In other words, we may
assume that x is also in the torus T.

Now the group GP(x) is invariant under conjugation by E. Clearly T is a maximal
invariant torus in GP(x). For 03B6 E GP(x), the element 03C1(03B6) = 03B603B503B6-1 03B5E is still in the
same group. Thus p is the polarization map for a symmetric space of G03C1(x). It

follows from a Theorem of Richardson that the set of 03B6 such that 03C1(03B6) is semi-
simple is dense in G03C1(x). As a result, it suffices to prove our identity for an element 03B6
such that 03C1(03B6) is semi-simple. As before, 03B6 has a polar decomposition 03B6 = ah2 with
eae = a-1 and h2 e H03C1(x). We may as well assume 03B6 = a, that is, E£E = 03B6-1,
03C1(03B6) = 03B62 and 03B6 is semi-simple. Then 03B6 is conjugate to T by an element hl E HP(’) .
Thus we may as well assume 03B6 is in T. Thus it suffices to prove our identity for x
and 03B6 in T.

At this point, we choose orthonormal bases Y and Z 3 (for the restriction of 03B2)
on the spaces h03C1(x-1) and L03C1(x). For X E h, we have

Thus we can take:

Since x is in T we have 03C1(x) = x2 = p(x-1)-1. Hence g03C1(x) = g03C1(x-1) in the
case at hand. Thus Ad(03B5),Ad(03B6),Ad(x) leave g03C1(x) invariant. Thus they leave q
invariant as well. We can then consider the restriction of the operator

to q; it maps this space to itself. We compute its determinant. The vectors Yj, Zj
form here a basis of q. Using the fact that E£zE = (03B6x)-1, we get

We also have
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We easily find then the matrix of our operator has the form

where ,S is the matrix of ~03B6x. It follows that

Since 03B5(03B6x)03B5 = (03B6x)-1 we have 03C1(03B6x) = (çx)2 and the above operator can be
written as the restriction to q of

Since, we have:

So we get our formula for Sx(ç)2. D

The last result we need is the following lemma:

LEMMA 5.4. Suppose y is an element such that the semi-simple part of p(y) is
equal to p(x). Then y is in Ux.

Proof. We have seen that there is v E L, nilpotent, such that v commutes with
03C1(x), and, setting 03B6 = exp(v/2),

Thus y = 03B6xh and we have to see that 03B6 is in Ux. Since g03C1(x) is the +1 eigenspace
for Ad(03C1(x)), it contains any + 1 eigenvector for the product of Ad(03C1(x)) and the
unipotent operator Ad(p(e» which commutes with it. This product is Ad(03C1(03B6x)).
Thus

and our conclusion follows.

5.3. SECOND REDUCTION

Assume n is even. We still have to show that a distribution T on G which is H
invariant is invariant under conjugation by w = wp where p = n/2. We may as
well assume that T is skew invariant under conjugation by w and show that it is
zero.
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LEMMA 5.5. Suppose 03C1(x) is semi-simple. Then 03C1(wxw) = wp( x)w is semi-
simple and there is h E H such that hxh-1 = wxw. Finally, wh commutes with
03C1(x).

Proof. Indeed, we have wsw = -s. It follows that:

Thus if g = p(x) is semi-simple so is p(wxw). To continue we may write V =
V’ e V" where V’ and V" are homogeneous subspaces and dim Vo’ = dim VI,
dim Vol’ = dimvllt and g = g’ e g", where g’ does not have the eigenvalue 1
while g" has only the eigenvalues ± 1. We have then: 03B5 = -’(D E" and w = w’(D w".
We may further assume x = x’ EB x". Thus it suffices to prove our assertion for
xi and x". Equivalently, we may assume that g does not have the eigenvalue ±1
or, on the contrary, has only the eigenvalues ±1. In the first case, at the cost of
replacing g by a conjugate under H, we may assume that g = t(A) where A is a
p x p matrix without the eigenvalue 1. Then we write

and we can take

where X(I - U)/2 and Y = 2U(I - U)-1. We have then

We find

where

If on the contrary g has only the eigenvalue ±1 then, at the cost of replacing g
by an H conjugate, we may assume that g = p(x) where
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Then wxw = x.

Finally, we have

The last assertion of the lemma follows. ~

At this point, we argue as before. Let g be a semi-simple element of Y. Let x
be such that p(x) == 9 is semi-simple. We recall the map 03A6 : H x G03C1(x) x H ~ G
defined by 03A6(h, e, h’) = h03B6xh’. We claim that the image of 03A6 is invariant under
conjugation by w. Indeed, choose h E H such that hxh-1 = wxw. We have then
h- 1 wo(x)wh = p(x). Thus for 03B6 E GP(x) we get:

where we have set

Thus we get:

This prove our assertion. We show now:

LEMMA 5.6. The open set Ux is invariant under 03B6 ~ 03B6b.
Proof. Suppose that e is in Ux. Then

and we have to see that 03B6b has the same property. Indeed:

Since h normalizes h and hxh-1 == wx w, we can write this as:

or, using the fact that w normalizes h :

Again wh normalizes f) and commutes with p(x) hence normalizes h03C1(x). Thus the
above expression is also
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The lemma follows.

If g is in HP(x) so is çD since wh commutes with 03C1(x). We have also

where hl = whwh. Clearly hl is in H and commutes with p(x) since wh does.
Now Ux is the set of non-zeroes of gx, a regular function invariant under HP(x) on
the left and the right. It is also the set of non-zeroes of fx( ç) = gx(03B6)gx(03B6b) which
is still invariant under H03C1(x) on the left and the right, but is also invariant under

Suppose that g is a semi-simple not central element of Y. We claim we can
choose x with p(x) = g and h with wxw = hxh-1 in such a way that b has order
2. As before, we write Y = V’ E9 V" and g = g’ E9 g" where g’ does not have the
eigenvalue 11 and g" has only the eigenvalues ± 1. We have also w = w’ E9 w". We
can choose x of the form x = x’ ~ x". Also GP(x) = GL(V’)03C1(x’) E9 GL(V")p(x")
and we can choose h of the form h = h’ E9 h". Then the automorphism 03B6 ~ çb
is compatible with this decomposition in the sense that if + ç" then =
(03B6’)b + (03B6")b.
We may assume x’ = x(U) as before. Then GL(V’)03C1(x’) is the set of matrices

of the form

where Zi commutes with U and b = 4U(I - U2)-1. We have then

by a direct computation. Hence g - çD induces the identity on GL(V’)p(x’).
For x" we may take g" = e and

Thus 03B6 ~ çb induces conjugation by W" on the second factor. Further the pair
(G", H") decomposes into a product of pairs

with w" = w03B1 ~ we. Thus, for this choice of x the automorphism b has indeed
order 2. Furthermore the triple (GP(x), H03C19x), 03B6 ~ çb) decomposes into a product



115

of triples of the form ( Gi , Hi , 03C3i); for each triple, every distribution biinvaraint
under Hi is invariant under u, either trivially (oi is the identity) or by the induction
hypothesis.
Now let T be a distribution which is H invariant and skew invariant under w.

Just as before, it follows that the restriction of T to Ux vanishes. The support of T
is contained in the set of x such that the semi-simple part of 03C1(x) is ±1, or what
amounts to the same, the union of the following closed sets:

Now we consider the Cayley map A from

to

given by

Let WL = W n L. We define a map 0: H  WL  H ~ G by:

This map is submersive at any point. Its image n is an open set which contains
HNyH. We have also for h, h’ e H

Consider the pullback PT of the restriction of T to 03A9. Since WL is invariant
under w we see that UT is invariant under conjugation by H and skew invariant
under conjugation by w. Now WL is the set of non-zeroes of the function f (Z) =
det( I + Z) . det(I- Z) which is invariant under conjugation by H and w. It follows
that if pT is non-zero, then there is a non-zero distribution on L invariant under

H and skew invariant under w. This contradicts the results on the infinitesimal

symmetric space. Thus PT = 0 and the restriction of T to 03A9 is zero.
To continue, we consider similarly the map 0’ form H x WL x H to G defined

by:

Let Q’ be its image. It an open set containing H NY wH . We have:

As before, we conclude that the restriction of T to Q’ is 0. Now Q, Q’ and the
complement of H NY H U H NYwH form an open cover; the restriction of T to
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every open set in the cover vanishes. Thus T = 0. This concludes the proof of the
induction step and the theorem. ~

6. Applications to Shalika models

6.1. UNIQUENESS

We recall the notion of Shalika model for an admissible irreducible representation
03C0 of G = GL(n, k), n = 2m. We consider the parabolic subgroup Pm of type
( m, m). Its unipotent radical Um is the group of matrices of the form:

The group H = Hm,n is a Levi-factor of P. It acts on U,,. Let 9 be a non-trivial
additive character of k. Define a character T of U m by: 03A8(u) = 03C8(Tr(Z)). Then
the stabilizer of 03A8 in H is the group

A linear form 1 on the space V of 03C0 is said to be a Shalika functional if

for u E U m, h E Ho and v in V.
We will need the following lemma on Shalika functionals:

LEMMA 6.1. Suppose that l is a Shalika functional for 03C0. Then there is 80 ~ R
such that for any v E V the product

is bounded in absolute value (independently of g). Furthermore, given v, there is a
positive Schwartz-Bruhat function 03A6  0 on M(m x m, k) such that

For the moment we take the lemma for granted and derive some consequences.
Assuming the lemma, we can form the integral
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The integral converges for R(s) sufficiently large. As in [FJ] one can prove that the
integral represents a rational function of q-s. More precisely, it has the form

where P is a polynomial. Moreover, there is a v so that P = 1.

REMARK. We note that these assertions are proved in [FJ] under the assumption
that the functions g - l(03C0(g)v) are bounded. The proof is easily modified to apply
to the case at hand. Furthermore, in Lemma 6.1, the fact that so is independent of
v is not critical.

If we consider then the quotient

it is an entire function of s. Moreover:

For s - 1 we obtain a linear form Il = I0(.,1 2) on the space of 7r which is invariant
under H and non-zero if 1 is non-zero. In particular:

PROPOSITION 6.1. Suppose that 7r has a non-zero Shalika functional. Then 7r - if.
Moreover, the dimension of the space of Shalika functionals is then 1.

Proof. The first assertion follows from the theorem of the previous section. To
prove the second assertion we let 1 and l’ be non-zero Shalika functionals for 03C0. Let

Il and Il, be the corresponding H invariant functionals. We have Il(v) = cIl’(v)
with c ~ 0. Consider then the new Shalika functional l1 = 1 - el’. From the explicit
construction of the linear forms we have Il, = fi - cIl’ = 0. On the other hand if
11 fl 0 then III i- 0. Thus Il = 0. ~

6.2. AN ASYMPTOTIC EXPANSION

It remains to prove the lemma. The argument that follows is independent of, but
closely related to the techniques used by Casselman and Shalika in [CS]. It is

likely that their techniques can be used to obtain asymptotic expansions in more
general situations. We may assume the conductor of 0 is the ring Ok of integers.
We denote by A the group of diagonal matrices and by Po the group of upper
triangular matrices. We denote by ai the simple roots of A with respect to Po. We
consider an element of H of the form:
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We write g = k1bk2 where hz e GL( m, Ok) and b is a diagonal matrix with
1 bi/bi+1 | 1, for i  m - 1. In other words, if we set

then 1 03B1i(a) | 1 for 1  1 z m - 1. We claim that, given a vector v, there is r
such that l(7r(h)v) -1 0 implies |bm|  r.

Indeed, we note that we have

where

Since the vectors 03C0(k)v belong to a finite set, we may as well assume g = a. If

then

Thus if v is invariant under the principal congruence subgroup 1(r of K =
GL(n, O), we have for l(03C0(a)v) ~ 0

Thus |bm|  qr, as claimed.
The next theorem will imply the lemma. It will be convenient to denote by

m(a1, a2, ... , am) the matrix a = a(b) where

Thus ai(a) = ai for i  m and ai(a) = 1 for i &#x3E; m. Recall that a finite function
on a locally compact abelian group is a continuous function whose translates span
a finite dimensional vector space.

THEOREM 6.1. There is a finite set X of finite functions on (k )m with the



119

following property: for any v, there are Schwartz-Bruhat functions Ox, X E X, on
km such that, for a = m(al, a2,..., am) with ai | 1 for 1  i  m - 1 :

Let us show how this theorem implies Lemma 6.1. Write as above h = h(g) with
g = klbk2 and b, = aiai+1...am with |ai|  1 for 1 z 1 z m - 1. Then
l(03C0(h)v) = l(03C0(a)03C0(k)v) for a suitable k and a = m(al, a2, ..., am). There is r
such that l(03C0(h)v) ~ 0 implies |am| qr. Thus, if 4l is the characteristic function
of the set of X ~ M(m x m, k) such that 11 X ~ qr, then l(03C0(h)v) ~ 0 implies
03A6(g) ~ 0. Let s &#x3E; 0. Then |deta 18= | as1a2s2 ··· amsm|. We can choose s so large
that the products

with X e X are bounded above for 1 ai | 1 for 1  i  m - 1, | am | qT . It
follows that |l(03C0(h)v)|| detg |s=|l(03C0(a)03C0(k)v)|| det a 18 is bounded above by
a constant C. Finally,

and the lemma follows.

Proof. In view of the discussion above, we may in proving the Theorem restrict
our attention to the set of a = m(a1,a2,...am) ~ A such that 1 ai | 1 for

1  i  m. Thus in fact, 1 03B1j(a) | 1 for all j. We first prove a lemma. For
1  i  m, we let Pi = MiUi be the standard parabolic subgroup of type (i, n - i),
Ai the center of Mi:

LEMMA 6.2. Suppose v = x(u)vo - vo with u e Ui. Then there is c &#x3E; 0 such

that for any a = m( a 1, a2, an) E A with 1 aj | 1 for 1  j  m and
|03B1i(a) 1=B ai | c:

Proof. Suppose first i = m. Then, with the above notations,

Since 1 bi || am| we see this is zero if | am| is small enough and we are done
in this case. Now suppose i  m. We can write u = u1u2 with u 1 E Ui ~ Um and
U2 E Ui n Mm. Explicitly:
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Then

As before, for j  Í, we have |bj| = | ajaj+1···ai···am || ai |. Thus
03A003C8(bjZj,j) = 1 if |ai| 1 is small enough. Suppose vo is invariant under the
principal congruence subgroup 1(r. If ai = 03B1i(a) has a small enough absolute
value then au2a-1 is in 1(r. Thus the matrix

is also in 1( r and the above expression is then 0. Il

We finish the proof as in [JPS]. Let V be the space of 03C0, V(Ui) the space
spanned by the differences 03C0(u)v - v with zc E Ui and v E V. The representation
03C0Ui = 03C0i of Mi on the quotient Y - V/V(Ui) is admissible. In particular, the
operators 03C0i(a) for a E Ai span a finite dimensional algebra A of operators. In
fact, A is already spanned by the operators xç(a) with |03B1i(a)| 1. There exists a
finite set X of finite functionson Ai and for each X in X an operator Ax belonging
to A such that

Thus Ax has the form: A~ = 03A3 03BBj,~03C0i(aj) where a., E Ai verifies 1 03B1i(aj) | 1.
We define Bx = 03A303BBj,x03C0(aj). Then we have for any v E V and a E Ai

To continue, we let S be the product group 03A0jm Hj where Hj ~ k . Thus

(ai, a2, ... , am) ~ m(ai, a2, ... , am) gives a mapping S - A which identifies
the factor H2 to the subgroup of Ai of matrices of the form

Let C be the cone of rra-tuples in S with 1 ai | 1 for all i. For v E V let ov be
the function on C defined by:

Denote by V the space spanned by the functions 0,. For x e k  with |x| 1 let
pi(x) be the operator on the space of functions on C defined by:
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Thus V is invariant under these operators. Also, for each i, there is a finite set Xi
of finite functions on k x and operators Bx such that, for any ~, the difference

vanishes for |ai| eX,q;. The operators Bx are themselves linear combinations
of operators 03C1i(x) with |x|  1. Since the vectors v e V are Il finite, we may
write any function 0 as a sum of functions in the same space transforming under a
character of T = (O )m. Thus in analyzing our functions we may as well restrict
ourselves to those functions transforming under a fixed character of T. If we choose
a uniformizer w, such functions are determined in tum by the following functions
on the cone (Z+)m:

This space of functions, call it U, has the following property. For x  0, let again
03C1i(x) be the translation operator defined by:

Then for each ï, there are 03BBi,j,03B6,m E C and integers yi,j,03B6,m  0 such that, for any
4)

when zi  Mi. The integer Mï depends on x and on (b. However, it does not

depend on the zj with j =1 i. As written the sum is over all e e CI and all
integers m  0. However, only finitely many of the scalars À* arenon zero and the
integers yi,j,03B6,m are  0 (and do not depend on x). Now we choose x larger than all
the integers yi,j,03B6,m. Then the above equation is a non-trivial différence equation,
which a given (1) satisfies for zi  Mi(03A6) and zj  0 if j ~ i. We stress that
for lower values of x the difference equation could be tautological. Now define a
Schwartz-Bruhat function 03A6 on Z+ as being a function which is constant (possibly
0) for large values of the variable. A Schwartz-Bruhat function on (Z+)m is a sum
of tensor products of Schwartz-Bruhat functions in one variable. Solving the above
system of independent difference equations (for instance in terms of the formal
Mellin transform) we find that the functions in U have the form:

where X is a finite set of finite functions on El and the tbx are Schwartz-Bruhat
functions on (Z+)m. If follows that the functions in V have the required forms. Thus
the functions I(r (a) v) have the required form, except that the set X may depend
on the vector v. At any rate the set X is not uniquely determined since some of
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the projections of the support of a function 0 on some factor may be contained in
a compact subset of k . However, one may choose the X to be exponents of the
representation 03C0 (see [JS] and [JPS]2) which are finite in number. At any rate for
our purposes, this is not a critical point. Il
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