ON THE NUMBER OF PRIMES p FOR WHICH $p+a$ HAS A LARGE PRIME FACTOR

MORRIS GOLDFELD

1. Introduction. For any fixed integer a and real variables x, y with $y<x$ let $N_{a}(x, y)$ denote the number of primes $p \leqslant x$ for which $p+a$ has at least one prime factor greater than y. As an elementary application of the following deep theorem of Bombieri on arithmetic progressions,

Theorem (Bombieri, [1]). For any constant $A>0$, there exists a positive constant B such that if $M=x^{\frac{1}{2}} l^{-B}$ with $l=\log x$, then for $x>1$

$$
\sum_{m \leqslant M} \max _{(a, m)=1}\left|\Pi(x ; m, a)-\frac{\operatorname{Li}(x)}{\phi(m)}\right| \ll x l^{-A},
$$

where $\dagger \Pi(x ; m, a)$ denotes the number of primes less than x which are congruent to $a \bmod m$;
we shall prove the following theorem:
Theorem 1. Let a be any fixed integer and let $x>e$. We then have

$$
\sum_{\substack{p \leqslant x}} \sum_{\substack{x^{x}<q \leqslant x \\ q \mid p+a}} \log q=x / 2+o\left(\frac{x \log \log x}{\log x}\right)
$$

where the double sum is taken over primes p and q.
The transition from Theorem 1 to information about $N_{a}\left(x, x^{\frac{1}{2}}\right)$ is relatively easy, for

$$
\begin{aligned}
N_{a}\left(x, x^{\frac{1}{2}}\right) & \geqslant \sum_{\substack{p \leqslant x-a}} \sum_{\substack{x^{2}<q \leqslant x \\
q \mid p^{2}+a}} 1=\sum_{p \leq x} \sum_{\substack{x^{2}<\dot{q} \leqslant x \\
q \mid p+a}} 1+O(\log x) \\
& \geqslant \frac{1}{\log x} \sum_{\substack{p \leqslant x}} \sum_{\substack{x^{ \pm}<q \leqslant x \\
q \mid p+a}} \log q+O(\log x)
\end{aligned}
$$

so that

$$
N_{a}\left(x, x^{\frac{1}{2}}\right) \geqslant \frac{1}{2} \frac{x}{\log x}+O\left(\frac{x \log \log x}{\log ^{2} x}\right) .
$$

2. Proof of Theorem 1. Let $\Lambda(n)$ denote the von Mangoldt function $\Lambda(n)=\log p$ if n is a power of the prime p, and otherwise $\Lambda(n)=0$. It follows that

$$
\begin{aligned}
\sum_{m \leqslant x} \Pi(x ; m,-a) \Lambda(m) & =\sum_{m \leqslant x} \sum_{\substack{p \leqslant x \\
m \mid p+a}} \Lambda(m)=\sum_{p \leqslant x} \sum_{\substack{m \leqslant x \\
m \mid p+a}} \Lambda(m) \\
& =\sum_{p \leqslant x} \log (p+a)+O\left(\log ^{2} x\right) \\
& =x+O(x / \log x)
\end{aligned}
$$

Consequently,

$$
\begin{equation*}
\left(\sum_{m \leqslant x^{+1}-a}+\sum_{x^{ \pm} l-c<m \leqslant x^{\ddagger}}+\sum_{x^{ \pm}<m \leqslant x}\right) \Pi(x ; m,-a) \Lambda(m)=x+O(x / \log x) \tag{1}
\end{equation*}
$$

where c is some positive constant to be determined shortly.
The first sum on the left-hand side of (1) is easily evaluated by Bombieri's theorem to give

$$
\begin{align*}
\sum_{m \leqslant x^{+1}-c} \Pi(x ; m,-a) \Lambda(m) & =\operatorname{Li}(x) \sum_{m \leqslant x^{\neq l}-c} \Lambda(m) / \phi(m)+O\left(\log x \frac{x}{\log ^{4} x}\right) \\
& =x / 2+O\left(\frac{x \log \log x}{\log x}\right) \tag{2}
\end{align*}
$$

using Mertens' result [2]

$$
\sum_{m \leqslant y} \Lambda(m) / \phi(m)=\log y+O(1)
$$

provided A (in Bombieri's theorem) is chosen $\geqslant 2$, and $c=B(A)$.
The second sum in equation (1) can also be easily evaluated by the following theorem of Brun-Titchmarsh [3]:

Theorem (Brun-Titchmarsh). Let $0<\varepsilon<1$; then if $m \leqslant x^{1-\varepsilon}$ and $(a, m)=1$,

$$
\Pi(x ; m, a) \ll \frac{x}{\phi(m) \log x},
$$

the constant implied by the \ll symbol depending at most on ε.
We obtain, using also the above theorem of Mertens,

$$
\begin{align*}
\sum_{x^{4} l^{-}-c<m \leqslant x^{\ddagger}} \Pi(x ; m,-a) \Lambda(m) & \ll \frac{x}{\log x} \sum_{x^{4} l^{-c<m}<x^{ \pm}} \Lambda(m) / \phi(m) \\
& =O\left(\frac{x \log \log x}{\log x}\right) \tag{3}
\end{align*}
$$

It therefore follows from equations (1), (2) and (3) that

$$
\begin{equation*}
\sum_{x^{ \pm}<m \leqslant x} \Pi(x ; m,-a) \Lambda(m)=x / 2+o\left(\frac{x \log \log x}{\log x}\right) . \tag{4}
\end{equation*}
$$

We are interested, however, in $\sum_{x^{ \pm}<q \leqslant x} \Pi(x ; q,-a) \log q$ where q runs over primes. We consequently split the left side of equation (4) into three parts

$$
\begin{equation*}
\left(\sum_{x^{*}<q \leqslant x}+\sum_{\substack{x^{*}<q^{k} \leqslant x^{*} \\ q \leq x^{*} \\ k>1}}+\sum_{\substack{x^{*} \leq q^{k} \leq x \\ q \leqslant x^{*} \\ k>1}}\right) \Pi\left(x ; q^{k},-a\right) \log q \tag{5}
\end{equation*}
$$

Let S_{1}, S_{2} and S_{3} denote the corresponding sums in (5). It follows by the BrunTitchmarsh theorem that

$$
\begin{align*}
S_{2} & \ll \frac{x}{\log x} \sum_{\substack{x^{*}<q^{k} \leqslant \\
q \leqslant x^{*} \\
q>x}} \Lambda\left(q^{k}\right) / q^{k} \\
& \ll \frac{x}{\log x}\left[\sum_{m \leqslant 1} \frac{\Lambda(m)}{\phi(m)}-\sum_{h \leqslant x^{\ddagger}} \frac{\log h}{h}\right] \\
& \ll \frac{x}{\log x} . \tag{6}
\end{align*}
$$

Also, since there are at most $\log x \log 2$ powers of q less than x, and

$$
\Pi\left(x ; q^{k},-a\right) \ll x^{\ddagger} \text { for } q^{k}>x^{\ddagger}
$$

we see that

The theorem follows immediately from equations (4), (5), (6) and (7).
We remark here that one can use the Brun-Titchmarsh theorem once more to prove that there exists a constant $c_{0}>0$ such that

$$
\sum_{x^{\sharp}<q \leqslant x^{\ddagger}+c_{0}} \Pi(x ; q,-a) \ll \delta / 2 \frac{x}{\log x}, \text { where } \delta<1,
$$

and after subtracting this from $N_{a}\left(x, x^{\frac{1}{2}}\right)$ one can get a non-trivial lower bound for $N_{a}\left(x, x^{r}\right)$ for $\frac{1}{2} \leqslant r \leqslant \frac{1}{2}+c_{0}$. One sees, for example, that the constant $c_{0} \approx \frac{1}{12}$ will work in this method.
3. An Application. We now apply the results of Theorem 1 to another related problem. Let $e_{a}(p)$ denote the smallest positive integer d for which $a^{d} \equiv 1 \bmod p$. We shall prove that for almost all primes p for which $p-1$ has a large prime factor q, then q also divides $e_{a}(p)$.

Theorem 2. Let a be any fixed positive integer other than 1 and let $x>1$. We then have

$$
\sum_{\substack{p}} \sum_{\substack{\left.x \\ x^{*}<q \mid e_{a} \leqslant p\right)\\}} \log q=x / 2+o\left(\frac{x \log \log x}{\log x}\right),
$$

where the double sum is taken over primes p and q.
Proof: Since $e_{a}(p) \mid p-1$, we see that

Now, if it could be shown that the last sum on the right side of (8) is small then the theorem would follow immediately from Theorem 1 . Consequently, we split this sum into two parts

Let S and T denote the sums on the right side of (9). We show that each of these is small. First, by the Brun-Titchmarsh theorem

$$
\begin{aligned}
S \ll \sum_{p \leqslant x} \sum_{\substack{x^{*}<q \leqslant x^{ \pm} l \\
q \mid p-1}} \log q & \ll \frac{x}{\log x} \sum_{x^{ \pm}<q \leqslant x^{ \pm} l}(\log q) / q \\
& =O\left(\frac{x \log \log x}{\log x}\right) .
\end{aligned}
$$

Secondly, if we let
then, for each prime counted in $M_{a}(x)$,

$$
a^{(p-1) / q} \equiv 1 \bmod p,
$$

so that

$$
2^{M_{a}(x)} \leqslant \prod_{m \leqslant x^{\Psi}+-1}\left(a^{m}-1\right)
$$

and therefore

$$
\begin{aligned}
M_{a}(x) & \leqslant \frac{\log a}{\log 2} \sum_{m \leqslant x^{ \pm i}-1} m \\
& =O\left(\frac{x}{\log ^{2} x}\right) .
\end{aligned}
$$

Consequently $T \leqslant M_{a}(x) \log x \leqslant x / \log x$, so that

$$
S+T=O\left(\frac{x \log \log x}{\log x}\right)
$$

and by equations (8) and (9) this immediately proves the theorem.
The following corollaries are easy consequences of Theorem 2.
Corollary 1. Let a be any fixed positive integer other than 1 and let $x>1$. We then have

$$
\sum_{p \leqslant x} \sum_{\substack{x^{t} \leq q \leq x \leq x \\ q \mid e_{e}(P)}} 1=\frac{1}{2} \frac{x}{\log x}+o\left(\frac{x \log \log x}{\log ^{2} x}\right)
$$

where the double sum is taken over primes p and q.
Corollary 2. For any fixed positive integer a other than 1 and $x>1$

$$
\sum_{p \leqslant x} e_{a}(p) \geqslant \frac{1}{2} \frac{x^{\frac{3}{2}}}{\log x}+o\left(\frac{x^{\frac{3}{2}} \log \log x}{\log ^{2} x}\right)
$$

References

1. E. Bombieri, " On the large sieve '", Mathematika, 12 (1965), 201-225.
2. Hardy and Wright, An introduction to the theory of numbers (Oxford, 1965), 348-349.
3. K. Pracher, Primzahlverteilung (Springer, 1957), 44-45.

Columbia University,
New York 27, N.Y.

