ALGEBRAIC NUMBER THEORY W4043

HOMEWORK, WEEK 8, DUE NOVEMBER 8

DIRICHLET CHARACTERS, CONTINUED

Notation is as in last week's homework.

1. We show that X(p) is a cyclic group of order p-1 and that, for any $a \in (\mathbb{Z}/p\mathbb{Z})^{\times}, a \neq 1$. there exists $\chi \in X(p)$ such that $\chi(a) \neq 1$.

(a) Bearing in mind that $(\mathbb{Z}/p\mathbb{Z})^{\times}$ is a cyclic group, show that X(p) has at most p-1 elements.

(b) Show that X(p) has the structure of abelian group.

(c) Let g be a cyclic generator of $(\mathbb{Z}/p\mathbb{Z})^{\times}$ and define a function λ : $\mathbb{Z}/p\mathbb{Z} \to \mathbb{C}$ by

$$\lambda(g^k) = e^{\frac{2\pi ik}{p-1}}; \ \lambda(0) = 0.$$

Show that $\lambda \in X(p)$ and that, if n is the smallest positive integer such that $\lambda^n = \chi_0$, then n = p - 1. Conclude that λ is a cyclic generator of X(p).

(d) If $a \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ and $a \neq 1$ then $\lambda(a) \neq 1$.

2. Let $a \in (\mathbb{Z}/p\mathbb{Z})^{\times}$, $a \neq 1$. Show that $\sum_{\chi \in X(p)} \chi(a) = 0$.

3. Let d be a divisor of p-1. Show that the set of $\chi \in X(p)$ such that $\chi^d = \chi_0$ is a subgroup of order d.

Congruences

4. Let n be a positive integer. A quadratic form in n variables x_1, \ldots, x_n is a homogeneous polynomial Q of degree 2 in x_1, \ldots, x_n .

(a) For every n > 0, find a quadratic form Q_n in n variables with coefficients in \mathbb{Z} such that the only rational solution to the equality

$$Q_n(a_1,\ldots,a_n)=0$$

is the zero solution a_1, \ldots, a_n .

(b) Let $n \ge 3$ and p be a prime number, and let Q be a quadratic form in n variables with coefficients in \mathbb{Z} . Show that the congruence

$$Q(x_1,\ldots,x_n) \equiv 0 \pmod{p}$$

has a solution with $(a_1, \ldots, a_n) \in \mathbb{Z}^n$ and not all a_i divisible by p.

(c) Let Q(x, y) be a quadratic form in 2 variables with coefficients in \mathbb{Z} , let p be a prime number, and $a \in \mathbb{Z}$ an integer not divisible by p. Show that the congruence

$$Q(x,y) \equiv a \pmod{p}$$

has a solution.

(d) Find a homogeneous polynomial F(X,Y,Z) of degree 3 with coefficients in \mathbb{Z} , with the property that, if

$$F(a, b, c) \equiv 0 \pmod{2}$$

with $a, b, c \in \mathbb{Z}$, then a, b, and c are all divisible by 2.

 $\mathbf{2}$