i

/4

338 O CHAPTER13 VECTOR FUNGTIONS

1
) B 1—tan®(4s) , . 2tan(3s) .
=S [m—l] ‘+anT(:()‘+IJ T (3s) | se(39)

_ 1—tan®(1s)

% 5 2(1 ein2(1 . 95 1 (1
TE i+ 2tan(1s) cos?(4s)j = [cos (3s) —sin (3s)] i+ 2sin(3s) cos(Ls)

=Cossj4 sin "
With this parametrization, we recognize the function as representing the unit circle. Note here that the curve aPProaches b

does not include, the point (—1,0), since cos s = —1 for s = 7 + 2k (k an integer) but then ¢t = tan(3s) is Undefineg

17. () r(t) = (t,3cost,3sint) = r'(t) =(1,-3sint,3cost) = [r'(t)|= V1+9sin’t + 9cos?t = Vo,

i
Then T(t) = |:'8| 7— (1, —3sint, 3 cost) or <7-5, 7— sint, 7— cos t>

T'(t) = 711_0 (0,—3cost,—3sint) = |T'(t)| = 711_0\/07+ 9cos?t + 9sin’t = 7313. Thus

_T@® _ 1/V10 o —sin
N(t) = T (0] —3/\/E (0, —3cost,—3sint) = (0, — cost, —sint).

_1T'®)l _ 3/vio 3
OO =TT = Vo - 10

18. (a) r(t) = (t*,sint — tcost,cost + tsint)

r'(t) = (2t,cost + tsint — cost, —sint + tcost +sint) = (2t,tsint,tcost) =>

Ir’(t)| = V/4t2 + t2sin®t + t2 cos? t = /412 + t2(cos? £ + sin2 t) = V/5t2 = \/5¢ [since ¢t > 0). Then

r'(t) . 1 : y 1 ;
= —_—— = — 2 t t — : — —_—
T(¢) O]~ VAL (2t,tsint,tcost) = = (2,sint,cost). T'(t) -z (0,cost, —sint) =

IT" ()| = %\/O +cos?t +sin®t = 75 Thus N(t) = |$,—Eg! iﬁ\é_— (0,cost, —sint) = (0, cost, —sint).

) T'@®)| _ 1/v5 _ 1
R O T
19. @r(t) = (V2t.ehe ) = rt)=(V2e —e") = () =v2TEFeT = Sere =t
Then
r’ t - 1 t
T'(t) = 2z+1<\/_e 282!0>_(21+12<\/—e e? >
t 2,.2('.N>
- m [(* + 1) (VZe',26™,0) - 2e* (VEe!, e, 1)) = (2c+1)2 (VZet (1) 2%
Then
1 t
T G AR e e e - L I T2 )
€
I S 2 _ V2e'(1 4 e?) Va3et
- AT - R e
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SECTION13.3 ARC LENGTH AND CURVATURE U

Therefore — P 1
N(t) = |T/Et;| = VZet (€2t +1)2 <\/—e (1 — e2t), 2¢2t 26%)

(VB (=26, 2ty = Lo mer vaet)

ﬂe‘(ezt +1) et 11

T Y2 1 ___ V2 Vae Vae?

)=|r’/(tﬂ-~ et +1 et +et €M +2ettfet edt 26 17 (e2t +1)2

0= @i = r'@®) =(t2t) = |[’@t)=vI+e+42 =T+ 58. Then
ﬁ(a]f -

PION—
()= 7))~ V1+5¢t2

(1,t,2t).

—5t
T =TT 50 (1,8,2) + ——es W (0,1,2)  [by Formula 3 of Theorem 13.2.3]
1 2 2 1
= ————- ({(—5t, —5t, —10t 0,1 a ] = et
= AT 502)° (S )+ (0,1 + 52,2 + 10t2)) A T58)7 (—5t,1,2)
! _ V5B 1 V5
W= ——ms V22 + 1+ d= —— /252 1 § =
')l (1 + 5t2)3/2 i+ 1+ 5t2)3/2 25t +5 (1 +5¢t2)3/2 1 + 5¢2
T(t)  1+5t2 1 1
Thus N(t) = = : —5t,1,2) = ——= (—5t,1,2).
O=me = v arsepr TOHLI = e (0L
waly = TO_ VB/(L+5%) VB
()] V1 + 522 (1 + 5t2)3/2

)=+ °k = r'(t) =3t2j+2tk, r'(t) =6tj+2k |r'(t)] = /O + BL2)Z + (20)2 = VOIF ¥ 42,

l'l(t) xr’ t) = — 2i / 7 — 642 = |l‘ (t) x l‘"(t)l 6t2 = 6t2
r(t) 6t°1, |r'(t) x r'’(t)] = 6t°. Then k(t) = MoK (m)a T (9t F arz)Iz

Qr(t) = 43 .
MtitPipety o r'(t) =i+2tj+e'k r'(t)=2j+ek,

It z\/\
(t) 12+ (26)2 ()2 = 1+ 42+ 2, r'(t) xr'(t) = (2t —2)e'i—e'j+ 2k,
kl(t))(r

O = e = 2)et]2 + (—et)2 + 22 = /(2t — 2)2e2t + €2t +4 = \/(4t2 — Bt + 5)e2 + 4.

Then (1) M) xr'@¢) AP —8t¥5)e 14 /@2 —8t+5)e +4
SO VITamF ) (1+ae 4 en)

VBi2s L o,
T2k o p() = 2V/Bti+ 2+ 662k, ' (t) = 2v6i + 12tk

1!"“)‘
= V2412
T4+ 3667 = | /401 T 68° & F1) = ABtE +1)2 = 2(3t* + 1),

r'(t) X 1
P{t) = 9444 .
24tl - ]Z\/(—Stzj 4\/61(a

= \/-\\_
5762 186417 196 — VIO + 622 + 1) = \/96(3¢% + 1)% = 4V/6 (3t* + 1).

(t.):%:[l\/g(&ul) ___ V6

e (82 8(3t2 +1)3 — 2(32 + 1)

) o (o)

02 16 C
U‘LNEL 1 . y
carming. Al Rights Reserved. May not be scanned, copicd, or duplicated, or posted to a publicly nccessible website, in whole or in part,

.

339



4

SECTION 13.3 ARC LENGTHAND CURVATURE [ 341

o -p s . . _
L0fore > 75 x(z) attains its maximum at ¢ = —=. Thus, the maximum curvature occurs at (%, In -‘—}5)

and K(2)
z = 0, k(z) approaches 0 as = — .
ginee 0%, W
- ly" ()] e?
» _ ¢, the curvature is fala) = = ol 2z\—3/2
Lot =Y ¢ 1+ (@)~ Arempn =<+

4 the maximum curvature, we first find the critical numbers of x(z):

To fin
20)-9/2 1 ¢ (~8) (14 ¢%) /2 (2eP) = e L 37 _ o 1 2e™

),e”(1+€ (1 + e2<)5/2 =0 (1 + e2=)5/2°

Kz
H,(x)=0when ] == Pe%® = 0,50 g = % orr = —% In2. And since 1 — 2e%* > Qforz < —%anand 1-2%* <0

1 i 1 . 1 —In2
bz > —3In2 the maximum curvature is attained at the point (—5 In2, e )/2) = (—% In2, :}2-)
ince lim €*(1+€2%)™%/? = 0, 5(z) approaches 0 as z — oo.
—00

1 We can take the parabola as having its vertex at the origin and opening upward, so the equation is f(z) = az?,a > 0. Then by

. __ 1@l . |2a] 2a
squion 1 2) = [T (77172~ T4 (2077~ (L dapamyore: 08 (0) = 2o Wevant(0) = oo

a=2and the equation is y = 2z°.
% (a) C appears to be changing direction more quickly at P than Q, so we would expect the curvature to be greater at P.

(b) First we sketch approximate osculating circles at P and Q. Using the

di
. . . - P
axes scale as a guide, we measure the radius of the osculating circle c
atPtob i i - e
0 be approximately 0.8 units, thus p = — =
K
W . T
= ; O ~ 1.3. Similarly, we estimate the radius of the
osculating cj ; ._1 ’ ; )
ng circle at () to be 1.4 units, so Kk = — & ~0.7.

~

1.4

V=

Uy 4
A Yy =4a® — 4z, y’ =122% — 4, and

”l

W)= Ly _ |122% — 4|
1+ 6T~ [ (42— 42) T

The graph of the

CuWatuIe h .
€re iIs what we would expect. The graph of y = gt — 222

0 be b .
5 ending most sharply at the origin and near x = *+1.
Y= g2

S ot
¥ ==2273 " =624, and

N(J:) = 1yu|

=i .
[l (y’)2]3/z = So | 0

[+ (2o % 2t (1+479Y%

Th
e aDPCarancE of

exp]ai%d the two humps in this graph is perhaps a little surprising, but it is

b
Y the fact thqy Y= 2

ifecti(, =2 increases asymptotically at the origin from both

ns, and s
SO 1ts graph has very little bend there. [Note that (0) is undefined.]

© 201 Gan,
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344 [ CHAPTER13 VECTOR FUNCTIONS
m 2
M r—acoswi = #=-—awsihwt = &= —aw’coswt,
. 2 .
y=bsinwt = y=bwcoswt = Y= —bw? sinwt. Then
2
. |2y — 9| |(-—ax.usz,incut)(—bw2 sinwt) — (bw cos wt)(s—zaw cos wt)|
~(0) = &2 + y2]3/2 - [(—awsinwt)? + (bw coswt)?] /
3
_ |abw®sin® wt + abw® cos®wt| |abw?®| y
" (a2w?sin® wt + b2w? cos? wt)3/2 ~ (a?w?sin’ wt + b2w?2 cos? wt)3/
.z =e'cost = & =e'(cost—sint) => i=e'(—sint— cost) + e‘(cost —sint) = —2e’ sint,
y=e'sint = §=e'(cost+sint) = §=e'(—sint+cost)+ ef(cost +sint) = 2e’ cost. Then
t) |2y — 9| |e* (cost — sint)(2€’ cost) — e’ (cos t + sin t)(—2e"sint)|
N = = ~ = -
(22 + 9?32 ([et(cost — sint)]? + [ef(cost + sin £)]2)%/?
_ |2¢? (cos? ¢ — sint cost + sint cos t + sin’ t)| o |2e ()] e .

47.

. (1,0,0) corresponds to ¢t = 0. r(t) = (cost,sint, In cos t)

5 = 3/2 — =—_
[€2t(cos2t — 2costsint + sin?t + cos? t + 2costsint + sin®¢t)] 32 [e2t(1+4 1)) €3(2)3/2 © foa

. f(z) = e, f'(z) = ce™, f"(z)=c’e®. Using Formula 11 we have

_ lf"(x)l _ |c2eczl _ CQecz _ i
K(z) = TT (@) 72 ~ 0T =) — (1T @ete)i so the curvature at z = 0 is
& . 2
x(0) = Tz To determine the maximum value for x(0), let f(c) = (EYIEE Then
, 2c-(1+ )32 =2 31+ (2 1+c*)Y2 [2¢(1 + ¢?) — 3¢° —
flle)= ( ) 2 3?:5 2 i = ( i e L = Lol . 'We have a critical
(1 +¢2)3/7] (1+c?)3 (1+¢?)%/2

number when2¢c —c® =0 = ¢(2—c*)=0 = c=0o0rc=+2. f’(c)ispositiveforc<—\/§,0<C<\/§

and negative elsewhere, so f achieves its maximum value when ¢ = /2 or —+/2. In either case k(0) = —5‘_?/_2-, so the members
d 3

of the family with the largest value of x(0) are f(x) = e¥2* and f(z) = e V2=,

() (2t,2¢2,1) 2t, 262
1,2 1) correspondstot =1. T(t) = 0 - i) _ {2t,2¢%,1) 2 2 1
( 3 ) [I"(t)| \/4t2+4t4+1 - 2t2+1 ,SOT(I) =<§’§’§>'

T/(t) = —4t(2t> +1)72 (2¢, 27, 1) + (22 + 1)1 (2, 4¢, 0) [by Formula 3 of Theorem 13.2.3]

_ 2 -2 /_ Q42 2
= (2" + 1) 7% (—8¢* + 4t* + 2, 81" + 8t* + 4t, —4t) = 2242 4 1)~2 (1 — 262, 2¢, —2t)

/ 2 -2
N(E) = g(:) _ 2(2¢° +1)7% (1 — 247, 2¢, —2¢) (1— 262,26, 2t) <1_2t2’2t,~2t)
/(¢ 2 = = =
ITE 222 + 1)V - 2007 + 2072 + (<207 VI —dP T am T 68 — 1+2t7
N = (=55, —3) sd BO) =T x N = (-4~ 2, - (-4 4+ 4) 4+ 2) = (-2,1,)
>’ 9 9 - 37 3’3 :

t)
. _— tan
> and in Exercise 4 we found that r'(t) = (—sin t,cosh

and |r’(¢)| = |sect|. Here we can assume —Z < ¢ < Z and then sec >0 = |r'(t)| =sect
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! SECTION14.1 FUNCTIONS OF SEVERAL VARIABLES O 379

|
2.-1= cos(2 + 2(—1)) = cos(0) = 1
9, (3) g\e -
: for all choices of val ) '
et 2y 18 defined fo values for  and y and the cosine function is defined for all input values, so the domain
of 9 is IRZ-

f the cosine function is [—1, 1]

) The range o and x + 2y generates all possible input values for the cosine function, so the

( :
range of cos(Z + 2y) is [-1,1].

= y
10 (a)r"(?»l)‘““”4_12_“‘/5
) 2

) \/4’:@—2 is defined only when 4 — 4> > 0,0ory2 <4 «

_9 < y < 2. So the domain of F'is {(z,y) | -2 < y < 2}. 0 2
(C)weknow0_<_ V4—y2<2s501<1+/4—4y% < 3. Thusthe -2

range of Fis [1,3].

h@f01L,)=vVI+vVI+VI+In(@4—-1°-1*-1%)=3+In1=3
(b) VZ, /¥ v/Z are defined only when 2 > 0,y > 0, z > 0, and In(4 — #* — y* — 2?) is defined when

4—3:2—yz—z2 >0 < :1:2+y2+22<4,thusthedomainis

{(:z:, v, 2) | % + y¥+22<4,2>0,9y>0,z> 0}, the portion of the interior of a sphere of radius 2, centered at the

origin, that is in the first octant.

2 @g(1,2,3)=13-22.3/10-1-2—-3=12/4=24
(b) gis defined only when 10 —z —y—2>0 & 2z < 10 — x — y, so the domain is {(z,y.2) | 2 < 10 — = — y}, the
points on or below the plane z + y + z = 10.

B V&'=7 is defined only when = — 2 > 0, orz > 2, and v/ — 1 is defined

only wheny — 1 > 0, or y > 1. So the domain of f is

{@y)z>2 y>1). !
0 2 x
14, 4 ) . =
V=35 is defined only when & — 3y > 0, or z > 3y. So the domain of f d x0r3y
s {(, =1
{(z,y) | © > 3y} or equivalently {(z,v) |y < ix}. =
0 5
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r’

is defined only
. 250 & -3Sy<3and1-2:2>0

whend—a? >0 & —2<s<29

d9-Y

an ‘ -
’ 1251 Thus the domain of f is

o
{(.‘T..Uv 2)

g solid rectangula

l,_2£117_<_2' _3sy.<_3v -1 S:S l}.
r box with vertices (£2, £3, +1)

(all combinations)_

23, The graph of f has equation z = y, a plane which
intersects the yz-plane in the line 2 = y, x = 0. The

portion of this plane in the first octant is shown.

B:=10_ 4z — 5y or 4z + by + z = 10, a plane with

intercepts 2.5, 2, and 10.

0,2,0)
(2.5,0,0)

v

© 21)!(:(\'1)9,.1);\-! cammy. Al Raghts Reserved. May n
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22. f is defined only when 16 — 42 — 4y? — 2> >0 =

a + — < 1. Thus,

wu yﬂ 22
4 16

ﬂ

4

D = {(.’l?, Y, ::)

p: | 2 :
+ == 4 = < 1}, that is, the points
4 16

2 2 2
inside the ellipsoid e Ry
BEOKE T T8

N

~
< >,
g |

N
1
<
)
[ Seaett

—

T
TR

L=

-
g ,X‘
B
I
-...__H
w.-_f
-

¢
[ haid
‘h

24. The graph of f has equation = = z?, a parabolic cylinder.

26. = = cos ¥, a cylinder.
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382 0T CHAPTER14 PARTIAL DERIVATIVES
28. » = 2 — 2% — y?, a circular .
paraboloig Opening

21. = =sinr, a cylinder.
downward with vertex at (0, 0, 2).

TA

(0.0, 2

30. z = /422 + y? so 4x® + y® = :? and 22 0, the

29. = = r? + 4y? + 1, an elliptic paraboloid opening upward
half of an elliptic cone.

with vertex at (0.0.1).

N

2
M. z2=/4—-42 - y2 so 4:1:2+y2+;;3=4 0r32+%+f:1

and z > 0, the top half of an ellipsoid.

1 The only possibility

1 . ; 1
32. (a)f(r.y)—m.Thetracem.'r—Olsz:1—_'_—!!2,andthetmceiny=0is:.—_—1+Ia.
. 1
A Iso that the level —— ek 1 - i cles for
graph III. Notice also that the leve curves of f are 513 =k & .t2+y2 =< — 1,alam|ly0f0"‘:|

k<1
! P ' : hs |
(b) f(z.y) = Tt The trace in x = 0 is the horizontal line z = 1, and the trace in y=0isalsoz =1 Both graP

and II have these traces; however, notice that here z > 0, so the graph is L
(¢) f(z.y) = In(z® + y*). Thetraceinz = Ois z = Iny?, and the trace in y = 0 is z = In 2. The level curves of f o

2 2 . . ) thisi
In(z®+y’)=k & Tty = e*. a family of circles. In addition, f is large negative when x° + 2 is small. s¢

graph I'V.
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4. The level curves are z?

curve is the pair of lines y = *x, and when k # 0 the

level curves are a family of hyperbolas (oriented

differently for k > 0 than for k& < 0).

41. The level curves are /T +y = kory = —v/z+ka

family of vertical translations of the graph of the root
function y = —/7.

"

© 2016 Cengage Learning. All Rights Reserved. May not be scanne

— y? = k. When k = 0 the level

gs O 385

SECTION14.1  FUNCTIONS OF SEVERAL VARIABL

46. The level curves are oy = k or y = k/z. When k#0

of hyperbolas. When k=0
0.

the level curves are a family

the level curve is the pair of lines T = 0,y=

! N

0T —

— — X

0 |77
N[

48. The level curves are In(z? + 4y*) = kor 2 + 4y° = ¥,

a family of ellipses.

d, copied, o duplicated, or posted to a publicly accessible website, in whole or in part
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382 O CHAPTER14 PARTIAL DERIVATIVES

> AT S
28. z =2 — 2" —y", acircular parapgj.:
27. > =sip T, a cylinder. - Parabolojq Opeﬂing
downward with vertex at (0, 0,2).
&)
L(0,0,2,
2
2 z=2"44y+ 1,an elliptic paraboloid opening upward 0.z = /422 + 2 s0 422 + ¥ =

22 and 2 2 O’the[op
with vertex at (0,0,1). half of an elliptic cone.

2 2
=4 24 Y
orz+4+4 1

3. 2= /4 472 _ 2 so 4z + 32 4 2

and z > 0, the top half of an ellipsoid.

32. (@) f(z,y) =

y . 1
m. The traceinz = 0 js » — l_,_‘1},2,,andthetraceiny:()is;:=

ibility is
T3 The only possibility
graph II1. Notice also that the level curves of f are m =k & 224 ¥ = % ~ 1, a family of circles for
k<1

1 . ; . )
(b) f(z,y) = 11222 =i The trace in z = 0 is the horizontal line z = 1, and the trace ity =G4is aléo z — 1. Both gmphsl

and II have these traces; however, notice that here 2 > 0, so the graph is [.
(¢) f(z,y) = In(z* + y*). The traceinz = 0 is » —

Iny?, and the trace iny =0is 2 = Inz2. The level curves of f ar¢

. P is i
In(z’+y?) =k & *+y?=¢*a family of circles. In addition, f is large negative when 22 + y? is small, 50 this
graph 1V.
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SECTION 14,4
(2,¥) = €08 V&% + 42, The trce ip T =(;
d)f =052 =
( 555 \/372 = cos |
. = cosVz? = cos |z|

COs v ‘ £

FUNCTIONS oF SEVERAL VARIABLES O 383

Ul = 3 .
Ul = cos Y, and the trace in y=0is

a family of cire) W)= Do e 2
) 8 Circles, so thig Is '

graph v,
@ f y) = |2yl The trace in z = is 2

A+t = (5 +nr)’

=0, and the trace in y = 152 =
(0 f(2.y) = cos(@y). The trace in = g i »

0, 50 it must be graph V1.
~=cos0 =1

»and the trace i Y=0is
races match both graphs I and || Here

= 1. As mentioned in part (b), these
Z can be negative, so the graph is 11, (Also p

. . otice that the trace in 7 = 1is
~ = oS Y, and the trace my=1lisz = cos.)

. The point (—3,3) lies between the leve] curves with z-valyes 50 and 60, Sin

ce the point is a little closer to the level curve with
» = 60, we estimate that f(—3,3) x 56 Tpe point -

(3,~2)

appears to be just about halfway between the level curves with
--values 30 and 40, so we estimate f(3,-2)

~ 35. The graph rises as we approach the origin, gradually from above, steeply
from below.

» and since C appears to be located about
one-fourth the distance from the 1012 mb isobar to the 1016 mb isobar, we estimate the pressure at Chicago to be about

1013 mb. N lies very close to a level curve with pressure 1012 mb so we estimate the pressure at Nashville to be
approximately

1012 mb. S appears to be Just about halfway between level curves with pressures 1008 and 1012 mb, so we
estimate the pressure at San Francisco to be about 1010 mb. V lies close to a level curve with pressure 1016 mb but we
can’t see a level curve to its left so it is more difficult to make an accurate estimate. There are lower pressures to the right
of V-and V is a short distance to the left of the level curve with pressure 1016 mb, so we might estimate that the pressure at

Vancouver is about 1017 mb.

(b) Winds are stronger where the isobars are closer together (see Figure 13), and the level curves are closer near S than at the
other locations, so the winds were strongest at San Francisco.

3. The point (160 10), corresponding to day 160 and a depth of 10 m, lies between the isothermals with temperature values

of 8 and 12°C. Since the point appears to be located about three-fourths the distance from the 8°C isothermal to the 12°C
isothermal, we estimate the temperature at that point to be approximately 11°C. The point (180, 5) lies between the 16 and

imate the temperature there to be about 19.5°C.
20°Cisothermals, very close to the 20°C level curve, so we estimate p

WE start m fac the origin increase at a
3. If we start at the origin and move along the z-axis, for example, the z-values of a cone centered at the orig
' € origin

id wi origin, on the other hand,
constant rat, 1d expect its level curves to be equally spaced. A pacaboloil walt eesie fherorlg
rate, so we would e .
’ . e r away. Thus, we would expect its level
has z-values hich change slowly near the origin and more quickly as we move farthe y
) UCRSIEE ; igin. Therefore contour map I must
Curve he orie: b d more widely apart than those farther from the origin.
§ near the origin to be space

ne.
correspond to the paraboloid, and contour map I the co

_ in is quite steep. At B, the level curves are much
3. Near 4 the level are very close together, indicating that the terrain is q
» the level curves

Imost flat.
than near A, perhaps a
farther apart, so we would expect the terrain to be much less steep

: G oy e
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388 O CHAPTER14 PARTIAL DERIVATIVES

8. f(z,y) = zy® - yo’

The traces parallel to either the
yz-plane or the rz-plane are cubic

curves.

60. f(x,y) = coszx cosy

The traces parallel to either the

yz- or zz-plane are cosine curves
with amplitudes that vary

fromOto I.

61. z =sin(zy) (@C (b)II
Reasons: This function is periodic in both  and y, and the function is the same when x is interchanged with y, so its graph s

symmetric about the plane y = z. In addition, the function is 0 along the z- and y-axes. These conditions are satisfied only by

Cand IL

62. z =e"cosy (a) A (b) IV
Reasons: This function is periodic in y but not z, a condition satisfied only by A and IV. Also, note that traces inz = kar

cosine curves with amplitude that increases as z increases.

63. - =sin(zr—y) (@F (b)I
Reasons: This function is periodic in both z and y but is constant along the lines y = = + k, a condition satisfied only

by F and L.
64. z = sinr —siny (a) E (b) 111
. . o ge s suChﬂs
Reasons: This function is periodic in both z and y, but unlike the function in Exercise 63, it is not constant along lin¢s
. ) , =sind
— + + . so the contour map is I11. Also notice that traces in y = k are vertically shifted copies of the sI1¢ Wl

Y

so the graph must be E.
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SECTION 141 FUNCTIONS OF SEVERAL VARIABLES [ 389
;(l_xz)(l—yz) @B  (bVI

Reasons: This function is 0 along the lines x = 41 anq Yy = =1. The only contour map in which this could occur is V1. Also

in the x2-plane is t r = .
pote that the trace in the x2-plane is the parabola » = 1 — 32 zpq the trace in the yz-plane is the parabola z = 1 — 42, so the
h is B-
grap

r—Y @D (dV
6 =TT+

Reasons: This function is not periodic, ruling out the graphs in A, C, E, and F. Also, the values of z approach 0 as we use

points farther from the origin. The only graph that shows this behavior is D, which corresponds to V.

gk=x+3yt 52 is a family of parallel planes with normal vector (1,3,5).
a k= 243+ 52 is a family of ellipsoids for k > 0 and the origin for k = 0.

g9, Equations for the level surfaces are k = y® + 2% Fork > 0, we have a family of circular cylinders with axis the z-axis and

radius \ﬁc- When & = 0 the level surface is the z-axis. (There are no level surfaces for k < 0.)

1. Equations for the level surfaces are ° — y* — 2% = k. For k = 0, the equation becomes y + z> = = and the surface is a
right circular cone with vertex the origin and axis the z-axis. For & > 0, we have a family of hyperboloids of two sheets with

axis the z-axis, and for k < 0, we have a family of hyperboloids of one sheet with axis the z-axis.
M. (a) The graph of g is the graph of f shifted upward 2 units.

(b) The graph of g is the graph of f stretched vertically by a factor of 2.

(c) The graph of g is the graph of f reflected about the xy-plane.

(d) The graph of g(x,y) = —f(z, y) + 2 is the graph of f reflected about the zy-plane and then shified upward 2 units.
12. (a) The graph of g is the graph of f shifted 2 units in the positive z-direction.

(b) The graph of g is the graph of f shified 2 units in the negative y-direction.

(c) The graph of g is the graph of f shifted 3 units in the negative 2-direction and 4 units in the positive y-direction.

B flz,y) = 3z — 2% — 49y — 102y =

|
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Three-dimensional view Front view

[continued]
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