
INTRODUCTION TO HIGHER MATHEMATICS V2000

Review for Midterm II, spring 2016: solutions

Problems are in blue, solutions in black.
Ex. 1. (i) - (iii)
Solutions: omitted (definition or done in class).

Ex. 1 (iv): Show that limits are unique.

Solution: Suppose limx→a f(x) = M and limx→a f(x) = N . We need to
show that M = N . Instead we will show that, for any ε > 0, |M −N | < ε.
Thus the difference between them is smaller than every positive number,
and this implies that they must be equal.

By hypothesis, for any ε > 0, there exists δ1 such that

0 < |x− a| < δ1 ⇒ |f(x)−M | < ε/2

and
0 < |x− a| < δ2 ⇒ |f(x)−N | < ε/2

Let δ = min(δ1, δ2). Thus

0 < |x− a| < δ ⇒ |f(x)−M | < ε/2 AND |f(x)−N | < ε/2.

It follows that

0 < |x− a| < δ ⇒ |f(x)−M |+ |f(x)−N | < ε.

Thus by the triangle inequality

|M −N | = |M − f(x) + f(x)−N | ≤ |f(x)−M |+ |f(x)−N | < ε,

which is what we wanted to prove.

Ex. 2.
Omitted because we didn’t cover limits of sequences.

Ex. 3
Solutions: We omit 3. (i) which is a definition.
(ii) We prove

S(k) = 1 + 5 + · · ·+ (4k + 1) = (k + 1)(2k + 1)

The case k = 0 is obvious. Suppose we know it for k. Then

S(k+1) = S(k)+4(k+1)+1 = (k+1)(2k+1)+4(k+1)+1 = (k+2)(2k+3)

as one verifies by simple algebra.

(iii) Define the Fibonacci sequence by F1 = 1, F2 = 1, F3 = 2, Fn+1 =
Fn + Fn−1. Prove by induction that for all k ≥ 1, F5k is divisible by 5.
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Proof by induction: First F4 = 2 + 1 = 3, F5 = 3 + 2 = 5 so it’s true for
k = 1.

Now for general n we know We know that

Fn+5 = Fn+4 + Fn+3 = Fn+3 + Fn+2 + Fn+3.

Substituting Fn+3 = Fn+2 + Fn+1 we find

Fn+5 = 3Fn+2 + 2Fn+1.

Substituting Fn+2 = Fn + Fn+1 we find

Fn+5 = 3(Fn + Fn+1) + 2Fn+1 ≡ 3Fn (mod 5).

Now suppose F5k is divisible by 5; then

F5(k+1) = F5k+5 ≡ 3F5k (mod 5)

is also divisible by 5.

Prove by induction on n that when x > 0 we have

(1 + x)n ≥ 1 + nx+
n(n− 1)

2
x2.

Proof: It’s clearly true for n = 1. Suppose it’s true for n. Then

(1 + x)n+1 = (1 + x)(1 + x)n ≥ (1 + x)[1 + nx+
n(n− 1)

2
x2]

and when we work out the right-hand side we find this is

1+(n+1)x+
n(n− 1)

2
x2+nx2+

n(n− 1)

2
x3 ≥ 1+(n+1)x+[

n(n− 1)

2
+n]x2

and it is now obvious that it’s true for n+ 1.

Ex. 4 (i) Omitted

(ii) Find integers m, n such that 14m+ 13n = 7.

Solution: Obviously 14 · 1 + 13 · (−1) = 1. Multiply both sides by 7 to
find the solution m = 7, n = −7.

(iii) Find the simplest proof of the fact that if we define gcd(a, b) to be
the largest integer that divides both a and b, then if s | a and s | b then s
divides the gcd of a and b.

This is a somewhat ambiguous question: what is the “simplest” proof?
Probably the proof uses the fact that if we let c be the largest integer dividing
both a and b, then there are integers m and n such that

c = ma+ nb.

It’s clear that if s divides a and b then s divides ma + nb, and therefore
divides c. The problem with the wording is that it’s not clear whether or
not the proof includes the proof that c can be written in the indicated way.
If we write a = ic and b = jc then one can prove that i and j have no
common factor – otherwise a and b would have a common divisor larger
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than c (this fact also requires proof, but it is easy). Then Bezout’s lemma
implies that there are m and n such that mi + nj = 1. An easy argument
(that nevertheless needs to be written down) then implies ma+ nb = c.

I’m not sure whether or not this was the expected answer.

Ex. 5. (i) False: This is not even a linear ordering. There is no order
relation between (1, 2) and (2, 1).

(ii) False: If L = limx→0 f(x) exists then for n > 1
δ we must have |f( 1

n)−
L| < ε when δ and ε are given by the usual conditions. In particular, f( 1

n) ≤
L+ 1 for sufficiently large n, but this is contradicted by the assumption.

(iii) Not covered in class. (But the claim is true.)


