Homework, week 11, due December 10

1. Let \(P = X^5 - 4X + 2 \in \mathbb{Q}[X] \), and let \(K \supset \mathbb{Q} \) be a splitting field for \(P \) contained in \(\mathbb{C} \).
 (a). Show that \(P \) is irreducible.
 (b) Show that \(K \) contains an extension \(L \) of degree 5. Show that 5 divides the order of \(\text{Gal}(K/\mathbb{Q}) \).
 (c) Show using differential calculus that \(P \) has exactly 3 real roots. (Hint: compute \(P(0) \) and \(P(1) \).) Use this to show that complex conjugation defines a non-trivial element of \(\text{Gal}(K/\mathbb{Q}) \).
 (d) Denote by \(S_5 \) the group of permutations of 5 letters. We admit the following lemma:

 Lemma. Let \(H \subset S_5 \) be a subgroup containing a cycle of length 5 and a cycle of length 2. Then \(H = S_5 \).

 Use this to show that \(\text{Gal}(K/\mathbb{Q}) = S_5 \), and thus \(P \) cannot be solved by radicals.

2. Suppose \(p = 2^k + 1 \) is an odd prime. Show that \(k \) is a power of 2.

3. Rotman’s book, pp. 94-95, exercises 95, 96, 97, 98.

The following questions are optional; they are included to provide background to the theory of solvable Galois extensions

4. Let \(G \) and \(H \) be finite groups, and let \(\phi : G \to H \) be a surjective homomorphism.
 (a) Suppose \(G \) is solvable; prove that \(H \) is solvable.
 (b) Suppose \(H \) and \(\ker \phi \) are solvable; prove that \(G \) is solvable.

5. Let \(\Gamma \) and \(\Delta \) be finite groups, and suppose \(\Gamma \) acts by automorphisms on \(\Delta \): there exists a homomorphism \(r : \Gamma \to \text{Aut}(\Delta) \), where \(\text{Aut}(\Delta) \) is the set of automorphisms of \(\Delta \). Define \(G = \Delta \rtimes \Gamma \) to be the semidirect product. Let \(H \subset G \) be a normal subgroup and let \(L/K \) be a Galois extension with group \(H \). Let \(E \subset L \) be the fixed field of \(\Gamma \cap H \) and let \(F \subset L \) be the fixed field of \(\Delta \cap H \). Show that \(F/K \) is a Galois extension and determine the kernel of the composite map

\[
\Gamma \cap H \to H \to \text{Gal}(F/K)
\]
where the second arrow is the restriction of an automorphism of L to F.