
2. Let p be an odd prime number. Let $a \in \mathbb{Z}$ be an integer not divisible by a.

 (i) Show that the residue class $[a]$ of a in \mathbb{Z}_p satisfies either

 \begin{align*}
 (*) & \quad [a]^{p-1} = [1] \\
 \text{or} & \quad (**) [a]^{p-1} = [-1] = [p-1].
 \end{align*}

 (ii) There are $p-1$ residue classes in \mathbb{Z}_p not equal to $[0]$. How many of them satisfy equation $(*)$? How many satisfy equation $(**)$?

 (Hint: If you don’t know the answer, you can check $p = 3$, $p = 5$, $p = 7$, and formulate a guess for the general case based on what you observe. Then you can try to prove your guess.)