ALGEBRAIC NUMBER THEORY W4043

1. Homework, week 2, due September 19

1. Denote by $M(n,\mathbb{Z})$ the ring of $n \times n$ matrices with coefficients in \mathbb{Z} . Let $\alpha \in M(n,\mathbb{Z})$. Show that every element of the subring $\mathbb{Z}[\alpha] \subset M(n,\mathbb{Z})$ is integral over \mathbb{Z} .

2. Let R be a Dedekind domain with a finite number of distinct prime ideals. Show that it is a principal ideal domain. (Hint: Let \mathfrak{p} be a prime ideal of R. Use the Chinese remainder theorem to find an element $x \in \mathfrak{p}$ such that $(x) = \mathfrak{p}$.)

3. Let R be an integral domain with fraction field K. A multiplicative subset $S \subset R$ is a subset such that,

• $1 \in S, 0 \notin S;$

• If $s, s' \in S$ then $ss' \in S$.

The localization $S^{-1}R$ is the subset of K consisting of elements $\frac{r}{s}$ with $r \in R$ and $s \in S$. (Alternatively, it is the set of equivalence classes of pairs (r, s), with $r \in R$ and $s \in S$, with (r, s) equivalent to (r', s') if and only if rs' = r's).

(Localization is also defined for general commutative rings, but the definition is more elaborate.) After convincing yourself that $S^{-1}R$ is a ring, show that

(a) If S is the set of non-zero elements of R, then $S^{-1}R = K$;

(b) If R is a Dedekind domain, then so is $S^{-1}R$ for any multiplicative subset $S \subset R$.

(c) If $I \subset R$ is an ideal, let $S^{-1}I \subset S^{-1}R$ be the ideal of $S^{-1}R$ generated by I. Show that the map

$$I \mapsto S^{-1}I$$

is a surjection from the set of ideals of R to the set of ideals of $S^{-1}R$. Use the proof to construct a bijection between the set of prime ideals of $S^{-1}R$ and the subset of prime ideals $\mathfrak{p} \subset R$ such that $\mathfrak{p} \cap S = \emptyset$.

(d) Let R be a Dedekind domain, $\mathfrak{p} \subset R$ be a prime ideal, let $S_{\mathfrak{p}} = R \setminus \mathfrak{p}$, and define $R_{\mathfrak{p}} = S_{\mathfrak{p}}^{-1}R$. Show that $R_{\mathfrak{p}}$ is a *discrete valuation ring*, i.e. a Dedekind domain with a unique non-zero prime ideal. In particular, show (using problem 2) that every non-zero element $a \in R_{\mathfrak{p}}$ has a unique factorization of the form $a = uc^{b}$, where c is a generator of the unique non-zero prime ideal of $R_{\mathfrak{p}}$, b is a non-negative integer, and u is an invertible element of $R_{\mathfrak{p}}$.