
MODULAR ELLIPTIC CURVES AND DIOPHANTINE PROBLEMS
by Dorian Goldfeld1

§1. Introduction:

Let E be an elliptic curve, defined over Q, given in Weierstrass normal form

E : y2 = x3 − ax− b
= (x− e1)(x− e2)(x− e3).

The discriminant of E is defined to be D = (e1 − e2)2(e1 − e3)2(e2 − e3)2. Two
elliptic curves given in Weierstrass normal form will be isomorphic if and only if
they are equivalent under a rational transformation of type x 7→ u2x, y 7→ u3y
with u ∈ Q, and u unequal to 0. Under this transformation a is transformed to
u−4a and b is transformed to u−6b. Similarly, D is transformed to u−12D.

We say E is in minimal Weierstrass normal form or is a minimal Weierstrass
model over Q if among all isomorphic Weierstrass models for E (with a, b ∈ Z) we
have that D is minimized.

If the cubic x3 − ax − b = (x − e1)(x − e2)(x − e3) has three distinct real
roots, then the real points of E (denoted E(R)) has two nonsingular connected
components which are symmetric with respect to the x-axis. Although E(R) is
nonsingular, it may very well happen that E(Fp) (where Fp is the finite field of p
elements) is singular. It is not hard to see that this can only happen for primes
p|D, and such primes are called primes of bad reduction. A measure for the amount
of bad reduction is given by the conductor of the elliptic curve. The conductor is
denoted by the symbol N and is defined as follows:

N =
∏
p|D

pe(p)

where for p unequal to 2 or 3, e(p) = 1 if the singularity is a node, curve with
two distinct tangent lines at the singular point, while e(p) = 2 if the singularity is
a cusp, curve with one tangent at the singular point, and in the remaining cases
of p = 2, 3, e(p) is absolutely bounded. An elliptic curve is said to be semistable
if it never has bad reduction of cuspidal type, and in this case N is always the
squarefree part of D.

In a remarkable series of papers [F1], [F2], G. Frey constructed minimal semistable
elliptic curves over Q. Let me briefly describe Frey’s construction. Let A,B,C ∈ Z
with A ≡ 0(32), B ≡ 1(4), (A,B) = 1, and A + B + C = 0. Consider the elliptic
curve

EA,B : y2 = x(x−A)(x+B).

A normal Weierstrass form for E is given by

(1) ẼA,B : y2 = x3 − αx+ β

1This work was done while the author was partially supported by a grant from the Vaughn

Foundation.
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where we have

α =
1

3

(
A2 +B2 +AB

)
, β =

1

27

(
A+B

)(
2A2 + 2B2 + 5AB

)
,

and α, β ∈ Z if and only if A ≡ B(3). Frey shows that this curve is semistable.

Moreover, in the case A ≡ B(3), since (α, β) = 1, ẼA,B is in minimal Weierstrass
form with discriminant A2B2C2. On the other hand, if A 6≡ B(3), then the simple
transformation x 7→ 1

9x, y 7→
1
27y, gives a minimal Weierstrass normal form with

discriminant 312A2B2C2. Note that our definition of minimal Weierstrass normal
form is different from the usual notion of minimal model over Z. Frey shows that a
minimal model for EA,B over Z is given by the curve

y2 + xy = x3 +
A−B − 1

4
x2 − AB

16
x

with minimal discriminant A2B2C2/256.
A surprisingly novel idea of Frey is to suggest that if the Fermat equation

up + vp + wp = 0

has a nontrivial solution in rational integers u, v, w for p > 2 then the elliptic curve
(1) with A = up, B = vp, C = wp cannot exist as a minimal Weierstrass model.
Using this approach and earlier work of Mazur [M2], and Serre [S1], [S2], Ribet [R]
has recently shown that Fermat’s last theorem would follow from the conjecture
of Taniyama and Weil which is described in the next section. I shall not discuss
Ribet’s theorem in this article, but focus instead on another approach of Frey [F2]
based on a conjecture of Szpiro [Szp1], [Szp2], (1983).

Let
E : y2 = x3 − ax− b

be an elliptic curve with a, b ∈ Z, D nonzero, in minimal Weierstrass form. Let N
be the conductor of E.

Conjecture(1) (Szpiro): There exists an absolute constant κ (independent of
N,D) such that

D ≤ Nκ.

A stronger form of this conjecture states that if E is also semistable then

Conjecture(2) (Szpiro): For every ε > 0 there exists a constant c(ε) depending
only on ε such that

D ≤ c(ε)N6+ε.

Applying this to the Frey curve (1), for example, yields the inequality

|ABC|2 ≤ c(ε)
∏

p|ABC

p6+ε,

and this proves Fermat’s last theorem for all sufficiently large exponents p. On
the basis of the above example, Masser and Osterlé [Ost] (1985) conjectured the
following.
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Conjecture(3); For rational integers A,B,C with A+B + C = 0

sup(|A|, |B|, |C|)�
∏

p|ABC

p1+ε,

where the �-constant depends at most on ε > 0.

In fact, conjecture(3) with sup(|A|, |B|, |C|) replaced by |ABC| 13 follows from
conjecture (2). We also remark that conjecture (1) should hold over any number
field with a constant κ depending at most on the field. Recently, Hindry and
Silverman [H-S] showed that Lang’s conjecture on the lower bound for the height of
non-torsion points on an elliptic curve over a number field follows from conjecture
(1), and more recently, Frey [F3], under the assumption of conjecture (1) gave a
bound for the order of a torsion point on an elliptic curve defined over a number
field. If Szpiro’s conjecture is proven, this would generalize an unconditional result
of Mazur [M1] which says that a torsion point on an elliptic curve defined over Q
can be of order at most twelve.

§2. The conjecture of Taniyama and Weil

We now consider the elliptic curve

(2) E : y2 = 4x3 − ax− b

where for simplicity we assume that 4x3 − ax− b = 4(x− e1)(x− e2)(x− e3) and
the three roots e1 < e2 < e3 are real.The periods of E (denoted Ω1,Ω2) are defined
by the integrals

Ω1 = 2

∫ +∞

e3

dx√
4x3 − ax− b

Ω2 = 2

∫ e3

e2

dx√
4x3 − ax− b

where Ω1 is real and Ω2 is pure imaginary. Let D = a3 − 27b2 be the discriminant
of E. It is well known that E can be parametrized by doubly periodic functions

x = ℘(z)

y = ℘′(z)

where

℘′(z) = −2
∑
m,n∈Z

1

(z +mΩ1 + nΩ2)
3 ,

and this is just the generalization of the well known parametrization of the circle
x2 + y2 = 1 by the trigonometric functions x = cos z, y = sin z.

The Taniyama-Weil conjecture in its simplest form states that every elliptic curve
E defined over Q, in minimal form and with conductor N, can be parametrized by
modular functions for the group (see [M-Sw])

Γo(N) =

{(
a b
c d

) ∣∣∣∣ a, b, c, d ∈ Z, ad− bc = 1, c ≡ 0 (mod N)

}
.
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That is to say there exist meromorphic functions α(z), β(z) with z in the upper
half plane satisfying

α

(
az + b

cz + d

)
= α(z)

β

(
az + b

cz + d

)
= β(z).

for all

(
a b
c d

)
∈ Γo(N). Moreover, the curve

y2 = 4x3 − ax− b

can be parametrized by
x = α(z)

y = β(z).

We shall now explicitly construct α(z), β(z), assuming they exist.
Let

f(z) =
∞∑
1

a(n)e2πinz

be a cusp form of weight 2 for Γo(N) so that

f(
az + b

cz + d
) = (cz + d)2f(z).

We assume that f is normalized so that a(1) = 1, a(n) ∈ Z for n ≥ 1, and that

a(mn) = a(m)a(n)

for (m,n) = 1.
Let Xo(N) be the modular curve of the compactified Riemann surface obtained

from factoring the upper half plane by Γo(N). By a theorem of Shimura [Sh], there
exists an elliptic curve E which we may take to be (2) and a covering map φ,
normalized so that φ(i∞) = 0,

Xo(N)yφ
E

so that f(z)dz is the pullback under φ of a differential one-form on E.
Let

F (τ) = −2πi

∫ i∞

τ

f(z) dz

=

∞∑
1

a(n)

n
e2πinτ

be the antiderivative of f. For

(
a b
c d

)
∈ Γo(N) let us consider the Shimura map

(3)

(
a b
c d

)
7→ F

(
aτ + b

cτ + d

)
− F (τ).
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By the fundamental theorem of calculus

∂

∂τ
{F
(
aτ + b

cτ + d

)
− F (τ)} = 0,

so the right side of (3) is independent of τ. We now define

H

((
a b
c d

))
= F

(
aτ + b

cτ + d

)
− F (τ)

to be the Shimura map.
Since for α1, α2 ∈ Γo(N) we have

H(α1α2) = F (α1(α2τ))− F (α2τ) + F (α2τ)− F (τ)

= H(α1) +H(α2)

we see that H is a homomorphism of Γo(N). In fact if the pullback φ∗(f(z)dz) is
the standard differential on E then

H(α) = 2πi

∫ ατ

τ

f(z) dz

must lie in the homology of Xo(N) and hence in the homology of E. It follows that
H is a homomorphism from Γo(N) onto the lattice

Λ = {mΩ1 + nΩ2 | m,n ∈ Z}

of periods of E which is just an abelian group of rank 2 isomorphic to Z× Z.
We can now give the desired parametrization of E : y2 = 4x3 − ax − b. Let us

define

α(z) = ℘(F (z)) = ℘

( ∞∑
n=1

a(n)

n
e2πinz

)

β(z) = ℘′(F (z)) = ℘′

( ∞∑
n=1

a(n)

n
e2πinz

)
,

where ℘ is the Weierstrass ℘-function. We have

α

(
az + b

cz + d

)
= ℘

(
F

(
az + b

cz + d

))
= ℘

(
F (z) +H

((
a b

c d

)))
= ℘

(
F (z)

)
= α(z)

since H
((
a b
c d

))
∈ Λ. Similarly for β(z).
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§3. Properties of Shimura maps:

The Shimura map H : Γo(N)→ Λ as defined in the previous section satisfies the
following properties:

Property (1): H is a homomorphism from Γo(N) onto the period lattice Λ of the
elliptic curve E.

Property (2): For
(
a b
c d

)
∈ Γo(N), we have H

((
a−b
−c d

))
= H

((
a b
c d

))
.

Proof: Let σ =

(
i 0
0 −i

)
with i =

√
−1. Then we have

σ

(
a b
c d

)
σ−1 =

(
ai bi
−ci −di

)(
−i 0

0 i

)
=

(
a −b
−c d

)
.

Since the Fourier coefficients of f are real it follows that

F (σz) = F (σ−1z) = F (−z) = F (z).

Hence, replacing τ by στ, we have

H

((
a −b
−c d

))
= F

(
σ

(
a b
c d

)
σ−1τ

)
− F (τ)

= F

(
σ

(
a b
c d

)
τ

)
− F (στ)

= H

((
a b
c d

))
.

Property (3): For each positive squarefree integer N, there exists εN = ±1 such

that for all
(
a b
c d

)
∈ Γo(N), we have

H

((
d − c

N
−bN a

))
= εNH

((
a b
c d

))
.

Proof: Let ω =

(
0 1√

N

−
√
N 0

)
so that

ω

(
a b
c d

)
ω−1 =

(
d − c

N
−bN a

)
.

It follows that

H

((
d − c

N
bN a

))
= H

(
ω

(
a b
c d

)
ω−1

)
= F

(
ω

(
a b
c d

)
ω−1τ

)
− F (τ)

= L+M +N
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where

L = F

(
ω

(
a b
c d

)
ω−1τ

)
− εNF

((
a b
c d

)
ω−1τ

)
M = εNF

((
a b
c d

)
ω−1τ

)
− εNF (ω−1τ)

N = εNF (ω−1τ)− F (τ).

By the functional equation F (τ) = εNF (ωτ), we have L = 0, and N = 0. The
result follows.

Property (4): Let σp =
(
p 0
0 1

)
and σj =

(
1 j
0 p

)
for j = 0, 1, ...(p− 1). Assume that(

a b
c d

)
, σk

(
a b
c d

)
σ−1
k ∈ Γo(N) for k = 0, 1, ..., p. (This will be the case if p|b, p|c, and

p|(d− a).) Then for p a rational prime not dividing N we have

p∑
k=0

H

(
σk

(
a b
c d

)
σ−1
k

)
= a(p)H

((
a b
c d

))

where a(p) = pth Fourier coefficient of f(z).

Proof: We make use of the properties of the Hecke operator Tp =
∑p
k=0 σk

and the fact that the differential one form f(z)dz is an eigenfunction of Tp with
eigenvalue a(p)

Tp(f(z)dz) = a(p)f(z)dz.

From the definition of H we see that

p∑
k=0

H

(
σk

(
a b
c d

)
σ−1
k

)
=

p∑
k=0

[∫ i∞

σkατo

f(z) dz −
∫ i∞

σkτo

f(z) dz

]

after putting α =
(
a b
c d

)
, and τo = σk

−1τ. It follows that

p∑
k=0

H

(
σk

(
a b
c d

)
σk
−1

)
=

(∫ i∞

ατo

−
∫ i∞

τo

) (
p∑
k=0

f(σkz) d(σkz)

)

= a(p)

( ∫ i∞

ατo

−
∫ i∞

τo

)
f(z) dz

= a(p)H(α)

by the properties of the pth Hecke operator.

Property (5): H
((

1 1
0 1

))
= 0.

Proof: By definition H
((

1 1
0 1

))
= F (τ + 1)− F (τ). Since

F (τ) =
∞∑
n=1

a(n)

n
e2πinτ

which is periodic in τ we easily see that F (τ + 1) = F (τ).
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§4. Equivalent forms of Szpiro’s conjecture

We now give some equivalent forms of Szpiro’s conjecture (2). Let

∆(z) = e2πiz
∞∏
n=1

(
1− e2πinz

)24

be the Ramanujan cusp form of weight twelve for the full modular group. Then
since the discriminant D of the elliptic curve

E : y2 = x3 − ax− b

can be expressed

D =
∆
(
−Ω1

Ω2

)
2π12Ω2

12

and, without loss of generality we may assume that |Ω1

Ω2
| > 1, we see that |∆

(
−Ω1

Ω2

)
|

is absolutely bounded from above by some fixed constant c > 0. It follows that we
have D < c/(Ω2

12). Hence, a lower bound of type

(4) Ω2 �
1

Nκ

for some fixed constant κ > 0 would give Szpiro’s conjecture.
Now, since e1, e2, e3, are roots of 4x3 − ax − b = 0 with a, b integers and y2 =

4x3 − ax − b is a Frey curve, we easily see that |ei − ej | � 1 for 1 ≤ i < j ≤ 3.
Consequently the discriminant D satisfies D � |ei − ej |2 for i 6= j. Hence

Ω2 = 2

∫ e3

e2

dx√
4(x− e1)(x− e2)(x− e3)

≥ 1√
e3 − e1 (e3 − e2)

∫ e3

e2

dx

≥ 1√
e3 − e1

� D−
1
4 .

So if Szpiro’s conjecture is true, this yields a lower bound of type (4). Similarly for
Ω1. It follows that Szpiro’s conjecture is equivalent to lower bounds of type (4) for
the periods of E. If we assume the conjecture of Taniyama and Weil, then certain
properties of the Shimura map H : Γo(N)→ Λ as defined in §3 can be shown to be
equivalent to Szpiro’s conjecture. We have the following conjecture.

Conjecture(4); Let N → ∞. There exists a fixed constant κ > 0 such that if(
a b
c d

)
∈ Γo(N) with |a|, |b|, |c|, |d| ≤ N2 then

H

((
a b
c d

))
= mΩ1 + nΩ2

with |m|, |n| � Nκ.
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Assuming the Taniyama-Weil conjecture, it can be shown that conjecture (4) is
equivalent to Szpiro’s conjecture (1). Moreover, the assumption that |a|, |b|, |c|, |d| ≤
N2 can be replaced by the simpler assumption that |c| ≤ N2. This is because

(
1 1
0 1

)
is in the kernel of H which implies that we can always arrange |a|, |b|, |d| ≤ |c| after
a suitable left or right multiplication by upper triangular matrices in Γo(N). On
the basis of numerical evidence, however, it seems we may take κ in conjecture (4)

arbitrarily small as (N → ∞) if we restrict ourselves to matrices
(
a b
c d

)
(satisfying

|c| ≤ N2) which form a minimal set of generators for Γo(N), but this seems hope-
lessly difficult to prove at the present time.

To prove Szpiro’s conjecture, it suffices to assume the existence of a homomor-
phism H : Γo(N) → Λ, satisfying properties (1) to (5), and in addition satisfying
conjecture (4). In this context, conjecture (4) is a conjecture concerning a group
homomorphism between a non-abelian group of rank ≈ N/6, (namely, Γo(N)), and

a free abelian group of rank 2. A matrix
(
a b
c d

)
∈ Γo(N) will be termed close to the

identity if |a|, |b|, |c|, |d| are small. Conjecture (4) says that if
(
a b
c d

)
is close to the

identity, then its image under H is close to the origin in the lattice Λ, (implying
that H has properties analogous to a continuous function). A proof of conjecture
(4) should make strong use of property (5) (Hecke operators).

We now give a sketch of the proof of the equivalence of conjectures (1) and (4).
Let

f(z) =
∞∑
1

a(n)e2πinz

be the normalized Hecke newform of weight 2 associated to E. Then we have for
α ∈ Γo(N)

H(α) =

∞∑
1

a(n)

n

[
e2πinα(τ) − e2πinτ

]
,

which is independent of τ in the upper half plane. If we define

Lf (s, θ) =
∞∑
1

a(n)

ns
e2πinθ

and

Hs(α, τ) =
∞∑
1

a(n)

n1+s

[
e2πinα(τ) − e2πinτ

]
,

then letting τ → i∞ and s→ 0 it follows that

(5) H(α) = Ho(α, i∞) = Lf (1,
a

c
).

To obtain further information about H(α), we need the functional equation of

Lf (s, ac ). This is obtained as follows. Let us put z = −dc + iy, and α =
(
a b
c d

)
. Then

we have α(z) = a
c + i

c2y . It follows that

csΓ(s)Lf

(
s,−d

c

)
=

∫ ∞
0

f

(
−d
c

+ iy

)
(cy)s

dy

y

=

∫ 1
c

0

f(z)(cy)s
dy

y
+

∫ ∞
1
c

f(z)(cy)s
dy

y

=

∫ ∞
1

f

(
a+ iy

c

)
y2−s dy

y
+

∫ ∞
1

f

(
−d+ iy

c

)
ys
dy

y

,
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which gives the functional equation

cs Γ(s)Lf

(
s,−d

c

)
= c2−s Γ(2− s)Lf

(
2− s, a

c

)
where ad ≡ 1(c). The usual convexity argument then gives

(6)
∣∣∣Lf (1,

a

c

)∣∣∣ � c
1
2 +ε.

For
(
a b
c d

)
∈ Γo(N) with |c| < N2, let us choose

α =

(
a b
c d

)(
a −b
−c d

)
.

If H(
(
a b
c d

)
) = mΩ1 + nΩ2, then by property (2), we have that

H(α) = 2nΩ2.

It then follows from this and equations (5), (6) that

(7) |nΩ2| � N2+ε.

But if Szpiro’s conjecture is true, then

|Ω2| �
1

Nκ

for some κ > 0. The inequality (6) yields

|n| � Nκ+2+ε.

A similar argument also works for the m-component of H. So we have shown that
Szpiro’s conjecture implies conjecture (4).

To show that conjecture (4) implies conjecture (1) is more difficult. Let us define
χ : Z/qZ→ {±1} to be a real primitive Dirichlet character (mod q). Consider the
twisted L-series

Lf (s, χ) =
∞∑
1

a(n)χ(n)

ns
.

If

G(χ) =

q∑
a=1

χ(a)e2πi aq

denotes the Gauss sum, then by the standard argument

G(χ)Lf (s, χ) =

q∑
b=1

χ(b)Lf

(
s,

b

q

)
.
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For any two integers b, q satisfying (q,N) = 1, 0 < b < q, and (b, q) = 1 we can

always choose suitable integers a, c so that γ =
(
a b
c q

)
lies in Γo(N). We then have

q∑
b=1

χ(b)Hs(γ, τ) =

q∑
b=1

χ(b)

∞∑
1

a(n)

n1+s

[
e2πinγ(τ) − e2πinτ

]
.

Letting τ → 0 and s→ 0, yields

q∑
b=1

χ(b)H(γ) =

q∑
b=1

χ(b)Ho(γ, 0) =

q∑
b=1

χ(b)Lf

(
1,

b

q

)

since
q∑
b=1

χ(b) = 0.

It follows that

(8)

q∑
b=1

χ(b)H

((
a b
c q

))
= G(χ)Lf (1, χ).

If χ(−1) = −1, so that χ is an odd character, then the substitution b 7→ −b, c 7→ −c
does not change the value of the left side of equation (8) since we can sum over any
set of residues (mod q). But by property (2) of the homomorphism H this implies
that G(χ)Lf (1, χ) must be pure imaginary, and hence must be an integral multiple
of the imaginary period Ω2.

Now, by a theorem of Waldspurger [W], (see Kohnen [K]) it follows that Lf (1, χ)
is the square of a Fourier coefficient of a cusp form of weight 3

2 . Applying the
Rankin-Selberg method, as in Kohnen and Zagier’s proof [K-Z] of the Goldfeld-
Viola conjecture [G-V] on mean values of Lf (1, χ) one obtains∑

q�N2

Lf (1, χ) ∼ N2.

Since |G(χ)| = √q, it follows that for some twist χ with conductor q � N2

G(χ)Lf (1, χ)� N.

Consequently, if we assume conjecture (4), there is an integer m satisfying m �
N2+κ for some fixed κ > 0 such that

mΩ2 � N.

We then obtain that
Ω2 � N−1−κ,

and as shown earlier, this implies conjecture (1).
In conclusion, I should like to focus on yet another equivalence to Szpiro’s con-

jecture (2). Kohnen [K] has shown that associated to a normalized newform f(z)
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of weight 2 for Γo(N) there is a cusp form g(z) of weight 3
2 for Γo(4N) whose qth

Fourier coefficient c(q) is given by

(9)
c(q)2

〈g, g〉
=

2ν(N)√q Lf (1, χ)

π 〈f, f〉

where ν(N) denotes the number of prime factors of N and for cusp forms f1, f2 of
weight k ∈ 1

2Z for Γ = Γo(M)

〈f1, f2〉 =
1

[Γo(1) : Γ]

∫
Γ\H

f1(z)f2(z)yk
dx dy

y2

denotes the Peterson inner product (Here H is the upper half plane).
Clearly, the left hand side of (9) is independent of the normalization of g. Let us

normalize g so that c(q) ∈ Z for all q and

G(χ)Lf (1, χ) = c(q)2Ω2.

Szpiro’s conjecture is then equivalent to the bound

〈g, g〉 � N c

for some fixed constant c > 0. This follows easily from (9) by the estimate

(10)
1

[Γo(1) : Γo(N)]
� 〈f, f〉 � 1.

To prove (10) note that∫
Γo(N)\H

|f(z)|2 dxdy ≥
∫ ∞

1

∫ 1

0

|f(z)|2dxdy

=

∫ ∞
1

∞∑
1

|a(n)|2e−4πnydy

=
∞∑
1

a(n)2e−4πn

4πn

� 1

since a(1) = 1.
On the other hand, if we let d(n) denote the number of divisors of an integer

n, then the Fourier coefficients of f at an arbitrary cusp (see [D]) are bounded by√
nd(n). It follows that

∫
Γo(N)\H

|f(z)|2dxdy =
∑

γ∈Γo(N)\Γo(1)

∫
Γo(1)\H

|f(γz)|2 Im(γz)2 dxdy

y2

�
∑
γ

∫ ∞
√

3
2

∫ 1

0

f(γz) Im(γz)2 dxdy

y2

� [Γo(1) : Γo(N)]
∞∑
n=1

nd(n)2e−2π
√

3n

� [Γo(1) : Γo(N)]

.
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We have seen that for an integral weight modular form f with relatively prime
rational integer Fourier coefficients , it is possible to give an absolute bound for
〈f, f〉 which is independent of the level. This is due to the fact that the nth Fourier

coefficient a(n) is bounded by
√

(n)d(n). If we knew that |a(n)| ≤ Cnθ for constants
C, θ independent of n (but possibly C depending on N) then by the properties of
the Hecke operators we would have

a(p) ≈ 2a(pM )
1
M

for rational primes p. Letting M → ∞, it follows by a simple argument that
|a(n)| ≤ d(n)nθ; and in effect, the constant C drops out of the picture. In the half
integral weight case, however, this does not happen because there are not enough
Hecke operators.
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Astérisque, exposé no 3, 86 (1981), 44-78.

[Szp2] Szpiro, L. Présentation de la théorie d’Arakélov, Contemporary Math. 67
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