Homework 8

7.1 If \(n \) is not prime, then there are at least 2 prime factors \(p, q \) of \(n \) s.t. \(n \geq pq \).

Suppose that all prime factors of \(n \) are greater than \(\sqrt{n} \).

Then \(n > \sqrt{n} \cdot \sqrt{n} = n \), \(n > n \) is a contradiction.

Thus, \(n \) has a prime factor \(p < \sqrt{n} \).

7.2 \(n \neq 1 \), \(n \) and \(n+2 \) are relatively prime if \(n \) is odd.

1, 2, 15, 462, 227 are relatively prime.

and 15, 462, 1249 are relatively prime.

7.6 \(\gcd(157,7055,10872579) \)

\[\gcd(10872579, 4697976) = \gcd(4697976, 1476627) \]

\[= \gcd(1476627, 268095) = \gcd(268095, 136152) \]

\[= \gcd(136152, 4209) = \gcd(4209, 1464) = \gcd(1464, 1281) \]

\[= \gcd(1281, 183) = 183 \]

7.7 \(a \) and \(b \) are integers and \(m = \gcd(a, b) \). \(\frac{a}{m} \) and \(\frac{b}{m} \) are relatively prime integers.

If \(\frac{a}{m} \) and \(\frac{b}{m} \) are not relatively prime, \(\exists \ P > 1 \ s.t \ P \mid \frac{a}{m} \) and \(P \mid \frac{b}{m} \) (P62).

Thus, \(\frac{a}{m} \) and \(\frac{b}{m} \) are relatively prime.

8 \(a = \prod_{n=1}^{\infty} p_n^{n_n}, b = \prod_{n=1}^{\infty} p_n^{m_n} \), where \(\forall n \in \mathbb{N} \) and \(p_n \) is prime.

\(t_n = \min(n_n, m_n) \), then \(\gcd(a, b) = \prod_{n=1}^{\infty} p_n^{t_n} \).

First, \(\prod_{n=1}^{\infty} p_n^{t_n} \) is a and \(\prod_{n=1}^{\infty} p_n^{t_n} b \), we have \(\prod_{n=1}^{\infty} p_n^{t_n} \leq \gcd(a, b) \).

Then, Since \(\gcd(a) \) and \(\gcd(b) \), we have \(\gcd(ab) = \prod_{n=1}^{\infty} p_n^{t_n} \), where \(\forall n \in \mathbb{N} \).

Otherwise, \(\gcd(ab) = \prod_{n=1}^{\infty} p_n^{t_n} a \) or \(\prod_{n=1}^{\infty} p_n^{t_n} b \).

Then, \(\gcd(ab) \mid \prod_{n=1}^{\infty} p_n^{t_n} \) or \(\prod_{n=1}^{\infty} p_n^{t_n} = \gcd(ab) \mid \prod_{n=1}^{\infty} p_n^{t_n} \).

\(a \equiv 1 \mod{6} \), \(gcd(6, b) = \prod_{n=1}^{\infty} p_n^{t_n} \)
7.14 \(\mathbb{Z}_p = \{0, 1, 2, 3, \ldots, p-1\} \)

The roots of \(x^{p-1} \equiv 0 \) in \(\mathbb{Z}_p \) are the \(x \) s.t. \(x^{p-1} \equiv 1 \mod p \).

Thus they are \(1, 2, 3, \ldots, p-1 \) by Fermat's Theorem.

2. \(p \) is an odd prime, thus \(\frac{p-1}{2} \) is an integer.

\(\mathbb{Z}_p = \{0, 1, 2, \ldots, p-1\} \).

Since \(p \) is an odd prime, we have \(a^{p-1} \mod p = 1 \).

Since \(a^{p-1} = \alpha^{\frac{p-1}{2}}, \quad \alpha \in \mathbb{Z}_p \)

we have \((a^{\frac{p-1}{2}} \mod p)(a^{\frac{p-1}{2}} \mod p) = a^{p-1} \mod p \equiv 1 \mod p \)

as a result, \((a^{\frac{p-1}{2}} + 1)(a^{\frac{p-1}{2}} - 1) \mod p \equiv 0 \mod p \)

and \(\left[a \right]^{\frac{p-1}{2}} = [1] \) or \(\left[a \right]^{\frac{p-1}{2}} = [-1] = [p-1] \).

\(\frac{p-1}{2} \) of them satisfy (X) and \(\frac{p-1}{2} \) satisfy (XX).

Suppose \(\alpha \) satisfy (X) and \(\beta \) of them satisfy (XX), \(\alpha + \beta = p-1 \).

Let them \(\frac{\alpha + \beta + 1}{2} \).

Then, let \(k \) be an element of \(\mathbb{Z}_p \) elements \(\{k_1, k_2, \ldots, k_b\} \)

Let the \(k \) elements be \(\{k_1, k_2, \ldots, k_a\} \)

Then \(\{k_1, k_2, \ldots, k_b\} \) are different elements s.t. \(k_i^{\frac{p-1}{2}} \equiv -1 \mod p \)

So \(a \leq b \). Similarly, \(\{k_1, k_2, \ldots, k_b\} \) are \(b \) elements s.t. \(k_i^{\frac{p-1}{2}} \equiv 1 \mod p \).

So \(b \leq a \). \(\Rightarrow a = b = \frac{p-1}{2} \).

28.3 Without loss of generality, we can assume that \(a \in \{1, 2, \ldots, p-1\} \).

According to Fermat's little theorem, we have

\[a^{p-1} \equiv 1 \mod p \]

This means \((a, a^{p-2}) \equiv 1 \mod p \)

Thus, \(a^{p-2} \mod p \) is a reciprocal modulo \(p \) for \(a \).

28.4 (a) Integer Reciprocals (b) they are (c) according to (a) and (b),

\[1 \quad 1 \quad \frac{1}{3} \quad \frac{1}{4} \quad \frac{1}{5} \quad \frac{1}{6} \]

\[1, 2, \ldots, p-1 \]

\((p-1)! \equiv 1 \cdot 2 \cdots (p-1) \equiv p-1 \mod p \)

\(\equiv -1 \mod p \)