MODERN ALGEBRA II W4042

Homework, week 5, due October 15

- 1. (a) Let k be a finite field with q elements, and let V be a vector space over k of dimension n. How many elements does V contain?
- (b) Let k be a finite field with 3 elements. Find a polynomial $f \in k[X]$ such that k[X]/(f) has 9 elements.
 - 2. Let $R = \mathbb{Z}[\sqrt{-5}] = \{a + b\sqrt{-5}, a, b \in \mathbb{Z}\}.$
 - (a) Show that R is a subring of \mathbb{C} .
- (b) Define a bijection $\sigma: R \to R$ by $\sigma(a+b\sqrt{-5}) = a-b\sqrt{-5}$. Show that σ is a homomorphism of rings. Let $N(r) = r\sigma(r)$; show that $N(r) \in \mathbb{Z}$.
- (c) Let $r \in R$, $r \notin \mathbb{Z}$, $p \in \mathbb{Z}$, with p prime. Suppose r divides p in R; i.e. p = rs for some $s \in R$. Show that N(r) divides p. (Hint: Show that if p = rs as above then N(s) > 1; also, show that N(r)N(s) = N(rs) for any $r, s \in R$.)
 - (d) Show that if $r \in R$ but $r \notin \mathbb{Z}$ then $N(r) \geq 5$.
- (d) Let $r = 1 + \sqrt{-5}$. Show that $6 = 2 \cdot 3 = r \cdot \sigma(r)$. Show that r divides neither 2 nor 3, and that 2 and 3 are irreducible. Conclude that R is not a UFD.
- 3. Rotman's book, pp. 37-38, exercises 50, 53, 54; p. 43, exercises 63, 65, 66.