1. Homework, week 4, due February 18

2. Let G be a finite group and let V be a representation of G over \mathbb{C}. For any non-zero vector $v \in V$, let $Gv \subset V$ denote the orbit of v in V, and let $[Gv] \subset V$ denote the subspace spanned by Gv.

 (a) Show that $[Gv]$ is a subrepresentation of V.

 (b) Show that $|Gv| \geq \dim[Gv]$. Conclude that if V is irreducible, then $|Gv| \geq \dim V$.

 (c) Suppose $H \subset G$ is an abelian subgroup, not necessarily normal, and V is an irreducible representation of G. Show that $\dim V \leq (G : H)$.

 (d) Let D_n be the dihedral group of order $2n$. Show that every irreducible representation of D_n is of degree 1 or 2.

 (e) Let $C_n \subset D_n$ denote the cyclic subgroup of order n. Let (ρ, V) be an irreducible representation of D_n. Suppose V contains a vector v that is a simultaneous eigenvector for all elements of C_n: for all $c \in C_n$, there is a scalar $\alpha(c)$ such that $\rho(c)v = \alpha(c)v$. Show that $\alpha : C_n \to \mathbb{C}^\times$ is a homomorphism. Show that V contains a vector w such that, for all $c \in C_n$, $\rho(c)w = \alpha(c)^{-1}w$.

3. Let (ρ, V) be a finite-dimensional representation of G. Consider the representation of G on $\text{End}(V) = \text{Hom}(V, V)$. (a) What is the dimension of $\text{End}(V)^G$ if $V = \bigoplus_{i=1}^r V_i$ with V_i irreducible subrepresentations, no two equivalent?

 (b) What is the dimension of $\text{End}(V)^G$ if $V = \bigoplus_{i=1}^r V_i$ with V_i irreducible subrepresentations, but now with no restriction on possible equivalences?