INTRODUCTION TO HIGHER MATHEMATICS V2000

REVIEW FOR MIDTERM II, SPRING 2016: SOLUTIONS

Problems are in blue, solutions in black.

Ex. 1. (i) - (iii)

Solutions: omitted (definition or done in class).
Ex. 1 (iv): Show that limits are unique.

Solution: Suppose lim,_,, f(z) = M and lim,_, f(x) = N. We need to
show that M = N. Instead we will show that, for any £ > 0, |M — N| < e.
Thus the difference between them is smaller than every positive number,
and this implies that they must be equal.

By hypothesis, for any € > 0, there exists §; such that

O<l|lr—al<d = |flx)—M|<e/2
and
0<|z—al<d = |f(x)—N|<e/2
Let 6 = min(d1,02). Thus
0<|z—al<d = |f(x)— M| <e/2 AND |f(x) — N| <¢e/2.
It follows that
O<l|lz—al<d = |f(x)— M|+ |f(z)— N|<e.
Thus by the triangle inequality
M = N| = |M = f(x) + f(z) = N| < |f(x) — M| + | f(x) = N| <,
which is what we wanted to prove.

Ex. 2.
Omitted because we didn’t cover limits of sequences.

]gc})cl.u?ions: We omit 3. (i) which is a definition.
(ii) We prove
Sk)=1+5+4+---+“k+1)=(k+1)2k+1)
The case k = 0 is obvious. Suppose we know it for k. Then
S(k+1)=S(k)+4(k+1)+1 = (k+1)(2k+1)+4(k+1)+1 = (k+2)(2k+3)
as one verifies by simple algebra.
(iii) Define the Fibonacci sequence by F} = 1, Fy = 1, F3 = 2, Fj,41 =

F, + F,,_1. Prove by induction that for all £ > 1, F5; is divisible by 5.
1
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Proof by induction: First F4 =2+ 1 =3, F5 =3+ 2 = 5 so it’s true for

’ Ncl)\‘zv for general n we know We know that
Foys = Fpya+ Fogs = Foys + Foyo + Fogs.
Substituting F, 13 = Fj12 + Fj41 we find
Fois =3F 40+ 2F41.
Substituting Fy, 12 = Fj, + Fj,11 we find
Foi5 =3(F, + Fri1) + 2F, 41 = 3F, (mod 5).
Now suppose Fj is divisible by 5; then
F5(kt1) = Fokis = 3F5,  (mod 5)

is also divisible by 5.

Prove by induction on n that when x > 0 we have
n(n—1) 2

(1+2)">14nz+ 5

Proof: It’s clearly true for n = 1. Suppose it’s true for n. Then

(L+2)" = (L +a)(1+2)" = (1+2)[1 +nz + 7”L<7”L21>x2]

and when we work out the right-hand side we find this is
n(n —1) n(n —1)
2 2
and it is now obvious that it’s true for n + 1.

Ex. 4 (i) Omitted

(ii) Find integers m, n such that 14m + 13n = 7.

Solution: Obviously 14 -1+ 13- (—1) = 1. Multiply both sides by 7 to
find the solution m =7, n = —7.

(iii) Find the simplest proof of the fact that if we define ged(a,b) to be
the largest integer that divides both a and b, then if s | @ and s | b then s
divides the gcd of a and b.

n(n—1)
2

2

1+ (n+1)z+ a?fna’+ 2® > 14+ (n+1)z+] +nlz

This is a somewhat ambiguous question: what is the “simplest” proof?
Probably the proof uses the fact that if we let ¢ be the largest integer dividing
both a and b, then there are integers m and n such that

¢ = ma + nb.

It’s clear that if s divides a and b then s divides ma + nb, and therefore
divides c¢. The problem with the wording is that it’s not clear whether or
not the proof includes the proof that ¢ can be written in the indicated way.
If we write a = ic and b = jc then one can prove that ¢ and j have no
common factor — otherwise a and b would have a common divisor larger
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than ¢ (this fact also requires proof, but it is easy). Then Bezout’s lemma

implies that there are m and n such that mi + nj = 1. An easy argument

(that nevertheless needs to be written down) then implies ma + nb = c.
I’'m not sure whether or not this was the expected answer.

Ex. 5. (i) False: This is not even a linear ordering. There is no order
relation between (1,2) and (2,1).
(i) False: If L = lim,_,o f(z) exists then for n > + we must have | f(1) —

L| < € when 6 and ¢ are given by the usual conditions. In particular, f (%) <
L + 1 for sufficiently large n, but this is contradicted by the assumption.

(iii) Not covered in class. (But the claim is true.)



