
INTRODUCTION TO HIGHER MATHEMATICS V2000

Practice Final Solutions

1. (a) Prove by induction that, for all n > 0,

n∑
i=1

(−1)ii2 = (−1)n
n(n+ 1)

2
.

Solution. Write A(n) =
∑n

i=1(−1)ii2, B(n) = (−1)n n(n+1)
2 . Base case: for

n = 1 one sees by inspection that A(n) = −1 and B(n) = −1.
Induction step: Suppose it is known for n, we prove it for n + 1. For all

n we have

A(n+ 1) = A(n) + (−1)n+1(n+ 1)2;

B(n+ 1) = B(n) + (−1)n+1 (n+ 1)(n+ 2)

2
− (−1)n

n(n+ 1)

2

= B(n) + (−1)n+1[
(n+ 1)(n+ 2)

2
+

(n+ 1)(n)

2
].

Assuming A(n) = B(n), it thus suffices to show that

(−1)n+1(n+ 1)2 = (−1)n+1[
(n+ 1)(n+ 2)

2
+

(n+ 1)(n)

2
];

in other words, that

(n+ 1)2 =
(n+ 1)(n+ 2) + (n)(n+ 1)

2

which is easy.
(b) For any n ≥ 1 let Xn = {x ∈ N, 1 ≤ x ≤ n}. We consider Xn as a

subset of Xn+1.

(i) Define an injective map j : P (Xn) ↪→ P (Xn+1) and describe its image
as a subset of P (Xn+1)

(ii) Define a bijection between j(P (Xn)) and P (Xn+1) \ j(P (Xn)).

(iii) Prove by induction that |P (Xn)| = 2n.
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Solution. (i) Since Xn ⊆ Xn+1, any subset of Xn is a subset of Xn+1. This
defines j. The image of j is the set of subsets S ⊆ Xn+1 such that n+1 /∈ S.

(ii) By part (i), P (Xn+1) \ j(P (Xn)) = {T ⊆ Xn+1 | n + 1 ∈ T}. We
define a bijective map

α : j(P (Xn)) → P (Xn+1) \ j(P (Xn)) | α(S) = S ∪ {n+ 1}.
This is clearly injective and has inverse

β : P (Xn+1) \ j(P (Xn)) → j(P (Xn)) | β(T ) = T \ {n+ 1}.

(iii) Base case: For n = 1, P (X1) has two elements: X1 and ∅.
Induction step: Suppose we know that |P (Xn)| = 2n. Since j is injective,

|j(P (Xn))| = 2n. Now

|P (Xn+1| = |j(P (Xn))|+ |P (Xn+1) \ j(P (Xn))| = 2|j(P (Xn)|
because the two subsets of P (Xn+1)| are in bijection by part (ii). Thus

|P (Xn+1| = 2|j(P (Xn)| = 2 · 2n = 2n+1

and this completes the induction step.

(c) Prove by induction that for all n ≥ 4, n! > 2n.

Solution. Base case: For n = 4, n! = 24, 2n = 16.
Induction step: Suppose n! > 2n. Then

(n+ 1)! = (n+ 1) · n! > (n+ 1) · 2n > 2 · 2n = 2n+1

because n+ 1 > 2.

(d) (Extra credit) Prove by induction that all natural numbers are inter-
esting.

2. (a) Let I = (−1, 1) ⊂ R and let f : I → [1,∞) be a continuous
function. Prove carefully that

lim
n→∞

f((−1)n
1

n
) = f(0).

Solution. Set an = f((−1)n 1
n), for n ≥ 1, and set L = f(0). Let ε > 0.

Because f is continuous at 0, there is δ > 0 such that

|x− 0| < δ ⇒ |f(x)− L| = |f(x)− f(0)| < ε.

There exists an integer N such that N > 1
δ . For n ≥ N ,

|(−1)n
1

n
− 0| = 1

n
< δ.

Thus for n ≥ N ,
|f(x)− L| < ε

which proves the claim.
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(b) Can there be a continuous function g : I → R such that

g(
1

n
) = (−1)nf(

1

n
)?

Explain your answer.

Solution. Suppose there were such a function. Then for all ε > 0 there is
δ > 0 such that

|g(x)− g(0)| < ε ∀x ∈ (−δ, δ).
In particular, if n > 1

δ then

|(−1)nf(
1

n
)− g(0)| < ε.

Take ε = 1. Now for all n, f( 1
n) ≥ 1 by hypothesis, so if n is even then

(−1)nf( 1
n) ≥ 1 but if n is odd then (−1)nf( 1

n) < −1. This means that if

g(0) ≥ 0 then |(−1)nf( 1
n) − g(0)| ≥ 1 = ε for all odd n, which contradicts

the above inequality; but if g(0) < 0 then |(−1)nf( 1
n)− g(0)| ≥ 1 = ε for all

even n. So there can be no such continuous g.

3. (a) Let D denote the set of Dedekind cuts. Define the half-closed
interval [0, 1) and the open interval (0, 1) explicitly as subsets of D.

Solution. First, (0, 1) is the set of L ∈ D satisfying the following three
conditions: first

∀a ∈ Q (a ≤ 0)⇒ a ∈ L;

second, there exists r ∈ Q, r < 1 such that r /∈ L; and finally, there exists
a ∈ Q, a > 0 such that a ∈ L.

Next, [0, 1) is the set of L ∈ D that satisfy the first two conditions above
but not the last.

(b) (This is a challenging problem, much more difficult than anything
you are likely to see on the exam.) Let a < b be rational numbers, and let
f : (a, b) → R be a continuous function. We suppose there are a′, b′ ∈ (a, b),
a′ < b′, such that f(a′) < 0 and f(b′) > 0. Finally, we suppose f is strictly
increasing: if x, y ∈ (a, b), x < y ⇒ f(x) < f(y).

(i) Let L ⊂ Q be the set of all rational numbers in (∞, a], together with
the set of all rational numbers x ∈ (a, b) such that f(x) < 0. Show that L
is a Dedekind cut. (Hint: suppose L has a maximum, say x0, and consider

ε = − (f(x0)
2 .)

(ii) Show that L, viewed as a real number, belongs to (a, b). Show that
f(L) = 0.

(To be discussed during the review.)

(c) Extra practice: Work out the exercises 8.10, 8.11, 8.12, 8.13, 8.14,
8.15 in Dumas-McCarthy.

4. (a) Define surjective functions f : N → Z and g : Z → N.
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Solution. We can take f(0) = 0 and for i > 0 we take f(2i − 1) = i,
f(2i) = −i. We can take g(x) = x for x > 0 and g(y) = 0 for y ≤ 0.

(b) Let A, B, and C be the intervals in R given by A = (0, 1], B = [1,∞),
C = [1, 2). (i) Construct bijections f : A → B and g : A → C.

(ii) Construct a collection of sets Ci, i ≥ 1, and bijections

gi : C → Ci, h : B → ∪i≥1 Ci

(iii) Show that A has a bijection with a countable infinite union of copies
of itself.

Solution. (i) Define f(x) = 1
x , g(x) = 2− x.

(ii) Define Ci = [i, 1 + 1). Then B = ∪Ci is a partition of B so the
function h just takes x to itself. Meanwhile, gi(x) = x+ i− 1.

(iii) Since A is in bijection with C, and C is in bijection with each Ci, we
see that for each i there is a bijection of A with Ci given by gi ◦ g. On the
other hand, f is a bijection of A with B which is in bijection, via h, with
the infinite union of half-open intervals Ci, each of which is a copy of A.

5. (a) (i) Show that for all x ∈ R, |x2 − 1| ≤ x2 + 1.

(ii) Define f : R → [−1, 1) by f(x) = x2−1
x2+1

. Show that f is continuous
and surjective.

Solution. (i) Either |x| ≤ 1 or |x| > 1. If |x| ≤ 1 then 0 ≤ x2 ≤ 1 and
so 0 ≤ |x2 − 1| ≤ 1, but x2 + 1 ≥ 1. On the other hand, if |x| > 1 then
|x2 − 1| = x2 − 1 < x2 + 1.

(ii) It follows from (i) that |x2−1
x2+1
| = |x2−1|

x2+1
≤ 1. Moreover, f(x) = 1 is

impossible, so the image of f is contained in the half-open interval [−1, 1).
It is continuous because it is the quotient of two continuous functions and
the denominator never takes the value 0.

To show that f is surjective, we let a ∈ [−1, 1) and solve the equation

f(x) =
x2 − 1

x2 + 1
= a.

This gives us

x2 − 1 = ax2 + a; (1− a)x2 = a+ 1

and thus x = ±
√

a+1
1−a is a solution, provided the expression on the right has

a square root. First of all, note that the denominator never equals 0 because
1 /∈ [−1, 1). Now the numerator is never negative if a ≥ −1, so there is a real
square root provided the denominator is positive; and this is true provided
a < 1. Note that it is impossible for both numerator and denominator to
be negative.

(b) (i) Does there exist an injective function f : N → N such that (∀i ∈
N)f(i) > f(i+ 1)? Explain.
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(ii) Let I denote the open interval (0, 1) ⊂ R. Does there exist an injective
function f : N → I such that (∀i ∈ N)f(i) > f(i+ 1)? Explain.

Solution. (i) There is no such function. Suppose there were such an f .
Consider N = f(0). It follows by induction that for all i > 0, f(i) < f(0) =
N . Thus f is an injective function from the infinite set N\ to the finite set
{0, 1, . . . , N}, which is impossible.

(ii) Yes. For example, we can take f(n) = 1
2n+1 .

(c) Let Y be the set {1, 2, . . . ,m}. Prove by induction that the cardinality
of the set of functions from {1, . . . , n} to Y has cardinality mn.

This has been done in class.

6. (a) Definitions: Define bound variable, free variable, tautology, charac-
teristic set.

(b) Use truth tables to show that the following statement is not a tautol-
ogy.

(P ∧ (¬Q ∨R))⇔ ¬(R⇒ (Q ∧ ¬P )))

(One example suffices.)

Solution. If you substitute T for P and F for Q and R you get F .

7. (a) Let n > 0 be a positive integer and let Z/nZ be the set of congruence
classes modulo n. Define a relation R on Z/nZ:

aRb⇔ ab ≡ 0 (mod n).

Is this relation reflexive, symmetric, or transitive for all n? For some n?

Solution. It is not reflexive for n > 1 (it is not true that 1R1 if n > 1) but
it is reflexive for n = 1. It is symmetric. Since it is not reflexive but aR0
for all a it is also not transitive, again except when n = 1.

(b) Find c = gcd(3075, 3649) and find m,n ∈ Z such that 3075m +
3649n = c.

Solution. The GCD is 41, computed as follows:

3649− (3075× 1) = 574

3075− (574× 5) = 205

574− (205× 2) = 164

205− (164× 1) = 41

164− (41× 4) = 0

We work backwards from the next to last line:

41 = 205− 1 · 164 = 205− 1 · [574− 2 · 205] = −1 · 574 + 3 · 205.

Continuing:

41 = −1 · 574 + 3 · [3075− 5 · 574] = 3 · 3075− 16 · 574;
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41 = 3 · 3075− 16 · [3649− 1 · 3075] = 19 · 3075− 16 · 3649.

8. True or false? Justify your answer.

(a) For (i) S = R and (ii) S = N, determine the truth or falsity of the
following sentence:

(∀x ∈ S)(∀y ∈ S)x < y ⇒ (∃z ∈ S)(x < z) ∧ (z < y).

(i) True (take z = x+y
2 ); (ii) False: if y = x+1 there is no natural number

in between.

(b) If a, b ∈ N then

(∀a ∈ N)(∀b ∈ N)(∀c ∈ N) c|gcd(a, b)⇒ (∀m ∈ N) c|(ma− b).

True.

(c) Let f : (0, 2) → R be a continuous function, where (0, 2) is the open
interval. Then there is a real number C > 0 and δ > 0 such that, for all
x ∈ (1− δ, 1 + δ), |f(x)| < C.

True. Let M = f(1). Let ε > 0 and let δ > 0 be such that

|x− 1| < δ ⇒ |f(x)−M | < ε

and take C = M + ε.

(d) Any compound statement is propositionally equivalent to one that
contains only atomic statements and the propositional connectives ¬ and ∨.

True: one can use De Morgan’s laws to replace occurrences of ∧ by oc-
currences of ¬ and ∨: P ∧Q is equivalent to ¬(¬(P ∨Q)). Similarly, P ⇒ Q
is equivalent to Q ∨ ¬P .


