
MATH V2000: Review for final, May 2016

Here are answers to some of the questions.
Question 1:

(ii) (8 points) Give a careful proof by induction on n that
1
2 + 1

2·3 + · · ·+ 1
n(n+1) = n

n+1

for all n ≥ 1.

Base case: n = 1 gives 1
2 = 1

2 , which is clear.

Inductive step: Suppose that 1
2 + 1

2·3 + · · ·+ 1
n(n+1) = n

n+1 . We must prove that
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But
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by Ind Hyp
= n

n+1 + 1
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= n(n+2)+1
(n+1)(n+2) = (n+1)2

(n+1)(n+2) = (n+1)
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as required.

(iii) (10 points) Find integers m,n such that 14m+ 13n = 7.
I seem to specialize in giving you ones of these you can do in your head! If m = 1 and

n = −1 then 14 · 1 + 13 · (−1) = 1. So take m = 7, n = −7. The general method is to use
the Euclidean algorithm to find the gcd and then “back solve”. There is a better example
of this in question 7(ii).

Question 2: Let f : R→ R be a function and L ∈ R.
(iii) (8 points) Show that if lim

x→a
f(x) = L then f is bounded near a, i.e. there are constants

C,M > 0 so that |f(x)| < M for all x such that 0 < |x− a| < C.
By definition of limit, if we take ε = 1 there is δ > 0 so that 0 < |x − a| < δ implies

|f(x)− L| < 1. But by the triangle inequality

|f(x)| ≤ |f(x)− L+ L| ≤ |f(x)− L|+ |L| ≤ 1 + |L|.
So we may take C = δ and M = 1 + |L|.

Notice that the question was slightly wrong – I wrote the condition on x as |x− a| < C
instead of 0 < |x− a| < C.

Question 3: (iii) (7 points) If L is Dedekind cut, is the set {x2 : x ∈ L} a Dedekind cut?
What about the set {0} ∪ { 1x : x ∈ Lr0}?

Neither of these need be a Dedekind cut. For example if L = (−∞,−1) ∩ Q, then the
set {x2 : x ∈ L} consists only of positive numbers and so fails condition (III): for example
4 ∈ {x2 : x ∈ L} but −1 < 4 is not in this set.

Further with this L the set {0} ∪ { 1x : x ∈ Lr0} is contained in the interval (−1, 0) and
does not contain −2.

(In fact there is no L for which these sets are Dedekind cuts.)
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Question 4:
(i) (10 points) Let m,n ∈ N. Prove by induction on m that if there is a bijection dme → dne
then m = n.

This is bookwork – look at the proof on p 152-153 in DM.

(ii)(10 points) Are there surjections R→ N or N→ R? Explain your answer.
There is a surjection R→ N eg define f(x) = |bxc|, where bxc| is the largest integer that

is less than or equal to x.
There is no surjection N → R since R is uncountable and so has cardinality strictly >

that of |N|.
One argument: Identify R with the set of infinite decimals and suppose that f : N → R

is any map. Then define the decimal x := r0 · r1r2r3 . . . as follows:
r0 = 1 if the number f(0) does not have 1 in the units place, r0 = 2 otherwise,
r1 = 1 if the number f(1) does not have 1 in the first decimal place, r1 = 2 otherwise,
and in general
rk = 1 if the number f(k) does not have 1 in the kth decimal place, rk = 2 otherwise,
Then the real number x is not equal to f(k) for any k ∈ N. Hence f is NOT surjective.

Question 5: Let X,Y, Z be any sets and f : X → Y , g : Y → Z be functions.
(ii) (5 points) Show that if g ◦ f is injective then so is f . – bookwork

(iii) (5 points)If g ◦ f is surjective must g be surjective? YES – you should give a proof.
eg Let z ∈ Z. Since g ◦ f is surjective there is x ∈ X such that g ◦ f(x) = g(f(x)) = z.
Therefore g(y) = z where y = f(x). Hence g is surjective

(iv) (8 points) Let f : R→ R be the function f(x) = x(x− 1)(x− 2); note that f(3) = 6.

• What is f−1([0, 6])? [0, 1] ∪ [2, 3].
• If A = [−1, 0] and B = [2, 3] what are f(A) ∪ f(B), f(A) ∩ f(B)?

f(A) ∪ f(B) = [−6, 6] and f(A) ∩ f(B) = {0}.
• Find two distinct intervals C,D such that ∅ 6= f(C) ∩ f(D) = f(C ∩D).

Take C = [−1, 0] and D = [0, 12 ].

Question 6: (5 points each) Consider the statement

P : ∃x ∈ R, such that ∀y ∈ R, x2 > y =⇒ x > y.

(i) Write down its negative in a form that does not involve any negations.

for all x ∈ R, there is y ∈ R such that x2 > y and x ≤ y.

(ii) Is P true or false ?
P is true: take x = 1. (or anything > 1)

(iv) Show that
√

3 is an irrational number.
Argue by contradiction: Assume p

q =
√

3 where p
q is in lowest terms. Thrn p2 = 3q2.

Hence (by Fund Thm of arithmetic) 3|p, i.e. p = 3k. Then 9k2 = 3q2 so 3k2 = q2. So 3
must also divide q, which is a contradiction.
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Question 7: (i) (10 points) Let a, b ∈ N. Show that gcd(a, b) is the smallest positive
element in the set {ma + nb | m,n ∈ Z}. You may use without proof that if the positive
integers a, b are relatively prime, then there are integers m,n such that ma + nb = 1, and
that if a > b then gcd(a− b, b) = gcd(a, b). But prove all other results that you use.

Let g = gcd(a, b) and s = smallest positive element in the set {ma+ nb | m,n ∈ Z}. We
must show g ≤ s and s ≤ g.

Since g|a and g|b, g is a divisor of every element of the form ma + nb. Hence g|s, Thus
g ≤ s.

Next we show that gcd(ag ,
b
g ) = 1. But if not, they have a common divisor d > 1. But

d|ag implies that dg|a. Similarly, d| bg implies that dg|b. Therefore dg divides both a, b. Since

g is the largest common divisor and dg ≥ g this means that dg = g, i.e. d = 1. Therefore
gcd(ag ,

b
g ) = 1.

This means that there are m,n so that ma
g + n b

g = 1. So, multiplying by g we get

ma + nb = g. Therefore g ∈ {ma + nb | m,n ∈ Z}. Therefore s ≤ g (since s is smallest
positive element in this set.)

This completes the proof.

(ii) (10 points) Find c = gcd(3999, 1419) and find m,n ∈ Z so that 3999m+ 1419n = c.
gcd = 129. m = 5 and n = −14,

Question 8: Are the following true or false? Give reasons for your answers.

(i) (5 points) Define a relation on the subsets of X by saying A R B ⇐⇒ A ∩B 6= ∅.
This is an equivalence relation.

False This relation is not transitive in general: eg A∩C could be empty, but both
these sets could have nonempty intersection with B. eg for intervals in R:

take A = [0, 1], B = [1, 2] and C = [2, 3].

(ii) (5 points) Define a relation R on pairs (a, b) ∈ N+ × N+ by setting

(a, b)R(c, d)⇐⇒ ab ≥ cd.

This is an order relation. (Here N+ = {n ∈ N : n > 0}.)

False This is not antisymmetric. eg (4, 9)R(18, 18) and (18, 18)R(4.9) but (4, 9) 6=
(8, 18).

(iii) (5 points) Given any m,n ∈ N with gcd(m,n) > 1, we can write n uniquely as a
product ab where gcd(m, a) = 1 and gcd(m, b) > 1.

False; given m,n there might several decompositions of this kind. eg if m =
15, n = 66 we could take a = 3, b = 22 or a = 6, b = 11.

(iv) (5 points) If X is uncountable and f : N→ X is any map, then |Xrf(N)| = |X|.
True.
Since there is an obvious injection Xrf(N) → X, by the Sch-Bern theorem we

only need show that there is an injection g : X → Xrf(N).
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First note that Xrf(N) is infinite. (since otherwise X is the union of the two
countable sets f(N) and Xrf(N).) Therefore there is an injection h : N→ Xrf(N).

Now define g : X → Xrf(N) as follows:
– if x ∈ Xr(f(N) ∪ h(N)), put g(x) = x;
– choose an injection ι from the subset f(N) ⊂ X onto the odd numbers in N,

and if x ∈ f(N), define g(x) = h(ι(x));
– if x ∈ h(N), define g(x) = h(2h−1(x)).
Then this is injective since the elements of f(N) map to images of odd numbers

under h, while the elements of h(N) map to images of even numbers under h.


