Intro to modern algebra II

Instructor: Michael Harris

1. Solution to problem set 3

Problem 1. Part (a): Using polynomial division we get

\[x^5 + x + 1 = (x^4 + 2x^3 + 4x^2 + 8x + 17)(x - 2) + 35 \]

Obviously since \((35, x - 2) = 1\) the polynomials are coprime.

Part (b): Using polynomial division we get

\[x^4 + 2x^3 + 4x^2 + x + 3 = \left(\frac{x^2}{2} + \frac{3x}{4} + \frac{7}{8} \right) (2x^2 + x + 3) + \left(-\frac{17x}{8} + \frac{3}{8} \right) \]

Finally, we observe that \(r(x) = -\frac{17x}{8} + \frac{3}{8}\) and \(g(x) = 2x^2 + x + 3\) are coprime - either do another polynomial division or observe that \(317\) is not a root of \(g(x)\). Thus the original polynomials are also coprime.

Problem 2. Note that \(R/I = \mathbb{Z}/p^2\mathbb{Z}\), while \(R/J = \mathbb{F}_p[X]/X^2 = \{aX + b | a, b \in \mathbb{F}_p\}\).

Both rings have \(p^2\) elements. They are not isomorphic - for example 1 has additive order \(p^2\) in \(R/I\) and \(p\) in \(R/J\).

Observe that the nilradical of \(R/I\) is the ideal \(N_1 = (p)\) and the nilradical of \(R/J\) is the ideal \(N_2 = (X)\). Therefore, \((R/I)/N_1 = \mathbb{F}_p = (R/J)/N_2\).

Problem 3. Recall that an element \(a \in \mathbb{Z}/n\mathbb{Z}\) has a multiplicative inverse (i.e. is a unit) if and only if \((a, n) = 1\). Since \(p\) is an odd prime the element \(u\) should exist. To write it explicitly we could use Euler’s theorem (a generalization of Fermat’s little theorem)

\[2^{\varphi(p^2)} \equiv 1 \mod p^2. \]

Since \(\varphi(p^2) = p(p - 1)\) we can write \(u = 2^{p^2 - p - 1}\).

Let \(f(X) = X^2 - (p + 1)\)

Observe that \((up + 1)^2 = u^2p^2 + 2up + 1 = p + 1\). Hence \(f(X) = (X - (up + 1))(X + (up + 1))\). The roots are \(\pm (up + 1)\).

Problem 4. Exercise 42.

The fastest way to solve this problem is to use that for any field \(F\), the polynomial ring \(F[X]\) is a principal ideal domain. Thus since \((x - a_i)\) are irreducible elements they must divide anything they are not coprime with.

However, it is obvious that \(x - a_i\) does not divide \(\prod_{j \neq i}(x - a_j)\), since it does not divide any of the terms in the product.

Problem 5. Exercise 43.

Let \(R = \mathbb{Z}[X]\). The greatest common divisor of \(X\) and 2 must be a polynomial of degree 0, i.e. a constant \(d\). Since \(h(X) = X\) is a monic polynomial \(d = \pm 1\). Thus \(X\) and 2 are coprime.

Assume that we could find \(f, g \in R\) such that \(Xf + 2g = 1\). In order to get a contradiction let us consider the constant term on the left side. Let \(g(0) = b\) then \(Xf + 2g = 2b + X(\ldots)\). Since \(2b = 1\) has no solution in \(\mathbb{Z}\) the above equality cannot occur.