
Intro to modern algebra II

Instructor: Michael Harris

1. Solution to problem set 5

Problem 1.

Let k be a finite field with q elements. Let V be a n�dim k�vector space. Let {ei|1  i  n} be a basis
for V . Let v =

P
aiei, for ai 2 k. There are exactly q choices for every coe�cient ai. Therefore, |V | = q

n.
Let k = F3 have three elements. Let f(X) = X

2+1 2 k[X]. Then F9 = k[X]/(f) is a quadratic extension
of k and has nine elements.

Problem 2.

The fact that R is a ring is an exercise in elementary algebra. Let �(a + b

p
�5) = a � b

p
�5. Let

r = x+ y

p
�5 and s = w + z

p
�5.

�(r)�(s) = (x� y

p
�5)(w � z

p
�5) = xw � 5yz � (xz + yw)

p
�5 = �(rs)

Therefore, � is a homomorphism. For r 2 R, N(r) = r�(r) = x

2 + 5y2 2 Z.

N(rs) = rs�(rs) = r�(r)s�(s) = N(r)N(s).

Assume that p = rs, p a rational prime and r, s 2 R as above. Then N(r)N(s) = N(rs) = N(p) = p

2,
thus N(r)|p2. If s 6= ±1 then N(s) = w

2 + 5z2 > 1, thus N(r)|p.
Assume that r /2 Z. Then N(r) = x

2 + 5y2 � 5y2 � 5, as y 6= 0.
First we show that 2 and 3 are irreducible:
Assume 3 = rs for r 6= ±1. Then r, s /2 Z. Therefore, N(rs) = N(r)N(s) � 25 > 9 = N(3) - a

contradiction. The same works for 2.
If r = 1 +

p
�5, N(r) = (1 +

p
�5)(1�

p
�5) = 1 + 5 = 6 = 2 · 3. Thus 6 can be written in two ways as

a product of irreducible elements. This is because R is not a UFD. It is a Dedekind domain and with the
unique factorization of ideals

(6) = (2, 1 +
p
�5)(3, 1 +

p
�5)

Problem 3. Exercise 50

Let F be a field p(X) 2 F [X] and irreducible polynomial. Prove that if g(X) 2 F [X] then either
(p(X), g(X)) = 1 or p(X)|g(X).

Recall that F [X] is an Euclidean domain i↵ F is a field. Thus by the Euclidean algorithm (p(X), g(X)) =
(f(X)) where f(X) is the greatest common divisor of p(X) and g(X). Since p(X) is irreducible either f(x)
is constant or a constant multiple of p(X) (recall that the constant polynomials in F [X] are the units in this
ring). The claim follows.

Problem 4. Exercise 53

Part (i): Assume that (0) is a prime ideal. Then if ab 2 (0), a 2 (0) or b 2 (0). Thus there are no zero
divisors or equivalently R is an integral domain.

Assume that R is an integral domain and ab 2 (0). Since a, b are not zero divisors, a 2 (0) or b 2 (0).
Thus (0) is a rime ideal.

Part (ii): Recall that a is a maximal ideal i↵ R/a is a field. Since R

⇠= R/(0), the claim follows.

Problem 5.

Let I ⇢ Z[X] be the set of polynomials with even constant term. One can easily check that I = (X, 2) is
an ideal and that 1 /2 I. Then by the third isomorphism theorem Z[X]/I = Z/2Z, which is a field. Thus I
is maximal.

Problem 6. Exercise 63

1



2

Let (r, s) = 1 and r
s 2 Q be a root for f(X) = anX

n + . . .+ a0. Plugging in r
s and multiplying by s

n we
get

anr
n + an�1r

n�1
s+ . . .+ a1rs

n�1 + a0s
n = 0

Since r must divide the LHS and it appears in all terms except the last it must divide it too. Since
(r, s) = 1 it follows that r|a0. Similarly s|anrn, hence s|an.

Problem 7. Exercise 65

Let f(X) = anX
n + . . .+ a0 2 F [X] is an irreducible polynomial. Then so is g(X) = a0X

n + . . .+ an.
Assume that g(X) = h(X)k(X) for

h(X) =
rX

i=0

biX
i

k(X) =
sX

i=0

ciX
i

Thus
a0X

n + . . .+ an = (brX
r + . . .+ b0)(csX

s + . . .+ c0)

Make the change of variables X 7! 1/X and multiply by X

n to get that

anX
n + . . .+ a0 = (b0X

r + . . .+ br)(c0X
s + . . .+ cs)

Thus f(X) is also reducible.

Problem 8. Exercise 66

Let � : R[X] ! R[X] be defined by f(X) 7! f(X + c) for some c 2 R. Then � is an isomorphism of rings,
because by definition it is a homomorphism and its inverse is ��1 : f(X) 7! f(X � c). If p(X) = f(X)g(X)
then �(p) = �(f)�(g) and thus p(X + c) is also reducible. The converse holds for ��1.


