Intro to modern algebra II

Instructor: Michael Harris

1. SOLUTION TO PROBLEM SET 5
Problem 1.

Let k be a finite field with ¢ elements. Let V' be a n—dim k—vector space. Let {e;|1 < i < n} be a basis
for V. Let v = > a;e;, for a; € k. There are exactly ¢ choices for every coefficient a;. Therefore, |V| = ¢™.

Let k = F3 have three elements. Let f(X) = X?+1 € k[X]. Then Fg = k[X]/(f) is a quadratic extension
of k and has nine elements.

Problem 2.

The fact that R is a ring is an exercise in elementary algebra. Let o(a + bv/—5) = a — by/—5. Let
r=x+yy—5and s =w+ zy/—5.

o(r)o(s) = (x — yv=5)(w — 2v/=5) = 2w — byz — (2 + yw)v/—5 = o(rs)

Therefore, o is a homomorphism. For r € R, N(r) = ro(r) = 22 + 5y° € Z.

N(rs) =rso(rs) =ro(r)so(s) = N(r)N(s).

Assume that p = rs, p a rational prime and r,s € R as above. Then N(r)N(s) = N(rs) = N(p) = p?,
thus N(r)|p?. If s # £1 then N(s) = w? 4+ 52 > 1, thus N(r)|p.

Assume that r ¢ Z. Then N(r) = 22 + 5y?> > 5y > 5, as y # 0.

First we show that 2 and 3 are irreducible:

Assume 3 = rs for r # +1. Then r,s ¢ Z. Therefore, N(rs) = N(r)N(s) > 25 > 9 = N(3) - a
contradiction. The same works for 2.

Ifr=1++-5 N(r)=(1++v-5)(1 —+v/=5)=1+5=6=2-3. Thus 6 can be written in two ways as
a product of irreducible elements. This is because R is not a UFD. It is a Dedekind domain and with the
unique factorization of ideals

(6)=(2,1+v-5)(3,1+vV-5)
Problem 3. FEzercise 50

Let F be a field p(X) € F[X] and irreducible polynomial. Prove that if g(X) € F[X] then either
(p(X),9(X)) =1 or p(X)[g(X).

Recall that F[X] is an Euclidean domain iff F' is a field. Thus by the Euclidean algorithm (p(X), g(X)) =
(f(X)) where f(X) is the greatest common divisor of p(X) and g(X). Since p(X) is irreducible either f(z)
is constant or a constant multiple of p(X) (recall that the constant polynomials in F[X] are the units in this
ring). The claim follows.

Problem 4. FEzercise 53

Part (i): Assume that (0) is a prime ideal. Then if ab € (0), a € (0) or b € (0). Thus there are no zero
divisors or equivalently R is an integral domain.

Assume that R is an integral domain and ab € (0). Since a,b are not zero divisors, a € (0) or b € (0).
Thus (0) is a rime ideal.

Part (ii): Recall that a is a maximal ideal iff R/a is a field. Since R = R/(0), the claim follows.

Problem 5.

Let I C Z[X] be the set of polynomials with even constant term. One can easily check that I = (X,2) is
an ideal and that 1 ¢ I. Then by the third isomorphism theorem Z[X]/I = Z /27, which is a field. Thus I

is maximal.

Problem 6. FEzercise 63



Let (r,s) =1 and £ € Q be a root for f(X) = a, X" + ...+ ap. Plugging in £ and multiplying by s™ we
get
AT 4 1" s+ ars" L4 ags" =0

Since r must divide the LHS and it appears in all terms except the last it must divide it too. Since
(r,s) = 1 it follows that r|ag. Similarly s|a,r™, hence s|a,,.

Problem 7. Ezercise 65

Let f(X) =apn X"+ ...+ ap € F[X] is an irreducible polynomial. Then so is g(X) = aoX™ + ... + ap.
Assume that g(X) = h(X)k(X) for

h(X) = Z b X'
=0

k‘(X) = Z CiXi
=0
Thus

ao X"+ ...t a, =0 X"+ ...+ bo)(es X+ ...+ o)
Make the change of variables X +— 1/X and multiply by X" to get that

an X"+ ... +ag=(boX"+ ... +b.)(co X’ + ...+ cs)
Thus f(X) is also reducible.
Problem 8. Exercise 66

Let ¢ : R[X] — R[X] be defined by f(X) — f(X +¢) for some ¢ € R. Then ¢ is an isomorphism of rings,
because by definition it is a homomorphism and its inverse is ¢! : f(X) = f(X —¢). If p(X) = f(X)g(X)
then ¢(p) = ¢(f)¢(g) and thus p(X + ¢) is also reducible. The converse holds for ¢~1.



