Intro to modern algebra II

Instructor: Michael Harris

1. Solution to problem set 5

Problem 1.

Let k be a finite field with q elements. Let V be a n-dim k-vector space. Let $\{e_i | 1 \le i \le n\}$ be a basis for V. Let $v = \sum a_i e_i$, for $a_i \in k$. There are exactly q choices for every coefficient a_i . Therefore, $|V| = q^n$. Let $k = \mathbb{F}_3$ have three elements. Let $f(X) = X^2 + 1 \in k[X]$. Then $\mathbb{F}_9 = k[X]/(f)$ is a quadratic extension

of k and has nine elements.

Problem 2.

The fact that R is a ring is an exercise in elementary algebra. Let $\sigma(a + b\sqrt{-5}) = a - b\sqrt{-5}$. Let $r = x + y\sqrt{-5}$ and $s = w + z\sqrt{-5}$.

$$\sigma(r)\sigma(s) = (x - y\sqrt{-5})(w - z\sqrt{-5}) = xw - 5yz - (xz + yw)\sqrt{-5} = \sigma(rs)$$

$$\sigma \text{ is a homomorphism. For } r \in B, N(r) = r\sigma(r) - r^2 + 5v^2 \in \mathbb{Z}$$

Therefore, σ is a homomorphism. For $r \in R$, $N(r) = r\sigma(r) = x^2 + 5y^2 \in \mathbb{Z}$.

$$N(rs) = rs\sigma(rs) = r\sigma(r)s\sigma(s) = N(r)N(s).$$

Assume that p = rs, p a rational prime and $r, s \in R$ as above. Then $N(r)N(s) = N(rs) = N(p) = p^2$, thus $N(r)|p^2$. If $s \neq \pm 1$ then $N(s) = w^2 + 5z^2 > 1$, thus N(r)|p.

Assume that $r \notin \mathbb{Z}$. Then $N(r) = x^2 + 5y^2 \ge 5y^2 \ge 5$, as $y \ne 0$. First we show that 2 and 3 are irreducible:

Assume 3 = rs for $r \neq \pm 1$. Then $r, s \notin \mathbb{Z}$. Therefore, $N(rs) = N(r)N(s) \geq 25 > 9 = N(3)$ - a contradiction. The same works for 2.

If $r = 1 + \sqrt{-5}$, $N(r) = (1 + \sqrt{-5})(1 - \sqrt{-5}) = 1 + 5 = 6 = 2 \cdot 3$. Thus 6 can be written in two ways as a product of irreducible elements. This is because R is not a UFD. It is a Dedekind domain and with the unique factorization of ideals

$$(6) = (2, 1 + \sqrt{-5})(3, 1 + \sqrt{-5})$$

Problem 3. Exercise 50

Let F be a field $p(X) \in F[X]$ and irreducible polynomial. Prove that if $g(X) \in F[X]$ then either (p(X), q(X)) = 1 or p(X)|q(X).

Recall that F[X] is an Euclidean domain iff F is a field. Thus by the Euclidean algorithm (p(X), q(X)) =(f(X)) where f(X) is the greatest common divisor of p(X) and q(X). Since p(X) is irreducible either f(X)is constant or a constant multiple of p(X) (recall that the constant polynomials in F[X] are the units in this ring). The claim follows.

Problem 4. Exercise 53

Part (i): Assume that (0) is a prime ideal. Then if $ab \in (0)$, $a \in (0)$ or $b \in (0)$. Thus there are no zero divisors or equivalently R is an integral domain.

Assume that R is an integral domain and $ab \in (0)$. Since a, b are not zero divisors, $a \in (0)$ or $b \in (0)$. Thus (0) is a rime ideal.

Part (ii): Recall that **a** is a maximal ideal iff R/\mathbf{a} is a field. Since $R \cong R/(0)$, the claim follows.

Problem 5.

Let $I \subset \mathbb{Z}[X]$ be the set of polynomials with even constant term. One can easily check that I = (X, 2) is an ideal and that $1 \notin I$. Then by the third isomorphism theorem $\mathbb{Z}[X]/I = \mathbb{Z}/2\mathbb{Z}$, which is a field. Thus I is maximal.

Problem 6. Exercise 63

Let (r,s) = 1 and $\frac{r}{s} \in \mathbb{Q}$ be a root for $f(X) = a_n X^n + \ldots + a_0$. Plugging in $\frac{r}{s}$ and multiplying by s^n we get

$$a_n r^n + a_{n-1} r^{n-1} s + \ldots + a_1 r s^{n-1} + a_0 s^n = 0$$

Since r must divide the LHS and it appears in all terms except the last it must divide it too. Since (r, s) = 1 it follows that $r|a_0$. Similarly $s|a_n r^n$, hence $s|a_n$.

Problem 7. Exercise 65

Let $f(X) = a_n X^n + \ldots + a_0 \in F[X]$ is an irreducible polynomial. Then so is $g(X) = a_0 X^n + \ldots + a_n$. Assume that g(X) = h(X)k(X) for

$$h(X) = \sum_{i=0}^{r} b_i X^i$$
$$k(X) = \sum_{i=0}^{s} c_i X^i$$

Thus

$$a_0 X^n + \ldots + a_n = (b_r X^r + \ldots + b_0)(c_s X^s + \ldots + c_0)$$

Make the change of variables $X \mapsto 1/X$ and multiply by X^n to get that

$$a_n X^n + \ldots + a_0 = (b_0 X^r + \ldots + b_r)(c_0 X^s + \ldots + c_s)$$

Thus f(X) is also reducible.

Problem 8. Exercise 66

Let $\phi : R[X] \to R[X]$ be defined by $f(X) \mapsto f(X+c)$ for some $c \in R$. Then ϕ is an isomorphism of rings, because by definition it is a homomorphism and its inverse is $\phi^{-1} : f(X) \mapsto f(X-c)$. If p(X) = f(X)g(X) then $\phi(p) = \phi(f)\phi(g)$ and thus p(X+c) is also reducible. The converse holds for ϕ^{-1} .