1. (a) What is the degree of $\mathbb{Q} \left(\sqrt{2} + 3i \right)$ as an extension of \mathbb{Q}?
(b) Find the minimal monic polynomial of $\sqrt{2} + 3i$ in $\mathbb{Q}[X]$.

2. Let K be a field and let R be a commutative ring containing K that is also a finite-dimensional K-vector space. Suppose R is an integral domain. Prove that R is a field.

3. Let $L \supset K$ be a finite extension of fields, with $[L : K] = p$ an odd prime number.
 (a) List all the subfields $K' \subset L$ containing K.
 (b) Suppose $L = K(\alpha)$ for some $\alpha \in L$. Let $K' = K(\alpha^2) \subset L$. What are the possible degrees of L over K'?

4. Rotman’s book, Exercises 72 (iii), 73, and 77, p. 58.