THE PERSON AND THE PERSON AS IN COLUMN TO SEE

24. The vector $-5\mathbf{i} + 3\mathbf{j} - \mathbf{k}$ has length $|-5\mathbf{i} + 3\mathbf{j} - \mathbf{k}| = \sqrt{(-5)^2 + 3^2 + (-1)^2} = \sqrt{35}$, so by Equation 4 the unit vector

with the same direction is $\frac{1}{\sqrt{35}}(-5\mathbf{i}+3\mathbf{j}-\mathbf{k}) = -\frac{5}{\sqrt{35}}\mathbf{i}+\frac{3}{\sqrt{35}}\mathbf{j}-\frac{1}{\sqrt{35}}\mathbf{k}.$

From the figure we see that $\tan \theta = \frac{6}{8} = \frac{3}{4}$, so $\theta = \tan^{-1} \left(\frac{3}{4}\right) \approx 36.9^{\circ}$.

 $\overrightarrow{AC} = \frac{1}{3}\overrightarrow{AB} \text{ and } \overrightarrow{BC} = \frac{2}{3}\overrightarrow{BA}. \ \mathbf{c} = \overrightarrow{OA} + \overrightarrow{AC} = \mathbf{a} + \frac{1}{3}\overrightarrow{AB} \quad \Rightarrow \quad \overrightarrow{AB} = 3\mathbf{c} - 3\mathbf{a}. \ \mathbf{c} = \overrightarrow{OB} + \overrightarrow{BC} = \overrightarrow{OA} + \frac{2}{3}\overrightarrow{BA} \quad \Rightarrow$

 $\overrightarrow{BA} = \frac{3}{2}\mathbf{c} - \frac{3}{2}\mathbf{b}. \overrightarrow{BA} = -\overrightarrow{AB}, \text{ so } \frac{3}{2}\mathbf{c} - \frac{3}{2}\mathbf{b} = 3\mathbf{a} - 3\mathbf{c} \iff \mathbf{c} + 2\mathbf{c} = 2\mathbf{a} + \mathbf{b} \iff \mathbf{c} = \frac{2}{3}\mathbf{a} + \frac{1}{3}\mathbf{b}.$

46. Draw a, b, and c emanating from the origin. Extend a and b to form lines A and B, and draw lines A' and B' parallel to these two lines through the terminal point of c. Since a and b are not parallel, A and B' must meet (at P), and A' and B must also meet (at Q). Now we see that $\overrightarrow{OP} + \overrightarrow{OQ} = \mathbf{c}$, so if

$$s = \frac{|\overrightarrow{OP}|}{|\mathbf{a}|}$$
 (or its negative, if a points in the direction opposite \overrightarrow{OP}) and $t = \frac{|\overrightarrow{OQ}|}{|\mathbf{b}|}$ (or its negative, as in the diagram), then $\mathbf{c} = s\mathbf{a} + t\mathbf{b}$, as required.

Argument using components: Since a, b, and c all lie in the same plane, we can consider them to be vectors in two dimensions. Let $a = \langle a_1, a_2 \rangle$, $b = \langle b_1, b_2 \rangle$, and $c = \langle c_1, c_2 \rangle$. We need $sa_1 + tb_1 = c_1$ and $sa_2 + tb_2 = c_2$. Multiplying the first equation by a_2 and the second by a_1 and subtracting, we get $t = \frac{c_2a_1 - c_1a_2}{b_2a_1 - b_1a_2}$. Similarly $s = \frac{b_2c_1 - b_1c_2}{b_2a_1 - b_1a_2}$. Since $a \neq 0$ and $b \neq 0$ and a is not a scalar multiple of b, the denominator is not zero.

- 1. (a) a · b is a scalar, and the dot product is defined only for vectors, so $(\mathbf{a} \cdot \mathbf{b}) \cdot \mathbf{c}$ has no meaning.
 - (b) $(a \cdot b) c$ is a scalar multiple of a vector, so it does have meaning.
 - (c) Both $|\mathbf{a}|$ and $\mathbf{b} \cdot \mathbf{c}$ are scalars, so $|\mathbf{a}|$ $(\mathbf{b} \cdot \mathbf{c})$ is an ordinary product of real numbers, and has meaning.
 - (d) Both a and b + c are vectors, so the dot product $a \cdot (b + c)$ has meaning.
 - (e) $\mathbf{a} \cdot \mathbf{b}$ is a scalar, but \mathbf{c} is a vector, and so the two quantities cannot be added and $\mathbf{a} \cdot \mathbf{b} + \mathbf{c}$ has no meaning.
- (f) $|\mathbf{a}|$ is a scalar, and the dot product is defined only for vectors, so $|\mathbf{a}| \cdot (\mathbf{b} + \mathbf{c})$ has no meaning.

$$a \cdot b = \langle 5, -2 \rangle \cdot \langle 3, 4 \rangle = (5)(3) + (-2)(4) = 15 - 8 = 7$$

-, - | u

5. $\mathbf{a} \cdot \mathbf{b} = \langle 4, 1, \frac{1}{4} \rangle \cdot \langle 6, -3, -8 \rangle = (4)(6) + (1)(-3) + (\frac{1}{4})(-8) = 19$

8. $\mathbf{a} \cdot \mathbf{b} = (3\mathbf{i} + 2\mathbf{j} - \mathbf{k}) \cdot (4\mathbf{i} + 5\mathbf{k}) = (3)(4) + (2)(0) + (-1)(5) = 7$

9 Ry Theorem 2 - 1

 $300 \sqrt{3} = 14$

 $\mathbf{a} \cdot \mathbf{b} = (1)(0) + (-4)(2) + (1)(-2) = -10$. From Corollary 6, we have $\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|} = \frac{10}{3\sqrt{2} \cdot 2\sqrt{2}}$ the angle between \mathbf{a} and \mathbf{b} is $\theta = \cos^{-1}(-\frac{5}{6}) \approx 146^{\circ}$.

17. $|\mathbf{a}| = \sqrt{1^2 + (-4)^2 + 1^2} = \sqrt{18} = 3\sqrt{2}$, $|\mathbf{b}| = \sqrt{0^2 + 2^2 + (-2)^2} = \sqrt{8} = 2\sqrt{2}$, and

- 23. (a) $\mathbf{a} \cdot \mathbf{b} = (9)(-2) + (3)(6) = 0$, so a and b are orthogonal (and not parallel).
 - (b) $\mathbf{a} \cdot \mathbf{b} = (4)(3) + (5)(-1) + (-2)(5) = -3 \neq 0$, so a and b are not orthogonal. Also, since a is not a scalar multiple of b, a and b are not parallel.
 - (c) $\mathbf{a} \cdot \mathbf{b} = (-8)(6) + (12)(-9) + (4)(-3) = -168 \neq 0$, so \mathbf{a} and \mathbf{b} are not orthogonal. Because $\mathbf{a} = -\frac{4}{3}\mathbf{b}$, \mathbf{a} and \mathbf{b} are parallel.
 - (d) $\mathbf{a} \cdot \mathbf{b} = (3)(5) + (-1)(9) + (3)(-2) = 0$, so \mathbf{a} and \mathbf{b} are orthogonal (and not parallel).

31. The curves $y = x^2$ and $y = x^3$ meet when $x^2 = x^3 \Leftrightarrow x^3 - x^2 = 0 \Leftrightarrow x^2(x-1) = 0 \Leftrightarrow x = 0, x = 1$. We have $\frac{d}{dx}x^2 = 2x$ and $\frac{d}{dx}x^3 = 3x^2$, so the tangent lines of both curves have slope 0 at x = 0. Thus the angle between the curves is

 0° at the point (0,0). For x=1, $\frac{d}{dx} x^2 \Big|_{x=1} = 2$ and $\frac{d}{dx} x^3 \Big|_{x=1} = 3$ so the tangent lines at the point (1,1) have slopes 2 and

3. Vectors parallel to the tangent lines are $\langle 1, 2 \rangle$ and $\langle 1, 3 \rangle$, and the angle θ between them is given by

$$\cos \theta = \frac{\langle 1, 2 \rangle \cdot \langle 1, 3 \rangle}{|\langle 1, 2 \rangle| \ |\langle 1, 3 \rangle|} = \frac{1+6}{\sqrt{5}\sqrt{10}} = \frac{7}{5\sqrt{2}}$$

Thus $\theta = \cos^{-1}\left(\frac{7}{5\sqrt{2}}\right) \approx 8.1^{\circ}$.

projection of **b** onto **a** is $\text{proj}_{\mathbf{a}} \mathbf{b} = -\frac{7}{\sqrt{19}} \frac{\mathbf{a}}{|\mathbf{a}|} = -\frac{7}{\sqrt{19}} \cdot \frac{1}{\sqrt{19}} (3\mathbf{i} - 3\mathbf{j} + \mathbf{k}) = -\frac{7}{19} (3\mathbf{i} - 3\mathbf{j} + \mathbf{k}) = -\frac{21}{19} \mathbf{i} + \frac{21}{19} \mathbf{j} - \frac{7}{19} \mathbf{k}$

43. $|\mathbf{a}| = \sqrt{9+9+1} = \sqrt{19}$ so the scalar projection of **b** onto **a** is comp_a $\mathbf{b} = \frac{\mathbf{a} - \mathbf{a}}{|\mathbf{a}|} = \frac{\mathbf{a} - \mathbf{a}}{\sqrt{19}} = \frac{\mathbf{a}}{\sqrt{19}} = \frac{\mathbf{a}}{\sqrt{19}} = \frac{\mathbf{a} - \mathbf{a}}{\sqrt{19}} = \frac{\mathbf{a}}{\sqrt{19}} = \frac{\mathbf{a}}{\sqrt{$

54. $(\mathbf{r} - \mathbf{a}) \cdot (\mathbf{r} - \mathbf{b}) = 0$ implies that the vectors $\mathbf{r} - \mathbf{a}$ and $\mathbf{r} - \mathbf{b}$ are orthogonal.

From the diagram (in which A, B and R are the terminal points of the vectors), we see that this implies that R lies on a sphere whose diameter is the line from

A to B. The center of this circle is the midpoint of AB, that is,

$$\frac{1}{2}(\mathbf{a}+\mathbf{b}) = \langle \frac{1}{2}(a_1+b_1), \frac{1}{2}(a_2+b_2), \frac{1}{2}(a_3+b_3) \rangle$$
, and its radius is

$$\frac{1}{2}|\mathbf{a}-\mathbf{b}|=\frac{1}{2}\sqrt{(a_1-b_1)^2+(a_2-b_2)^2+(a_3-b_3)^2}.$$

Or: Expand the given equation, substitute $\mathbf{r} \cdot \mathbf{r} = x^2 + y^2 + z^2$ and complete the squares.

64. If the vectors $\mathbf{u} + \mathbf{v}$ and $\mathbf{u} - \mathbf{v}$ are orthogonal then $(\mathbf{u} + \mathbf{v}) \cdot (\mathbf{u} - \mathbf{v}) = 0$. But

$$(\mathbf{u} + \mathbf{v}) \cdot (\mathbf{u} - \mathbf{v}) = (\mathbf{u} + \mathbf{v}) \cdot \mathbf{u} - (\mathbf{u} + \mathbf{v}) \cdot \mathbf{v}$$

$$= \mathbf{u} \cdot \mathbf{u} + \mathbf{v} \cdot \mathbf{u} - \mathbf{u} \cdot \mathbf{v} - \mathbf{v} \cdot \mathbf{v}$$
by Property 3 of the dot product
$$= \mathbf{u} \cdot \mathbf{u} + \mathbf{v} \cdot \mathbf{u} - \mathbf{u} \cdot \mathbf{v} - \mathbf{v} \cdot \mathbf{v}$$
by Property 3

$$= \mathbf{u} \cdot \mathbf{u} + \mathbf{v} \cdot \mathbf{u} - \mathbf{u}$$

$$= |\mathbf{u}|^2 + \mathbf{u} \cdot \mathbf{v} - \mathbf{u} \cdot \mathbf{v} - |\mathbf{v}|^2$$
 by Properties 1 and 2
$$= |\mathbf{u}|^2 - |\mathbf{v}|^2$$

Thus
$$|\mathbf{u}|^2 - |\mathbf{v}|^2 = 0 \Rightarrow |\mathbf{u}|^2 = |\mathbf{v}|^2 \Rightarrow |\mathbf{u}| = |\mathbf{v}| \text{ [since } |\mathbf{u}|, |\mathbf{v}| \ge 0\text{]}.$$

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 3 & 3 & -3 \\ 3 & -3 & 3 \end{vmatrix} = \begin{vmatrix} 3 & -3 \\ -3 & 3 \end{vmatrix} \mathbf{i} - \begin{vmatrix} 3 & -3 \\ 3 & 3 \end{vmatrix} \mathbf{j} + \begin{vmatrix} 3 & 3 \\ 3 & -3 \end{vmatrix} \mathbf{k}$$

 $= (9-9)\mathbf{i} - [9-(-9)]\mathbf{j} + (-9-9)\mathbf{k} = -18\mathbf{j} - 18\mathbf{k}$

Since
$$(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{a} = (-18\mathbf{j} - 18\mathbf{k}) \cdot (3\mathbf{i} + 3\mathbf{j} - 3\mathbf{k}) = 0 - 54 + 54 = 0$$
, $\mathbf{a} \times \mathbf{b}$ is orthogonal to \mathbf{a} .

Since $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{b} = (-18\mathbf{j} - 18\mathbf{k}) \cdot (3\mathbf{i} - 3\mathbf{j} + 3\mathbf{k}) = 0 + 54 - 54 = 0$, $\mathbf{a} \times \mathbf{b}$ is orthogonal to \mathbf{b} .

6.
$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ t & \cos t & \sin t \\ 1 & -\sin t & \cos t \end{vmatrix} = \begin{vmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{vmatrix} \mathbf{i} - \begin{vmatrix} t & \sin t \\ 1 & \cos t \end{vmatrix} \mathbf{j} + \begin{vmatrix} t & \cos t \\ 1 & -\sin t \end{vmatrix} \mathbf{k}$$

$$= [\cos^2 t - (-\sin^2 t)] \mathbf{i} - (t\cos t - \sin t) \mathbf{j} + (-t\sin t - \cos t) \mathbf{k} = \mathbf{i} + (\sin t - t\cos t) \mathbf{j} + (-t\sin t - \cos t) \mathbf{k}$$
Since

Since
$$(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{a} = [\mathbf{i} + (\sin t - t \cos t)\mathbf{j} + (-t \sin t - \cos t)\mathbf{k}] \cdot (t\mathbf{i} + \cos t\mathbf{j} + \sin t\mathbf{k})$$

$$= t + \sin t \cos t - t \cos^2 t - t \sin^2 t - \sin t \cos t$$

$$= t - t (\cos^2 t + \sin^2 t) = 0$$

a x b is orthogonal to a.

Since

$$(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{b} = [\mathbf{i} + (\sin t - t \cos t)\mathbf{j} + (-t \sin t - \cos t)\mathbf{k}] \cdot (\mathbf{i} - \sin t\mathbf{j} + \cos t\mathbf{k})$$

$$= 1 - \sin^2 t + t \sin t \cos t - t \sin t \cos t - \cos^2 t$$

$$= 1 - (\sin^2 t + \cos^2 t) = 0$$

A STATE OF THE PARTY OF THE PAR

The state of the second state of the second state of the second s a x b is orthogonal to b.

- 13. (a) Since $\mathbf{b} \times \mathbf{c}$ is a vector, the dot product $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})$ is meaningful and is a scalar.
 - (b) $\mathbf{b} \cdot \mathbf{c}$ is a scalar, so $\mathbf{a} \times (\mathbf{b} \cdot \mathbf{c})$ is meaningless, as the cross product is defined only for two vectors.
 - (c) Since $\mathbf{b} \times \mathbf{c}$ is a vector, the cross product $\mathbf{a} \times (\mathbf{b} \times \mathbf{c})$ is meaningful and results in another vector.
 - (d) $\mathbf{b} \cdot \mathbf{c}$ is a scalar, so the dot product $\mathbf{a} \cdot (\mathbf{b} \cdot \mathbf{c})$ is meaningless, as the dot product is defined only for two vectors.
 - (e) Since $(\mathbf{a} \cdot \mathbf{b})$ and $(\mathbf{c} \cdot \mathbf{d})$ are both scalars, the cross product $(\mathbf{a} \cdot \mathbf{b}) \times (\mathbf{c} \cdot \mathbf{d})$ is meaningless.
 - (f) $\mathbf{a} \times \mathbf{b}$ and $\mathbf{c} \times \mathbf{d}$ are both vectors, so the dot product $(\mathbf{a} \times \mathbf{b}) \cdot (\mathbf{c} \times \mathbf{d})$ is meaningful and is a scalar.

directed out of the page.

14. Using Theorem 9, we have $|\mathbf{u} \times \mathbf{v}| = |\mathbf{u}| |\mathbf{v}| \sin \theta = (4)(5) \sin 45^\circ = 20 \cdot \frac{\sqrt{2}}{2} = 10 \sqrt{2}$. By the right-hand rule, $\mathbf{u} \times \mathbf{v}$ is

25.
$$\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = \mathbf{a} \times \langle b_1 + c_1, b_2 + c_2, b_3 + c_3 \rangle$$

$$= \langle a_2(b_3+c_3) - a_3(b_2+c_2), a_3(b_1+c_1) - a_1(b_3+c_3), a_1(b_2+c_2) - a_2(b_1+c_1) \rangle$$

$$= \langle a_2b_3 + a_2c_3 - a_3b_2 - a_3c_2, a_3b_1 + a_3c_1 - a_1b_3 - a_1c_3, a_1b_2 + a_1c_2 - a_2b_1 - a_2c_1 \rangle$$

$$= \langle (a_2b_3 - a_3b_2) + (a_2c_3 - a_3c_2), (a_3b_1 - a_1b_3) + (a_3c_1 - a_1c_3), (a_1b_2 - a_2b_1) + (a_1c_2 - a_2c_1) \rangle$$

$$= \langle a_2b_3 - a_3b_2, a_3b_1 - a_1b_3, a_1b_2 - a_2b_1 \rangle + \langle a_2c_3 - a_3c_2, a_3c_1 - a_1c_3, a_1c_2 - a_2c_1 \rangle$$

$$= (\mathbf{a} \times \mathbf{b}) + (\mathbf{a} \times \mathbf{c})$$

Solution,

The distance between a point and a line is the length of the perpendicular from the point to the line, here $|\overrightarrow{PS}| = d$. But referring to triangle PQS, $d = |\overrightarrow{PS}| = |\overrightarrow{QP}| \sin \theta = |\mathbf{b}| \sin \theta$. But θ is the angle between $|\overrightarrow{QP}| = \mathbf{b}$ and $|\overrightarrow{QR}| = \mathbf{a}$. Thus by Theorem 9, $\sin \theta = \frac{|\mathbf{a} \times \mathbf{b}|}{|\mathbf{a}| |\mathbf{b}|}$

and so
$$d = |\mathbf{b}| \sin \theta = \frac{|\mathbf{b}| |\mathbf{a} \times \mathbf{b}|}{|\mathbf{a}| |\mathbf{b}|} = \frac{|\mathbf{a} \times \mathbf{b}|}{|\mathbf{a}|}.$$

(b)
$$\mathbf{a}=\overrightarrow{QR}=\langle -1,-2,-1\rangle$$
 and $\mathbf{b}=\overrightarrow{QP}=\langle 1,-5,-7\rangle$. Then

$$\mathbf{a} \times \mathbf{b} = \langle (-2)(-7) - (-1)(-5), (-1)(1) - (-1)(-7), (-1)(-5) - (-2)(1) \rangle = \langle 9, -8, 7 \rangle.$$

Thus the distance is
$$d = \frac{|\mathbf{a} \times \mathbf{b}|}{|\mathbf{a}|} = \frac{1}{\sqrt{6}} \sqrt{81 + 64 + 49} = \sqrt{\frac{194}{6}} = \sqrt{\frac{97}{3}}$$
.

- 53. (a) No. If $\mathbf{a} \cdot \mathbf{b} = \mathbf{a} \cdot \mathbf{c}$, then $\mathbf{a} \cdot (\mathbf{b} \mathbf{c}) = 0$, so a is perpendicular to $\mathbf{b} \mathbf{c}$, which can happen if $\mathbf{b} \neq \mathbf{c}$. For example, let $\mathbf{a} = \langle 1, 1, 1 \rangle$, $\mathbf{b} = \langle 1, 0, 0 \rangle$ and $\mathbf{c} = \langle 0, 1, 0 \rangle$.
 - (b) No. If $\mathbf{a} \times \mathbf{b} = \mathbf{a} \times \mathbf{c}$ then $\mathbf{a} \times (\mathbf{b} \mathbf{c}) = \mathbf{0}$, which implies that \mathbf{a} is parallel to $\mathbf{b} \mathbf{c}$, which of course can happen if $\mathbf{b} \neq \mathbf{c}$.
 - (c) Yes. Since $\mathbf{a} \cdot \mathbf{c} = \mathbf{a} \cdot \mathbf{b}$, \mathbf{a} is perpendicular to $\mathbf{b} \mathbf{c}$, by part (a). From part (b), \mathbf{a} is also parallel to $\mathbf{b} \mathbf{c}$. Thus since $\mathbf{a} \neq \mathbf{0}$ but is both parallel and perpendicular to $\mathbf{b} \mathbf{c}$, we have $\mathbf{b} \mathbf{c} = \mathbf{0}$, so $\mathbf{b} = \mathbf{c}$.

$$x = 2\sin\frac{\pi}{2}\cos\frac{\pi}{2} = 2\cdot 1\cdot 0 = 0, y = 2\sin\frac{\pi}{2}\sin\frac{\pi}{2} = 2\cdot 1\cdot 1 = 2,$$

of the last transfer manifes of temperature and of the second transfer of the last transfer of

 $z = 2\cos\frac{\pi}{2} = 2\cdot 0 = 0$ so the point is (0,2,0) in rectangular coordinates.

of this this balow a by all beaution to be block to a

$$\left(4, -\frac{\pi}{4}, \frac{\pi}{3}\right)$$

$$4 \frac{\pi}{3}$$

$$x = 4\sin\frac{\pi}{3}\cos\left(-\frac{\pi}{4}\right) = 4\cdot\frac{\sqrt{3}}{2}\cdot\frac{\sqrt{2}}{2} = \sqrt{6},$$

$$y = 4\sin\frac{\pi}{3}\sin\left(-\frac{\pi}{4}\right) = 4\left(\frac{\sqrt{3}}{2}\right)\left(-\frac{\sqrt{2}}{2}\right) = -\sqrt{6},$$

$$z = 4\cos\frac{\pi}{3} = 4\cdot\frac{1}{2} = 2$$
 so the point is $(\sqrt{6}, -\sqrt{6}, 2)$ in rectangular coordinates.

4. (a)
$$\rho = \sqrt{x^2 + y^2 + z^2} = \sqrt{1 + 0 + 3} = 2$$
, $\cos \phi = \frac{z}{\rho} = \frac{\sqrt{3}}{2} \implies \phi = \frac{\pi}{6}$, and $\cos \theta = \frac{x}{\rho \sin \phi} = \frac{1}{2 \sin(\pi/6)} = 1 \implies \phi = \frac{\pi}{6}$

$$\theta = 0$$
. Thus spherical coordinates are $\left(2, 0, \frac{\pi}{6}\right)$.

(b)
$$\rho = \sqrt{3 + 1 + 12} = 4$$
, $\cos \phi = \frac{z}{\rho} = \frac{2\sqrt{3}}{4} = \frac{\sqrt{3}}{2} \implies \phi = \frac{\pi}{6}$, and $\cos \theta = \frac{x}{\rho \sin \phi} = \frac{\sqrt{3}}{4 \sin(\pi/6)} = \frac{\sqrt{3}}{2} \implies \phi = \frac{\pi}{6}$

$$\theta = \frac{11\pi}{6}$$
 [since $y < 0$]. Thus spherical coordinates are $\left(4, \frac{11\pi}{6}, \frac{\pi}{6}\right)$.

Controlled A.E. Tight has believe to the controlled to the controlled and the controlled to the contro

7. From Equations 1 we have $z = \rho \cos \phi$, so $\rho \cos \phi = 1 \Leftrightarrow z = 1$, and the surface is the horizontal plane z = 1.

Therefore, the surface is a sphere of radius $\frac{1}{2}$ centered at $(0,0,\frac{1}{2})$.

8. $\rho = \cos \phi \implies \rho^2 = \rho \cos \phi \iff x^2 + y^2 + z^2 = z \iff x^2 + y^2 + z^2 - z + \frac{1}{4} = \frac{1}{4} \iff x^2 + y^2 + (z - \frac{1}{2})^2 = \frac{1}{4}$.