Homework 4

(a) \(R \) should be a linear ordering because for any \(x, y \in P \) and \(m \in \mathbb{N} \), \(xRy \) is true or \(yRx \) is true. One element is not smaller than the other. \(mRy \) is true or \(uRM \text{ is true (for any two elements chosen in the set.} \)

Also, \(P \) is a partial ordering. Therefore, \(P \) is a linear ordering.

(b) (i) For \((a) \), the sentence follows:

For any \(x \) in the set \(X \), there exists an element \(y \) that is also in \(X \)

such that \(y \) is not smaller than \(x \).

A sentence about \(\mathbb{N} \): For any positive integer \(x \), there exists a positive integer \(y \) such that \(y \) is not smaller than \(x \).

A sentence about \(P \): For any population of the United States, there exists a population of the United States such that \(y \) is not smaller than \(x \).

(ii) For \((b) \), the sentence is

There exists \(y \) in the set \(X \) such that for any \(x \) in the set \(X \), \(y \) is not smaller than \(x \).

A sentence about \(\mathbb{N} \): There exists a positive integer \(y \) that is not smaller than any positive integer \(x \). (\(\star \))

A sentence about \(P \): There exists a population of the US \(y \) such that it is not smaller than any population of the US \(x \).

(iii) \(\star \) is not possible. Suppose that we can find such an integer \(y \).

Then, \(y+1 \) is still a positive integer and \(y+1 > y \), which contradicts with statement that \(y \) is not smaller than any positive integer.

(c) The two sentences are equivalent.
2.5. PQR = \angle 1 + \angle 2 + \angle 3

(i) If the sum of the angles of a polygon is not \(180 \times (n-2) \), then it's not a triangle.

(ii) If a function doesn't attain its maximum on the interval \(0 \rightarrow 1 \), then it's not a continuous function on the interval \([0, 1] \).

(iii) If there is a thing I don't say, I don't mean it.

3.17. Converse

3.13. Compositae

3.14. Negation:

(a) \(\neg (x \rightarrow y) \)

(b) \(\neg (x \land y) \)

(c) \(\neg (x \lor y) \)

3.10. \(x \land 2 = 0 \)

\(x = n \)

3.9. Let \(f \) be a formula in one variable

Universe \(U = \{\)