ALGEBRAIC NUMBER THEORY W4043

Homework, week 5, due October 11

- 1. Do Exercise 6.11 from Hindry's book, pp. 118-9.
- 2. Let d > 0 be a square-free positive integer congruent to 2 (mod 4).
- (a) Every unit $u \in \mathbb{Z}[\sqrt{d}]$ is of the form $a b\sqrt{d}$ where $a^2 db^2 = \pm 1$, and the group Γ of units is the product of an infinite cyclic group with $\{\pm 1\}$. Consider the subset Σ of Γ consisting of $u_i = a_i b_i\sqrt{d}$ with $a_i > 0, b_i > 0$, ordered so that $b_1 \leq b_2 \leq b_3 \ldots$ Show that u_1 and -1 are generators of Γ . The element u_1 is called the fundamental unit of $\mathbb{Z}[\sqrt{d}]$.
- (b) Show that the following algorithm finds u_1 : Letting $b = 1, 2, 3, \ldots$, consider the quantities $q^{\pm}(b) = db^2 \pm 1$. Let b_1 be the smallest positive integer such that either $q^+(b_1)$ or $q^-(b_1)$ is a perfect square. Let a_1 be the positive square root of $q(b_1)$; then $u_1 = a_1 b_1 \sqrt{d}$.
- (c) Use this algorithm to find the fundamental units u_1 of $\mathbb{Z}[\sqrt{6}]$, $\mathbb{Z}[\sqrt{10}]$, $\mathbb{Z}[\sqrt{14}]$. In each case determine $N_{K/\mathbb{Q}}(u_1)$, where $K = \mathbb{Q}(\sqrt{d})$ in each case.
- 3. As Hindry shows on p. 99, the ring $R = \mathbb{Z}[\sqrt{10}]$, which is equal to the ring of integers in $\mathbb{Q}(\sqrt{10})$, is not a principal ideal domain. Indeed, the integer 9 has two inequivalent factorizations:

$$9 = 3^2 = (\sqrt{10} - 1)(\sqrt{10} + 1).$$

- (a) Use the computation in 2 (c) to confirm that the two factorizations are indeed inequivalent.
- (b) The integer 10 is definitely a square modulo 3. What is the prime factorization of the ideal $(3) \subset R$?
- (c) Use the Minkowski bound to show that the class number of $\mathbb{Q}(\sqrt{10})$ is 2.
- 4. Let R be a Dedekind ring with only finitely many prime ideals. Show that R is a PID. (Hint: say $\mathfrak{p}_1, \mathfrak{p}_2, \ldots, \mathfrak{p}_r$ are the prime ideals. Find an element $x_i \in \mathfrak{p}_i$ that is not in any of the \mathfrak{p}_j with $j \neq i$, and factor the ideal (x_i) . Another piece of information is necessary.)