ALGEBRAIC NUMBER THEORY W4043

HOMEWORK, WEEK 7, DUE NOVEMBER 5

Let n be a positive integer. A *Dirichlet character* modulo n is a function $\chi : \mathbb{Z} \to \mathbb{C}$ with the following properties:

(1) $\chi(ab) = \chi(a)\chi(b).$

(2) $\chi(a)$ depends only on the residue class of a modulo n.

(3) $\chi(a) = 0$ if and only if a and n have a non-trivial common factor.

It follows that a Dirichlet character modulo n can also be considered a function $\chi: \mathbb{Z}/n\mathbb{Z} \to \mathbb{C}$.

Let X(n) denote the set of distinct Dirichlet characters modulo n. We consider X(p) when p is prime and show it forms a cyclic group with identity element χ_0 defined by $\chi_0(a) = 1$ if (a, p) = 1, $\chi_0(a) = 0$ if $p \mid a$.

1. Show that for any $\chi \in X(p)$, $\chi(1) = 1$, and $\chi(a)$ is a (p-1)st root of 1 for all $a \in (\mathbb{Z}/p\mathbb{Z})^{\times}$.

2. For all $a \in (\mathbb{Z}/p\mathbb{Z})^{\times}$, show that $\chi(a^{-1}) = \overline{\chi}(a)$ where $\overline{\chi}$ is the complex conjugate function.

3. Show that $\sum_{a \in \mathbb{Z}/p\mathbb{Z}} \chi(a) = 0$ if $\chi \neq \chi_0$.

4. Show that the Legendre symbol $a \mapsto \begin{pmatrix} a \\ p \end{pmatrix}$ for (a, p) = 1, extended to take the value 0 at integers divisible by p, defines a Dirichlet character modulo p that is different from χ_0 .

5. We show that X(p) is a cyclic group of order p-1 and that, for any $a \in (\mathbb{Z}/p\mathbb{Z})^{\times}, a \neq 1$. there exists $\chi \in X(p)$ such that $\chi(a) \neq 1$.

(a) Bearing in mind that $(\mathbb{Z}/p\mathbb{Z})^{\times}$ is a cyclic group, show that X(p) has at most p-1 elements.

(b) Show that X(p) has the structure of abelian group.

(c) Let g be a cyclic generator of $(\mathbb{Z}/p\mathbb{Z})^{\times}$ and define a function λ : $\mathbb{Z}/p\mathbb{Z} \to \mathbb{C}$ by

$$\lambda(g^k) = e^{\frac{2\pi ik}{p-1}}; \ \lambda(0) = 0.$$

Show that $\lambda \in X(p)$ and that, if n is the smallest positive integer such that $\lambda^n = \chi_0$, then n = p - 1. Conclude that λ is a cyclic generator of X(p).

(d) If $a \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ and $a \neq 1$ then $\lambda(a) \neq 1$.

6. Let $a \in (\mathbb{Z}/p\mathbb{Z})^{\times}$, $a \neq 1$. Show that $\sum_{\chi \in X(p)} \chi(a) = 0$.

7. Let d be a divisor of p-1. Show that the set of $\chi \in X(p)$ such that $\chi^d = \chi_0$ is a subgroup of order d.