1. Homework, week 4, due October 3

This assignment establishes some of the basic properties of quadratic forms attached to ideals in imaginary quadratic fields. A quadratic space of rank n over \mathbb{Z} is a pair (M, q), where M is a free rank n \mathbb{Z}-module (free abelian group on n generators) and $q : M \to \mathbb{Z}$ is a quadratic form, i.e. a function satisfying

1. $q(am) = a^2q(m)$, $a \in \mathbb{Z}$, $m \in M$;
2. The function $B_q : M \times M \to \mathbb{Z}$, defined by $B_q(m, m') = q(m + m') - q(m) - q(m')$ is a bilinear form, i.e.
3. $B_q(m, m') = B_q(m', m)$;
4. $B_q(am + bm', m'') = aB_q(m, m'') + bB_q(m', m'').$

We only consider the case $n = 2$ and identify M with \mathbb{Z}^2. If $\{e_1, e_2\}$ is the standard \mathbb{Z}-basis of \mathbb{Z}^2, B_q is determined by the 2×2 symmetric matrix (b_{ij}) where $B_q(e_i, e_j) = b_{ij}$ (and you can check that this in turn determines $q(m) = \frac{1}{2}B_q(m, m)$). We identify q with a polynomial in two variables (X, Y) by setting

$$q(X, Y) = q(Xe_1 + Ye_2).$$

A (binary) quadratic form $q(X, Y) = aX^2 + bXY + cY^2$

Say (M, q) and (M', q') are isomorphic if there is an isomorphism $f : M \to M'$ of abelian groups such that $q' \circ f = q$. Define the discriminant of the quadratic form q by $\Delta(q) = -\det(b_{ij})$ and check for yourselves (without writing it down) that two isomorphic quadratic spaces have the same discriminant.

1. Consider $q_1(X, Y) = X^2 + 15Y^2$, $q_2(X, Y) = 3X^2 + 5Y^2$. Show that q_1 and q_2 have the same discriminant but don’t define isomorphic quadratic spaces. 2. Let d be a positive squarefree integer. Let $K = \mathbb{Q}(\sqrt{-d})$, with integer ring $\mathcal{O}_K = \mathbb{Z}[\frac{1+\sqrt{-d}}{2}]$ if $d \equiv 3 \pmod{4}$ and $\mathcal{O}_K = \mathbb{Z}[\sqrt{-d}]$ if $d \equiv 1, 2 \pmod{4}$. We write $\Delta_d = -d$ if $d \equiv 3 \pmod{4}$ and $\Delta_d = -4d$ if $d \equiv 1, 2 \pmod{4}$ (this is the discriminant of the field K).

(a) Show that the quadratic form $q = q_{\mathcal{O}_K}$ on the rank 2 \mathbb{Z}-module \mathcal{O}_K, defined by $q(x) = N_{K/\mathbb{Q}}(x)$, has discriminant Δ_d. Moreover, q is positive definite: $q(x) > 0$ for all $x \neq 0$.

(b) Show that the bilinear form B_q associated to q is given by

$$B_q(x, y) = Tr_{K/\mathbb{Q}}(x\sigma(y)) = x\sigma(y) + \sigma(x)y$$

where $\sigma \in Gal(K/\mathbb{Q})$ is the non-trivial element.
(c) In general, let $I \subset \mathcal{O}_K$ be an ideal, $N(I) = [\mathcal{O}_K : I] = |\mathcal{O}_K/I|$. Define $q_I : I \to \mathbb{Q}$ by $q_I(x) = N_{\mathcal{K}/\mathbb{Q}}(x)/N(I)$. Show that q_I takes values in \mathbb{Z} and the pair (I, q_I) is a quadratic space over \mathbb{Z}.

(d) Show that (I, q_I) is of discriminant Δ_d.

3. A (binary) quadratic form $q(X, Y) = aX^2 + bXY + cY^2$ is called \textit{primitive} if a, b, and c have no common divisors. Show that q_I is \textit{primitive}.

4. Suppose I and J are two ideals of \mathcal{O}_K. Show that (I, q_I) and (J, q_J) are isomorphic if I and J are equivalent in the ideal class group $\text{Cl}(K)$.