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Let N be a positive integer. Examples of elliptic curves over Q possessing 
rational cyclic N-isogenies are known for the following values of N:  

N g v N g v N g v 

10 0 oo ll 1 3 27 1 1 
12 0 oo 14 1 2 37 2 2 
13 0 oo 15 1 4 43 3 1 
16 0 oo 17 1 2 67 5 1 
18 0 oo 19 1 1 163 13 1 
25 0 oo 21 1 4 

In  this table, g is the genus of Xo(N), and v the number of  noncuspidal 
rational points of Xo(N) (which is, in effect, the number  of rational N-isogenies 
classified up to "twist"). For  an excellent readable account of isogenies and their 
related diophantine problems, see Ogg's [25, 26]. The first column of the table 
corresponds to the genus 0 cases; for each of  these values of N rational 
parametrizat ions of  Xo(N) are known [10]. For  each integer N, and each order 

R ~ Q(1/-ZN) such that R contains ~ and has class number one, there is a 
Q-rat ional  N-isogeny. This accounts for one noncuspidal rational point on 
Xo(N ) for N =  11, 19, 27, 43, 67, 163 and for the two noncuspidal rational points 
on Xo(14 ). For  a discussion of the cases: N = l l ,  15, 17, 21 see ([43], pp.78-80) 

and for the peculiar N = 37, see ([22], w 5). 
The object of this paper is to show that when N is a prime number  there are 

no Q-rat ional  N-isogenies beyond those exhibited in the above table. 
To prove this (in the light of  known results concerning Xo(N)(Q) for the 

twelve prime numbers  N appearing in the table [19]) it suffices to show: 

Theorem 1. Let N be a prime number such that some elliptic curve over Q admits a 

Q-rational N-isogeny. Then 
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N = 2 ,  3, 5, 7, 13 (the genus 0 cases) or 

N =11 ,  17, 19, 37, 43, 67, or 1631 

(Theorem 7.1 below). 
One consequence of Theorem 1 is the classification of elliptic curves over Q 

with nontrivial torsion in their Mordell-Weil groups: 

Theorem2 (Conjecture of Ogg). Let ~ be the torsion subgroup of the Mordell- 
Weil group of an elliptic curve over Q. Then qb is isomorphic to one of the 
following fifteen groups: 

Z /mZ  l < m < 1 0  or m=12,  

Z / 2 Z x Z / 2 v Z  l < v < 4  

(Theorem 4.1 below). 
All of the fifteen related moduli problems are of genus 0 with known 

parametrizations ([13], p. 217) and we may obtain (infinite) rationally para- 
metrized families of elliptic carves over Q whose Mordell-Weil group contains 
any one of the above groups. 

The proof of Theorem 2 in this paper is significantly different from the first 
proof I found for it ([18]; [19] III5.1); and it is easier. It is obtained in the 
course of the proof of Theorem 1 (w 4). 

The question of classification of isogenies may be viewed as part of the 
broader question of analyzing_, for an elliptic curve E/K (with K a number field) 
the representation PN of Gal(K/K) in GL2(Z/NZ ) obtained by the natural action 
on E[N], the group of N-division points ([32]). 

A consequence of Theorem i (and a result of Serre) is the following: 

Theorem 3. I f  E/o is an elliptic curve, and N is a prime number, one has the 
following three possibilities: 

(i) PN: Gal(t~/Q)---~GLz(Z/NZ ) is surjective. 

(ii) 7-he image of PN is contained in the normalizer of a Cartan subgroup of 
GLz(Z/NZ).  

(iii) N < 1 9  or N=37 ,  43, 67, or 163. 

Proof By the classification of maximal proper subgroups in GL2(Z/NZ ) ([19]), 
if the image of PN is not surjective, it is either contained in the normalizer of a 
Cartan subgroup (case (ii) or it is contained in a Borel subgroup (which by 
Theorem 1 implies that we are in case (iii)) or its image in PGL(Z/NZ)  is 
contained in an "exceptional subgroup". But Serre has shown (see discussion in 
[19] introduction) that the modular curve associated to an "exceptional sub- 
group" has no N-adic rational points (and consequently this case cannot occur) 
if N > 17 .  

A consequence (communicated to me by Serre) of Theorem2 and Pro- 
position21 of [32] is the following: 

1 The proof we give shows that either N < 17, or N = 37, or Q(I/-N) has class number one 
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Theorem 4. Let E~ o be a semi-stable elliptic curve, and N a prime number. Then the 
image of PN is GL2(Z/NZ ) if N > 11. 

The question of isogenies for composite N, rational over Q, is not yet 
completely settled. Here is how the matter stands. Say that an integer N is 
minimal of positive genus if the genus of Xo(N ) is > 0, but the genus of Xo(d) is 0, 
for all proper divisors d of N. 

One will clearly have settled the question of isogenies for all N if 

(a) one determines X0(N)(Q) for all N which are minimal of positive genus, 
and 

(b) for every elliptic curve E/o possessing a rational N-isogeny, with N 
minimal of positive genus, one determines the "graph of rational isogenies" of E. 

Concerning (a), Theorem 1 provides the answer for prime numbers N and 
therefore it remains to consider composite numbers N which are minimal of 
positive genus. These are given by the following list: 

132, 13.7, 13- 5, 13.3, 13.2, 72, 7.5, 7.3, 7.2, 53, 5.3, 5.22, 52. 2, 33, 32. 22, 

3.23, and 25. 

Since X0(N)(Q) is known when Xo(N) is of genus 1 ([14]) and there are no 
Q-rational N-isogenies if N = 35, 50 ([13], IV.3) or N = 26 ([24]), the cases which 
have yet to be treated are these: N =  132, 13.7, 13.5, 13.3 and 53. For the first 
four of these five values of N it is known that Xo(N)(Q) is finite ([4]); indeed N 
= 125 is the only value of N such that Xo(N) is of positive genus, and Xo(N)(Q) 
is not known to be finite. 

Concerning (b), it is an easy matter to determine (by "pure thought") the 
"graph of rational isogenies" for each elliptic curve supporting an isogeny of 
degree N (where g=genus Xo(N)>0) as recorded in the table above. One finds 
no "unrecorded" isogenies in this manner. Thus the table would be complete 
(for all integers N) if there were no noncuspidal rational points on Xo(N) for N 
=132 , 13.7, 13.5, 13.3, or 53 . 

The following application of Theorem 1 was pointed out to me by Serre: 

Theorem5. There is a constant C such that every elliptic curve E/Q is isogenous 
(over Q) to at most C (mutually nonisomorphic) elliptic curves. 

Proof. By Manin's theorem (E16, 33]) or by ([4]), for any prime number p there 
is a constant Cp such that any elliptic curve over Q is isogenous (over Q) to at 
most Cp (isomorphically distinct) elliptic curves, via isogenies of degree a power 
of p (Cp is an upper bound for the number of vertices of the "tree of rational p- 
power isogenies" of any elliptic curve over Q). But by Theorem 1, Cp may be 
taken to be 1 for all but the finitely many exceptional primes p (p< 19, or p=37, 
43, 67, 163). We may take C to be I~ Cp. 

P 

Remark. For the exceptional primes p the smallest possible C~ is: 

P 2 3 5 7 1l 13 17 19 37 43 67 163 

Cp 8 4 ? 2 2 ? 2 2 2 2 2 2 
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Can one take C = 8 ?  In the tables of [43] one finds a number of elliptic 
curves whose graph of rational isogenies has 8 vertices. 

The method of proof  of Theorem 1 enables one (with the help of a result of 
Goldfeld: see Appendix) to obtain a partial result for quadratic imaginary fields. 

Theorem 6. Let K be a quadratic imaginary field. 7here is a finite set of (rational) 
prime numbers Y ( K )  such that if N is a rational prime which remains prime in K 
and Nr then there are no K-rational N-isogenies of elliptic curves over K. 

(Proposition 8.1 below.) 
In contrast to the above theorem, there are quadratic imaginary fields K 

"possessing K-rational N-isogenies" for infinitely many primes N which split in 
K. One might expect, however, that all but a finite number of these are N- 
isogenies "obtained by complex multiplication". For a more detailed discussion, 
see [18]. 

In the course of the proof of Theorem 1 we obtain a partial result concerning 
the rational number c associated to a strong Weil curve ([39, 24], w 2). Recall 
that if Xo(N) ~ E is a (strong) Weil parametrization of an elliptic curve E, and if 
co is a N6ron differential for E we may write the q-expansion for re*co in the form 
c. (q l +  a zq2+ ...) where c is a nonzero rational number which we "normalize"  
to be positive. Manin conjectured that c = 1. Although we cannot show this, we 
prove that when N is square-free, c is a power of 2. 

The method of proof  of Theorem 1 is as follows. 

Step 1. Let N be a prime number. We begin with a geometric analysis of the 
projection f :  ~xol?,,,/z Y [ M~ . . . .  t h  --'J/z" where ~z  is the N6ron model of the Eisenstein 
quotient of the jacobian of Xo(N). 

We show that f is a formal immersion along the cuspidal section ~e at 
least away from characteristic 2. We show this when p +  N, by noting that if f 
were not a formal immersion at ae (in characteristic p), then for every differen- 
tial form co on J/rp, the modular form f ' c o  would have q-expansion a 1 q l +  a2 q2 
+- . -  where a 1 =0eFp .  Taking a suitable nonzero eigenvector co for all the Hecke 
operators Tt(l~eN ) and U N the standard recursive relations express the n-th 
Fourier coefficient a, of  co as a multiple of a I, giving us a contradiction, once we 
make use of a result of Raynaud (Proposition l.2 below) concerning the 
specialization of abelian subvarieties of an abelian variety in characteristic p. 
For p=N,  we obtain the same result by phrasing the above argument appro- 
priately using Grothendieck duality, or the reader may skirt the issue of p = N 
and pass to the "alternate route" described at the end of w 5 below. 

Step 2. We are now prompted by a simple scheme-theoretic picture (the diagram 
in the proof of  Corollary4.3). We use Step l together with the theorem ([19] 
III  3.1) which asserts that  the Mordell-Weil group of the Eisenstein quotient J is 
finite, 2 and a specialization lemma (w l(c)) to deduce that an elliptic curve E/Q 
possessing a rational N-isogeny has potentially good reduction at all primes 
p4:2. 

2 This does not involve the more delicate results of [19]. See a sketch of its proof in [-21] 
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Step3. By Step2, E has potentially good reduction at N. After a suitable base 
change we may arrange it to have good reduction, and then apply the theory of 
Raynaud ([31]) which puts strong constraints on the inertia characters of a 
Galois representation coming from a finite flat group scheme. This, plus some 
geometry of the modular curve, enables one to describe the "isogeny character" 
(that is: the one-dimensional FN-representation of Gal (0 /Q)  coming from the 
natural action on the cyclic subgroup C N c E which gives the N-isogeny) (w 5). 

Step 4. Having the isogeny character firmly in hand, the Riemann hypothesis for 
the reduction of E to characteristic p (p=t=2,N) provides us with stringent 
numerical congruences that N must satisfy. For sufficiently large N these 

congruences force Q(lfZ-N) to have class number 1, and at this point we invoke 
the theorem of Heegner-Baker-Stark ([3, 37, 38]) to conclude the proof. 

A question. Fix E/o an elliptic curve and N an integer > 0. Regard V= E [N] as 
a Gal (Q/Q) module with symplectic form given by the eN-pairing. 

Consider the problem of determining all elliptic curves EIQ with sympletic 
Qal(0/Q)-isomorphisms E' [N] ~ V. 

This can be reduced to (or rephrased as) the problem of determining all Q- 
rational points of a certain twisted form X(V) of the modular curve X(N) 
(associated to the principal congruence subgroup of level N). 

When N < 5  the genus of X(N), and hence of X(V) is 0; one then obtains an 
infinite parametrized family of elliptic curves EIQ with symplectic Gal((~/Q)- 
isomorphisms E'[N]~-E[N]. When N = 6 ,  the genus is 1 and it might be 
interesting to consider this case in some detail. For N > 7  one is faced with a 
diophantine problem for a curve of genus >3. Are there examples of elliptic 
curves E/Q, EIo which are not isogenous over Q such that E[N]~-E'[N] (as 
Gal(0/Q)  modules) for some N > 7? 

Notation 

If K is a field, k denotes an algebraic closure. If K is a local or global field, 
(9(K) is its ring of integers, and U(K) the group of units in C(K). If p is a prime 
ideal in (9(K), then its residue field is denoted k p - o r  k(p), if it occurs as a 
subscript. 

If Y is a scheme over a base S and T-~S any base change, Y/r denotes the 
pullback of Y to T. If T = SpecA, we may also denote this scheme by Y/A" By 
Y(T) we mean the T-rational points of the S-scheme Y, and again, if T = SpecA, 
we may also denote this set by Y(A). 

If A/T is a group scheme and N an integer, A[N]/r is the kernel of 
multiplication by N in A, viewed as group scheme over T. 

If E is an elliptic curve, a cyclic subgroup of order N in E will often be 
denoted CN, and the pair (CN, E ) will be referred to as an N-isogeny (because 
this data amounts to the same as giving a homomorphism of elliptic curves 
E&E' where kerq~ is cyclic of order N); we denote by j(CN, E) the point in 
Xo(N ) to which it gives rise. 
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w 1. Specialization of Abelian Subvarieties in Characteristic p 

In this section we collect a number of results concerning specialization and flat 
group schemes which will be used in the sequel. Among these is Proposition 1.2 
below (the reason for the title of this section); this is a result of Raynaud, 
communicated to me by Serre. It will undoubtedly be useful in other contexts. 
Let K/Qp be a finite extension, and (9 =(9(K), its ring of integers. 

a) Quasi-Finite Group Schemes 

Lemma 1.1. Let G be a quasi-finite fiat group scheme of finite type over (9. There 
is a canonical exact sequence 

O--~ FG--~G---~ EG--~O (1.1) 

of quasi-finite fiat group schemes over (9 such that FG is a finite fiat group scheme 
over (9, and EG is an ~tale quasi-finite group scheme whose closed fiber is trivial. 

Proof. If Y is a separated quasi-finite flat (finite type) scheme over (9, Y 
decomposes canonically as Y = F YLI Y' where F Y is a finite flat (9-scheme, and 
the closed fiber of Y' is empty. This is true since (9 is henselian ([45] SGA 7, Exp 
IX2.2.3.1), and the proof of the lemma is straightforward from this, taking Y 
=G, F Y = F G .  

b) Semi-Stable N~ron Models 

If Air is an abelian variety, in this section (and this section only) let A/o denote 
the connected component of the N6ron model of A/K over the base C. 

Thus A/e is the open subgroup scheme of the N&on model, whose closed 
fiber A o is the connected component containing the identity of the closed fiber 
of the N6ron model over the residue field k. Suppose that AIr has semi-stable 
reduction. Then Ao is an extension of an abelian variety by a multiplicative type 
group (a torus). Let m > l  be an integer and let A[m]/~ denote the subgroup 
scheme kernel of multiplication by m in A/~. Then A[m]/o is a quasi-finite flat 
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separated group scheme over (9 by ([45] SGA 7, Exp IX, Lemme 2.2.1). We have 
a filtration of A[m]/~ as follows: 

0 c A [m] t ~ A Ira] o = FA [m] c A [m] (1.2) 

where FA [m] is the finite flat subgroup scheme coming from Lemma 1.1, A[m] ~ 
is its connected component (over (9), and A[m] t is the "toric part" of A Ira] ~ (the 
maximal multiplicative type subgroup scheme). 

c) Specialization Results 

Suppose that the ramification index e(K/Qp) is < p - 1  (e.g., when K = Q p ,  we 
suppose that p + 2). We have the following proposition of Raynaud ([31]). 

Propositionl.1. Let e(K/Qp) be < p - 1 .  Let H L G be a morphism of finite flat 
group schemes over (9. I f  fK: H/r---~G/r is an injection on the associated Galois 
modules, then f/~ is a closed immersion. I f  f/K is an isomorphism, then so is j)e. 

This proposition is a generalization of the following: 

Specialization Lemma: Let e(K/Qp) be < p - 1 .  Let G/~ be a finite fiat group 
scheme, and x~G((9), a section. Then the order of x equals the order of the special- 
ization of x to k (denoted X/k ) in G(k). 

Remarks. One may obtain the above lemma from Proposition 1.1, by taking H to be 
the constant group scheme Z/rZ  where r is the order of x in G((9), and the 
map f :  H---,G is the one which sends 1 to x. The specialization lemma also 
follows from the classification theory of Oort-Tate ([27], Theorem2). If the 
group scheme G is contained in an abelian variety (which is the case in all our 
applications) the specialization lemma is more elementary still, and follows from 
a calculation in formal Lie groups. 

d) Specialization of Abelian Subvarieties 

Proposition 1.2 (Raynaud). Let e(K/Qp) be < p - 1 .  Let 

O--~ A/K--~ B/K--~ C /K ~O (1.3) 

be an exact sequence of abelian varieties, such that B has good reduction (i.e., the 
N6ron model of B over 0 is an abelian scheme). Then A and C also have good 
reduction, and the induced sequence of abelian schemes 

O--~AI~ LB/~, ~ C/~-~O (1.4) 

is exact (i.e., f is a closed immersion, and g induces an isomorphism from the 
quotient of B by the image of A onto C). 

Proof The abelian varieties A and C have good reduction by ([45] SGA 7, 
IX 2.2.9(v)). We proceed by a series of steps. 
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1. The Morphism f is Finite. For let f/~c: B/r---'A/K be a quasi-inverse to f/K. That 
is, for some integer r, f ' f = r .  1A (multiplication by r in the abelian variety A). 
Using the N6ron property, one sees that f/~ is the restriction to K of a unique 
morphism f/~: B/~--~A/~ such that f ' f  is multiplication by r in A/~. Since r. 1 a is a 
finite morphism, and f '  is separated, [44] EGA II 6.15(v) applies giving that f is 
a finite morphism. 

2. The Restriction o f f  to the Closed Fiber is a Closed Immersion. For, if not, 
there would be a prime number l and a nontrivial subgroup scheme killed by l 
in the kernel of f o = f / k  . But since f :  A[ l ] /~B[ l ] /~  is an injection on the 
associated Galois modules, Proposition 1.1 applies and gives that f0 is a closed 
immersion on A [1]/k. 

3. The Morphism f is a Closed Immersion. Apply [44] EGA IV, 
Corollary 18.22.6c. Identify A with its image under f 

4. The Morphism g Induces an Isomorphism of B/A Onto C. We form the 
indicated quotient in, say, the category of algebraic spaces using Corollary 7.3 of 
([2]). This quotient is indeed a (projective) abelian scheme using ([28] VI 2.5) 
and ([30] Th. l iv). The induced morphism ~,: B/A--~ C is an isomorphism when 
restricted to generic fibers, and is then easily seen to be an isomorphism over (9, 
using the universal property of N6ron models, q.e.d. 

We shall prove a weakened version of the above proposition in the case of 
semi-stable reduction. 

Proposition 1.3. Let e(K/Qv) be < p - 1 .  Let 

O-* A /K---~ B /K--* C /~c--~O (1.5) 

be an exact sequence of abelian varieties such that B has semi-stable reduction. 
Then A and C also have semi-stable reduction, and for m any power of p, the 
induced sequence of finite fiat group schemes over (9 

O~A [m]~ fo go , S [m]~---+ C [m]~--~O 
(1.6) 

is an exact sequence of finite flat group schemes. 

Proof. Note that the notation in (1.6) is as in (1.2) of (b) above. The abelian 
varieties A and C have semi-stable reduction by ([45] SGA 7 IX 3.5(iv)). Since 
f/o is injective, Proposition 1.1 applies, giving that f o  is a closed immersion. To 
establish exactness of (1.6), it suffices to establish its exactness when restricted to 
K (using Prop. 1.1 again), and therefore we need only check that 

A [m]/K B [m] = A 

Note that A [m]~ r is contained in A[m]/rnB[m]~c and the cokernel extends 
to a connected finite flat group scheme over (9. Using Proposition 1.1 we will 
have proved that this cokernel is zero if we show that it also extends to an 6tale 
finite flat group scheme over ~. Indeed, we shall show that (A[m]/A[m]~ 
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extends to an 6tale finite flat group scheme over (9. Consider the diagram (1.2) for 
A/K and the dual abelian variety AIK: 

OcA[m]~cA[m]~  c A [ m ] ,  

Oc A'[m]t c a'[m]~ c A'[m]. 

The Galois modules A[m]m and A'[m]/K are in Cartier duality. Using 
Proposition 1.1 it follows that A'[m]IK is orthogonal to A[m]~ K with respect to 
this duality. To check that (A[m]/A[m]~ extends to an 6tale group scheme 
over (9 it suffices to check, then, that its order is equal to the order of the group 
A'[m] t. But this is easily seen as follows: If A o is an extension of an abelian 
variety A~ b by a torus of dimension z, write z=z(Ao), and consider G, the p- 
divisible group over k associated to A~ b. Write p(Ao)=height  of the multipli- 
cative type part of G, e(Ao)=height of the 6tale part of G, and ~(Ao)=height of 
the "local-local" part. Since A is isogenous to A' and A o to A;, 3 we have: 

r . ! . v 

z(Ao) = z(Ao), p(Ao)=#(A'o)=e(Ao)=e(Ao), c~(Ao) = c~(Ao). 

Moreover, 

2. dim(A/K ) = 2. z(Ao) + U(Ao) + ~(Ao) + e(Ao). 

Now the operation [m] (passage to scheme-theoretic kernel of multiplication 
by m) commutes with passage to the closed fiber, and so 

l(A'[m] t) = z(Ao) +/l(Ao), 

I(A [m] o) = z (A o) + # (A o) + c~ (A o) 

where l(H)=log,. (order of H). 
The required equality then follows. 
If S is any base scheme and G/s a smooth group scheme, let Tan(G/s ) and 

Cot(G/s ) denote the (free, finite rank, (gs-modules which are, respectively, the 
tangent space and cotangent space of G/s along the zero-section. 

Corollary 1.1. Let e(K/Qp) be < p - 1 .  Let 

O--~ A/K--~ B/K~ C/K-+O 

be an exact sequence of abelian varieties such that B has semi-stable reduction. 
Let 

Ale -~ B/e--~ C/e 

be the induced sequence of connected components of Ndron models. We have the 
exact sequences of free (9-modules: 

0 -+ Tan (Ale) --* Tan (B/e) --, Tan (C/e) --. 0 

and 

0 ~ Cot (C/e) --~ Cot (B/e) --~ Cot (Ale) -* O. 

3 Nota t ion  as in the beginning of paragraph (b) 
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e) The Condition e < p -  1. 

This condition is definitely needed for both propositions and the corollary (even 
if B has good reduction), as the following example of Serre shows. Let E and E' 
be two elliptic curves with good reduction over (9 = Z  2 such that E contains the 
6tale finite subgroup Z/2 and E' contains a subgroup isomorphic to #2/r (i.e., 
E/o 2 contains a rational point P of order 2 which does not specialize to 0 in 
characteristic 2, while E~o 2 contains a rational point P' of order 2 which does 
specialize to 0 in characteristic 2). Consider the "diagonal" subgroup A of 
Z/2 • la 2 c E • E' (the subgroup isomorphic to Z/2 generated by the point (P, P')). 
Take A=E, B=E • and C=E'/#2, and take the morphisms to be the 
evident ones. 

In this case f :  A ~ B  is not a closed immersion; if A~z 2 is the scheme-theoretic 
closure of A/Q~ in B/z:, then A' is not smooth, (indeed, A is the normalization of 
A'; the morphism Ao~A '  o is an 6tale isogeny of degree 2) and the maps 
Tan(B/r~)--}Tan(C/r~) and Cot(C/r~)-,Cot(B/r2) are zero. 

w 2. Modular Curves 

Let N be an arbitrary positive integer. Let m be the largest perfect square 
dividing N, and S"=SpecZE1/m]. Let Xo(N)/s,, denote the minimal regular 
model of Xo(N)/o (over the base S"). The results of [8] provide much infor- 
mation concerning the singular fibres of Xo(N)/s,,. (See also [19], Appendix, for 
N square-free and prime to 6.) 

Let J/z=Jo(N)/z denote the N6ron model (over Z) of the jacobian of 
Xo(N)/o. 

a) Degeneracy Operators 

For every triple (d,N',N) where d . N '  divides N, one has a morphism 
Bd: Xo(N ) ~ Xo(N') (a "degeneracy operator") defined over Q. It is defined on 
pairs (C N, E) representing elliptic curves E with a cyclic subgroup, C N of order N, 
by the following rule: Let C a c C N denote the unique cyclic subgroup of order d. Set 
E'=E/Ca, CN,~ CN/Cd the unique cyclic subgroup of order N'. Then Bd(CN, E) 
=(CN,, E'). On the upper half plane, B d is induced by the map zw-~dz i.e., q~_~qd. 
(Compare [39, 1].) 

The morphism B a induce morphisms 

(Bd)*: Jo(N')~,Jo(N), 

(Bd),: Jo(N)--,Jo(N'). 

b) The New Part of the Jacobian 

We let Jo(N)old/OC"*Jo(N)/r be the abelian subvariety (over Q) generated by the 
images of the morphisms (Bd)* where (d, N', N) ranges through all triples of 
integers such that d. N' divides N, and N ' <  N. (Compare [39] w 4.) 
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Remark. Define the abelian variety J o ( N )  ~ a s  the quotient of Jo(N) by the 
connected component of the algebraic subgroup c~ ker(Bd),; then one can check 
that the natural map Jo(N)old--~Jo(N) ~ is an isogeny. It would be interesting to 
know something about the degree of this isogeny. 

Define Jo(N)/~ w to be the quotient abelian variety, making the sequence 

0 ~ J 0  ( N ) o l d / Q  --+ J o  ( N ) / Q  --~ J o  ( N )/"~ w - - '  0 (2.1) 

n e w  n e w  __ n e w  exact. Set J/z =Jo(N)/z - t h e  N6ron model of Jo(N)/o . 

c) The Hecke Algebra 

The Hecke operators T l (I]~N) and Up (piN) may be viewed as endomorphisms of 
Jo(N)/o and they all leave. Jo~d stable, and therefore may be viewed as en- 
domorphisms of the exact sequence (2.1). The operators Up (if pZ]N) bring J into 
Joid and therefore induce the trivial endomorphism on jnew (compare [39] 
Thm. 3). The operators Up (if p]]N) are equal to - w  v on jnew, where wp is the 
involution (as in [1] or [39]). Let T (the "Hecke algebra") denote the subring of 
the endomorphism ring EndQ(J new) generated by the T I (l~N) and by the Up 
(p]N). Equivalently, it is the subring generated by the T~ (l~N) and by the Wp 
(p[lN). If Mo=Cot(J/Q ) and m~ew=Cot(J/~ew) then M c = M Q |  may be iden- 
tified with the space of cusp forms for Fo(N), of weight 2, while M~ew| M c is 
the subspace of newforms. 

The following proposition is well known. Its proof is due to Ribet, based on 
an idea of Shimura and Casselman. 

- -  n e w  Proposition 2.1. Let N be an arbitrary integer> l. Set A - J o ( N ) / o ,  and E 
= Endo(A)| Q. 

Then E is generated as a Q-algebra by the Heeke operators T l (l~N). 

Proof Let E' be the Q-subalgebra generated by the Hecke operators T z (l]\N). We 
first show that E' is in the center of E. For, let f be a Q-endomorphism of A. Since f 
commutes with the Frobenius endomorphism of the reduction of A at l, f commutes  
with T~ acting on the reduction of A at l, by the Eichler-Shimura relations. It follows 
that f commutes with T~ acting on A. 

Now suppose A is Q-isogenous to A l • A 2 • ... • A, where the A i are Q-simple 
abelian varieties (over Q). We have corresponding factorizations of the Q-algebras 

E ---E a x E 2 x . . .  X E,, 

E !  ~ t ! ! = E I • 2 1 5 2 1 5  r 

where EI=EndQ(Ai) |  and El is the image of E' in E~. 
Since A i is Q-simple, E i is a division algebra. By [1], El is a totally real number 

field such that dim A~ = [El: Q]. To prove our proposition, it suffices to show that E' i 
is a maximal commutative subfield in Ei (all i), for then E'~=E~. But Endo(Ai)| Q 
cannot contain a (commutative) subfield F of degree > dim A~, as can be seen by 
considering the induced action of F on the Lie algebra of A~/o. 
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d) Optimal Quotients 

By an optimal quotient of Jo(N) new we shall mean an abelian variety quotient 
Jo(N)"ew-z-~A (over Q) such that the kernel of n is a connected subgroup scheme 
(an abelian subvariety). It is evident that if Jo(N)n~ ' is any quotient over Q, 
there is a unique optimal quotient making 

Jo(N ) . . . .  , A 

A' 

commutative, where ~o is an isogeny. If Jo(N) . . . .  ,A is an optimal quotient, it 
follows from prop. 2.1 that kern  is stable under the action ofT. Therefore there is an 
induced action of T on A. 

e) Cotangent Spaces and Relative Differentials 

By the description of the coarse moduli scheme Mvo(m given in [8] VI 6.9 it is clear 
that X=Xo(N)/s, ,  is Cohen-Macaulay, purely of relative dimension 1, and 
therefore the duality theory of Grothendieck, as sketched in [-8] II.2 applies. In 
particular, the relative dualizing complex of sheaves (2.1) is the sheaf of regular 
differentials ~x/s,, 4. Moreover, its sections over the "bad"  fibres (of characteristics 
dividing N) admit a simple description ([-8] II 6.9). 

The natural morphism �9 0 ~ .  (X/s,,)---~J/s,, identifies ~ic~ with j0/s,,, the 
"connected component of the N6ron model" ([-19] Appendix, Thm. 1.3; or [29]; or 
compare discussion in [7] after Thm. 2.5). Passing to tangent spaces along the zero- 
section over S' we obtain an isomorphism 

i: Hl(X/s,,,(gx) ~ ,Tan(J/s,). 

We now view Cot(J/s-) as the (gs,,-dual of Tan(J/s- ) via the natural pairing, and 
H~ ~) as the (gs,,-dual of HI(X/s,,, @x) via Grothendieck duality. The mapping 
i then induces an isomorphism 

O: Cot(J/s,, ) ~ ,H~ 

Recall that the Tate curve ([-8] VII Yh.2.1 or [12] A 1.2) over Z[1/m] I-I-q]] 
gives rise to a morphism 

~" Spec Z [1/m] [[q]]  --~ X/~sm 9~ (the smooth locus of X ~ S"). 

The morphism -~ identifies the formal completion of v . . . .  th along the cuspidal ~'/S" 

section m/s" with 

SpecZ [l /m] [[q]]  = S"[[q]] .  

# Deligne and Rapoport denote this COx/s. 
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By restricting a section of H~ f2) to the cotangent bundle of  ~ / s "  in X/s, , ,  
we obtain a diagram 

H~ q-e~P , Z [1/m] [ [q ] ]  ~ a i q  i 

Cot~(X / s , ,  ) ~ , Z[1 /m]  a 1 

where "q-exp" is the morphism induced by z, and Cot~  (X/s,,) is the cotangent space 
of X along the section ~/s , , .  

Lemma 2.1. 7he triangle 

Cot(J/s,,) o , H ~  /s,,, f2) 

Cotoo(X/s,,) 

is commutat ive  up to sign, where I 2 is the natural restriction mapping on cotangent  
spaces induced f r o m  the standard morphism X- -~J  (normalized so that ~--~0). 

P r o o f  The reader will first note that this is not  evident. 5 Since the 60s,,-modules 
involved are torsion-free it suffices to check the compatibil i ty with the base S" 
replaced by Spec C, and Grothendieck duality replaced by Serre duality. To be sure, 
the proposi t ion to be checked is valid for any smooth  curve X/specC. Let g be the 
genus of  X, supposed > 0. Choose g distinct points ~ = x 1, x 2 . . . . .  xg such that the 
invertible sheaf Cx(D ) has vanishing H a, where D is the divisor x ~ + x z + . . .  + xg. By 
forming the cohomology  of  the evident exact sequence one deduces an 
isomorphism 

g 

(~)Tan~ X , H I ( X , ( g x ) .  
i = 1  

Combining the two isomorphisms above, one obtains an isomorphism 

H I ( X , ( g x )  ~ , T a n J  

and this can be checked to be the isomorphism i/Spe c C (up to sign). Our  compatibil i ty 
formula then follows from well known formulas (e.g., compare  the formula 
displayed in the middle of  page 26 of  [34] II  w 8 with the discussion of (loc. cit.) w 10) 
which express the duality mapping  as a sum of residues. 

5 It is curious that there is yet a "third" way of going from the cotangent space of the jacobian of a 
(pointed) curve to the cotangent space of the curve (at its base point). This is via extensions deduced from 
the generalized jacobian (see 1-34] VII w 19 Remarque p. 190). After a nontrivial demonstration this is seen 
(loc. cit.) to be equal to/~ (or to v. O) up to sign 
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w 3. The Geometry of the Cnspidal Sections 

In this section we let J/o--~ A/o be any (nontrivial) optimal quotient of the new part of 
the jacobian o fX = Xo(N ) and let J / z~Aiz  denote the induced morphism on N6ron 
models. Let f :  XT~,,~176 ,, be the composit!on of the above projection with the 
natural injection of XT~,, ~176 into J/s,, where S = Spec Z[1/m] and m is the largest 
square dividing N. 

We intend to study the geometry of the mapping f i n  a formal neighborhood of 
the section ~/s".  If f :  X--~Y is a morphism of finite type between noetherian 
schemes, we shall say that f i s  a formal immersion at a point x if the induced map on 
the completions of local rings (~y, s cx~  (~x, x is surjective. This is equivalent to asking 
that the map induce an isomorphism between residue fields ofx and f(x), and t h a t f  
be formally unramified at x ([44] EGA IV 17.4.4). Recall further that to check 
that f is formally unramified one has the "differential criterion" (EGA IV 17.4). 

Proposition 3.1. I f  A is a nontrivial optimal quotient of the new part of J, then the 
morphism 

f :  v s m o o t h  A 
AIS, ,  ~ JtlS,, 

is a formal immersion along the section ~ away from characteristic 2. 

Proof. Let R be a field of characteristic p~,2. Consider the diagram 

Cot(A)--~Cot(J) 
ct3 

o ,Ho(X/R, f2 ) q-exp REEq] ] ~ a i q  i 

Cot(X/R ) - , R a 1 

(3.1) 

Note that the first morphism is an inclusion by Corollary 1.t. The isomorphism 
O is as in w 

Since Cot(A) is stable under the operators T z and Up, (w we view it as a 
module over T |  Since A is nontrivial, so is Cot(A), and consequently, there is a 
maximal ideal p ___ T |  which lies in the support of the T |  module Cot(A). Ifk 
= (T|  is the residue field, then k is a finite extension field of R. It is convenient 
to extend R to a field R' large enough so that there is an R-homomorphism of k to 
R'. Fixing such an R-homomorphism, the maximal ideal p' =ker(T| is in 
the support of the module Cot(A/R, ). Dropping the ' from the notation, we may 
assume that there is a prime p in Supp Cot(A/R) whose residue field is R. By ([5] IV 
w 1.3 Cor. 1 to Prop. 7) there is a nonzero element o)eCot(Am) annihilated by p. 
Such an element is an eigenvector for T l and Up with eigenvalues lying in R. 
Consider, now, the diagram (3.1). If o~(q)~R [[q]]  denotes the q-expansion of co, we 
have that 

o)(q) = a 1 ql + a2q2 +. . .  

is not identically zero. If p (=  char R) does not divide N, this comes from the q- 
expansion principle, together with the asserted injectivities of the above diagram. If 
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p does divide N, (and by our assumption we must have p]IN), then X/R breaks up 
into a union of two irreducible components, and the q-expansion principle merely 
insures that O is zero on the irreducible component containing ~ .  However, co is an 
eigenvector for the involution w N, which permutes the two irreducible components, 
and therefore co must be 0 on all of X m. 

Now recall the standard recursive relations on the q-expansion coefficients in 
terms of the eigenvalues of the operators Tz and U N. Explicitly, let 

T l  f, O Z C l " O) , 

U S ( D  ~ CN " ~O. 

Then 

a t . r a z O r  - a m q - I  " a m / l ,  

aN.m = cN " am" 

These are the "classical" formulae of [1]. For  a derivation of the first of these 
formulae in an algebraic context (over an arbitrary base R) see 1-12] 1.11.1. The 
second formula is obtained in the same way. 

It follows that, if a t = 0 ,  each of the coefficients am is 0, contradicting the 
nontriviality of co. Thus a l + 0 ,  and consequently f :  Cot(Am)- .Cot(Xm) is 
nonzero, q.e.d. 

The same idea may be applied to the morphism Xsplit(p)--~Jo(p)- of [19] I I Iw 6, 
as shall be now explained. Recall that Xsp~it(p) is the modular curve associated to 
the normalizer of the split Cartan subgroup in GLz(Fp). One checks easily that 

Bp 
X ~ p 2 " ~ X  ~ ", X~ptit(p)~-Xo(pZ)/wp2. Further, one has the two degeneracy maps ot J nl otP) 

and the commutativity relations wp-Bl=wp2B p and wp. Bp=wp:.B~. Let g: 
Xo(p 2) "-'~Jo(P) be the map which associates to x the divisor class of Bl(x ) -Bp(x  ). 
One has the commutativity relation - w p . g = g . w p : .  Thus, if Jo(p)-=Jo(p)/ 
(1 + wp). Jo(P), we obtain a commutative diagram 

Xo(p 2) ' Jo(P) 

i 
Xsplit(P) ' Jo(P)-" 

Let J0 (P)--- 'A be any optimal quotient, and consider the composition mapping 
h: Xo(pZ)--~A. It extends to a morphism h: Xo(PZ)/s,-~A/s , of smooth schemes. 

Proposition3.2. The morphism h is a .formal immersion along the section ~/s ,  in 
characteristics different from 2 and p. 

Proof The argument is similar to the preceding. Since we have already seen that for 
a field of characteristic different from 2 the induced morphism 
Cot(A/R)~Cot(Jo(p)/g ) is injective, we may consider a nonzero element co of 
Cot(Jo(p)/a ) contained in Cot(AIR ) which is an eigenvector for all the T l and Up (R 
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being suitably enlarged, if necessary, as in the proof of Proposition 3.1), and we 
must prove that the induced cotangent vector Cot(g)(co)eCot (X o (p2)/~) is nonzero. 
But, as in the previous argument, if the q-expansion of co is a 1 ql + a z q 2 +  ...  then 
a ~ 4:0 (using that co is a simultaneous eigenvector). Moreover, since g = B1 - Bp, the 
q-expansion of g* co is ~' aiql _ ~ al qpl = a~ q~ + higher order terms. Again, as in the 
previous argument, under the natural identification of Cot(Xo(PZ)/R) with R, a 
parabolic form is sent to the leading term of its q-expansion. Consequently 
Cot (g)(co) 4: 0. 

w 4. First Applications of Proposition 3.1 

a) The Constant "c" of a Strong Weil Curve 

Let E/Q be a strong Weil curve in the sense of [22]. That is, if N is its analytic 
conductor ([39, 22] 2.1) we are given a morphism n: X o ( N ) ~ E  over Q expressing 
the elliptic curve E/Q as an optimal quotient of the new part of the jacobian of 
Xo(N ). Moreover, g is normalized so that n ( ~ )  is the origin. If co is a N6ron 
differential for E/Q (i.e., an invariant differential on the N6ron model E/z which does 
not vanish on any fibre) then we may write the q-expansion of zc*(co) in the form 

c(q I +azq 2 +.. .)  

where ceQ*. By adjusting the sign of co we may suppose that c>0 .  
Manin has conjectured that c =  1. We prove: 

Corollary4.1. The rational number c is a unit in Z[1/2.  m] where m is the largest 
square dividing N. 

Proof This is an immediate corollary of Proposition 3.1. 

Corollary 4.2. I f  E is a strong Well curve of square-free conductor, then c(E) is a power 
of 2. 

b) Potentially Good Reduction for Elliptic Curves Supporting Isogenies 

Corollary 4.3. Let K be a number field, and N a square-free number. Let p be a prime 
of K, of characteristic p (possibly dividing N) such that the ramification index at p 
satisfies the inequality 

ev (K/Q) < p -  1. 

Let E/K be an elliptic curve possessing a K-rational cyclic subgroup C N of order N. 
Let x =j(  C N, E)e X o( N)( K). Suppose there exists an optimal quotient f: Jo( N)neW ~ A 
such that f (x) is of finite order in A (K). (This is necessarily true if the Mordell-Weil 
group A(K) is finite.) Then E has potentially good reduction at p. 

Proof Suppose that E has potentially multiplicative reduction at p. The point x 
then specializes to one of the cusps at p. Since N is square-free, the group of 
involutions W={wnl l < d f N }  operates transitively on the cusps. Applying an 
involution w a to x, if necessary, we may suppose that X/k~p)= O0/k~p~. Let f/z: 
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Xo(N)/z---,A/z be the map to the optimal quotient occurring in the assertion of our 
corollary. Since 1 < e < p -  1, we have that p =~ 2, and therefore by Proposition 3.1, f 
is a formal immersion at ~/k~). 

Since f (x )  is assumed to be of finite order, and e < p - 1 ,  the specialization 
lemma (w 1 (d)) applies, and shows that f (x )  vanishes, since it specializes to 0 at p in 
characteristic p. 

We have, therefore, the following state of affairs: the two C-sections of Xo(N), 
x/~ and ~/~, "cross" at p, and map to the same section of A under f/~ (the zero- 
section). But this contradicts the fact that f is a formal immersion at ~,up). 

Xo(N)/~ 

oo 

X 

Spec C -- 

P 

Since this is a key point, we spell out the elementary proof that the above 
diagram contradicts the fact that f is a formal immersion at ~/k~p): 

If (~p [[q]]  is the formal completion of Xo(N ) at ~/k~p) then the ~-section "is" 
the homomorphism 

Co[[q]]--~Cp (q~--~O) 
while the section x/~p "is" the homomorphism 

(~. [[qI]--~ (#~ (q~--~qo) 

for some nonzero qo. If d is the formal completion of O/k(~ ) in Ak~, then since f is a 
formal immersion at ~/k~p)', f induces a surjection d-~(gp[[q] ]  which is 
incompatible with the assertion that the two homomorphisms ~r (gp induced by 
q~--~0 and q~--~qo 4= 0 coincide, q.e.d. 

From this point on, N will designate a rational prime number. 

Corollary 4.4. Let K = Q, and N = 11 or N = a prime number >= 17. Then any elliptic 
curve over Q which possesses a Q-rational N-isogeny has potentially good reduction 
at all primes p 4= 2. 

Proof Apply Corollary 4.3 with A = J, the Eisenstein quotient of Jo(N) which has 
finite Mordell-Weil group by (I-19] III 3.1). 

c) Bounds on Rational Torsion 

An immediate application of the above corollary is the following theorem which 
classifies all possible torsion groups of Mordell-Weil groups of elliptic curves 
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defined over Q. The first p r o o f / h a d  for this theorem ([18, 19] III w 5) also used the 
theorem of finiteness of the Mordell-Weil group of the Eisenstein quotient of J0(N), 
but otherwise proceeded along significantly different lines. 

Theorem 4.1 (Conjecture of Ogg ). Let 4~ be the torsion subgroup of the Mordell- Well 
group of some elliptic curve defined over Q. Then ~ is isomorphic to one of the 
following fifteen groups: 

Z /mZ m = l  . . . . .  10 or m=12  

Z/2Z x Z/2vZ v = 1 . . . . .  4. 

Remark. All fifteen of the above groups do occur. Indeed the associated moduli 
problems are of genus 0, and there are known rational parametrizations of (infinite) 
families of elliptic curves whose Mordell-Weil groups (over Q) contain each of the 
above groups. For  a more complete discussion see [26, 18], and [13]. By known 
previous results (see [13], Main result 1) to prove the above theorem it suffices to 
show that a rational torsion point x of an elliptic curve E/Q cannot have a prime 
order N, where N >__23. We shall in fact show that such a torsion point cannot 
have a prime order N, where N =  11 or N >  17. 

Proof Suppose there is such an (x, E/Q). Let CN = ( x )  be the subgroup of E generated 
by x. It follows by the previous corollary that E has potentially good reduction at all 
primes p4: 2. In particular, E has potentially good reduction at p = 3. Since the 
specialization of X/z to the N6ron fibre ElF 3 cannot be zero, by the specialization 
lemma, the N6ron fibre E/v~ possesses a point of order N. It follows that ElF ~ cannot 
be of additive type. For, if it were, by the tables of ([40] w 6) the group of connected 
components is of order < 4, and therefore x/~ would be contained in the connected 
component of ElF ~ which is isomorphic to Ga: a contradiction since N >3 .  
Therefore ElF 3 is an elliptic curve. This easily implies that the order of the group 
E(F3) is < 7, which is a contradiction since N > 7. 

We may apply the results of [ 18] to obtain a partial analogue of Corollary (4.4) 
for quadratic imaginary number fields. 

Corollary 4.5. Let K be a quadratic imaginary number field. There is a finite set of 
rational primes JV I(K) such that, if N is a rational prime not in ~ (K) which remains 
prime in K, and E/K is an elliptic curve possessing a K-rational N-isogeny, then E has 
potentially good reduction at all primes p of K such that char k(p) > 5 (and also at 
primes p such that char k(p)= 3, provided that 3 is unramified in K). 

Proof This is an immediate application of Corollary(4.3) and [18]. 

Corollary4.6. Let K be an imaginary quadratic field. 7here is a finite set of primes 
~4r'(K) such that, if N is a rational prime not in JI/"(K) which remains prime in K, then 
no elliptic curve E/r possesses a K-rational torsion point of order N. 

Proof The proof is based on the previous corollary and proceeds along exactly the 
same lines as the proof of Theorem 4.1. 

Note that one can take Y ' ( K ) = ~ ( K ) w { a l l  prime numbers <31}, and 
therefore it is feasible to exhibit JV'(K) for any given quadratic imaginary number 
field K. In w we shall prove a "stronger" result (Prop. 8.1 for K-rational N- 
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isogenies). However, the set of primes Y ( K )  that must be excluded in Pro- 
position 8.1 is not effectively determined. 

d) Construction of Points of Infinite Order 
in all Factors of Jo(N) Over Suitable Number Fields 

We shall indicate how Corollary 4.4 can be used to provide points of infinite order. 
Let E/o be an elliptic curve with multiplicative reduction at 3. Let E~z 3 be the 

connected component of its N6ron model over Z3. Fix 03 ,  an algebraic closure of 
Q3. Let N be a prime number >3.  Let CNcE~ ((~3). Then CN is a cyclic 
subgroup of order N in E [N]  (03), stable under the action of Gal(03/Q3). Choose 
an imbedding of 0 in 0a .  By means of this imbedding we may identify E [N] (6) 
with E IN] (0  3), and C N with a subgroup of E IN] (0). Let K N c 0 denote the field 
of rationality of the subgroup CN. That  is, Gal(0/Ku)  = {g~Gal(0/Q)[g.  C N = CN}. 
Then the prime p of K N determined by the above imbedding of 0 in 0 3 is of degree 
one over Q, and, in particular, is absolutely unramified. The point eN =j(CN, E) is in 
Xo(N)(KN). 

Corollary 4.7. With the notation of the discussion above, the point e N projects to a 
point of infinite order in every nontrivial optimal quotient A of Jo(N). 

Proof By the above discussion, e~(KN/Q)= 1 < 3 - 1 .  If there were a nontrivial 
optimal quotient A of Jo(N) such that e N mapped to an element of finite order in 
A(KN), then Corollary4.3 would apply, giving us that E has potentially good 
reduction at p which it does not, by our original choice. 

e) Potentially Good Reduction for Elliptic Curves 
Representing Points in Xsplit(N ) 

Let N be a prime number such that N = 11 or N >  17. Let E/o be an elliptic curve 
such that the image of Gal (0 /Q)  in GLz(FN)=GL(EEN]) is contained in the 
normalizer of a split Cartan subgroup of GL2(FN). Thus E/Q represents a non- 
cuspidal point x ~ Xspll t (N) (Q). 

Corollary4.8. Under the above assumption, E has potentially good reduction at all 
primes p+ 2, N such that p ~  _+1 modN.  In particular, E has potentially good 
reduction for all primes p such that 2 < p < N -  1. 

Proof The cusps ofXsput(N ) are as follows: there is a unique rational cusp ~split (the 
image of ~ or 0 in X0(N2)); the remaining ( N - 1 ) / 2  cusps are rational over the 
maximal real subfield 

Q((N +(N 1) = Q((u)+ 

in Q((s) (~N a primitive N-th root of 1) and are all conjugate over Q. A prime p in 
Q((s) of characteristic p 4 = N has residue field isomorphic to F, if and only if p -  
+ 1 mod N. Therefore, if p is of characteristic p ~ + 1 rood N (p 4: N) and X/k(~ ) is a 
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cusp, we have X/kto ) = ~ s p l i t / k ( o ) .  We shall now apply Proposition 3.2 following the 
general lines of the proof of Corollary 4.3. 

Take A =J ,  the Eisenstein quotient; it is a quotient of Jo(N)- ([19] II 17.10). 
Consider the commutative diagram 

Xo(N 2) g , Jo(N)- 

Xsplit (N) f ' A 

where g is as in the discussion preceding Proposition 3.2, and the vertical maps are 
the natural ones. The map h: Xo(NZ)---~A is a formal immersion at ~/v~ by 
Proposition 3.2. Thus the induced map f :  Xsp~it(N)~A is also a formal immersion 
at ~ split/Fp" 

Since A(Q) is a finite group by ([19] III 3.1), the section f (x )  is of finite order. 
Since it specializes to zero at p > 2, by the specialization lemma (w 1 (d)) we have 
f ( x )  = 0. But the same argument as in Corollary 4.3 (see diagram there) shows this 
to be in contradiction with the fact that f is a formal immersion at ~sp~t/~p. 

w 5. The lsogeny Character 

Let K be a number field, and (C N, E) an N-isogeny defined over K. Consider the 
character 

r: Gal( /( /K) "b -+ Aut(Cu) = (Z/NZ)* 

defined by the natural action of Galois on the cyclic subgroup C N. 

Lemma 5.1. Suppose that (C N, E) is an N-isogeny defined over a number field K such 
that N remains prime in K. Then AUtc(CN, E ) = { + I  }. That is, there are no 
exceptional automorphisms of the pair (CN, E). 

Proof There are three possibilities: Aut (CN, E) = #2 r (2 7-th roots of 1) where 7 = i, 
2, or 3. Let g be a generator of Autc(C N, E). Since g leaves C N stable, an elementary 
argument shows that g is defined over K. (Ifa~Gal(I(/K),  one sees that g and g~ 
induce the same automorphism of CN; hence they must be equal since N +  2, 3.) 

The action on the tangent space of ElK induces an injection of Q(g) (the subfield 
of End(E) |  generated by g) into K. But if 7 =2  or 3, since g leaves CN stable, the 
rational prime N splits in the quadratic field Q(g), and therefore cannot remain 
prime in K. 

From here on, suppose that N remains prime in K. If U refers to the units of the 
ring of integers of a local field, and K N is the completion of K at the prime N we have 
the commutative diagram 
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U(KN ) , Gal(/~/K)ab r , F .  

norm 1 
U(QN) , a a l ( 0 / Q )  ab 

where the left horizontal arrow comes from class field theory, and the vertical 
arrows are surjective. Since any continuous homomorphism U(KN)-~F* factors 
through U(QN), and may continuous homomorphism U(QN) ~ F~v is a power of the 
cyclotomic character, we have: 

Lemma 5.2. There is a unique k in Z / ( N -  1) Z such that 

r = ~  .Z  k 

where Z: Gal (I(/ K)-~ Gal (Q/Q)-~ F* is the cyclotomic character, and ~ is unramified 
at N. 

For the remainder of this paper, we will adhere to the following notational 
conventions: 

N > 5, a prime number,  

m = (N - 1)/2, 

n =numera to r  of ( ~ ) ,  

t = m/n, 

and here is a table to aid the reader in keeping track of these numbers: 

N m o d  12 m mod 6 t 

- 1  - 1  1 
5 2 2 
7 3 3 
1 0 6 

(5.1) 

Lemma 5.3. Let ~ be as in Lemma 5.2. Then ~2t is an unramified character of  
Gal( / ( /K)  ab. I f K  = Q (or, more generally, i fK has class number one) then the order 
of ~ divides 2t (which divides 12). 

Proof We use the cyclic Galois extensions with indicated orders: 

X I ( N  ) ,X2(N ) ,Xo(N ) (5.2) 

m 
which are finite flat (Galois) morphisms over S '= Spec Z [ l /N] .  Moreover ([19] II 
Cor. 2.3) X2(N)/s, ~ ~ Xo(N)/s, is a finite ~tale morphism with Galois group equal 
to IV,, the unique quotient group of (Z/NZ)* of order n. 
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If  x=j(CN, E)~Xo(N)(K ), then the d i a g r a m  makes  it plain that  there  is an 
abe l ian  field extension K' /K whose Ga lo i s  g roup  is cyclic, of  o rde r  dividing m, such 
tha t  if p is a p r ime  of  K of  character is t ic  different from N, then the ramif ica t ion  
index e~(K'/K) divides t, and finally, there  is a K ' - r a t i o n a l  poin t  x '~XI(N)(K '  ) 
projec t ing  to x ~ X o ( N  )(K). 

If  (C'N, E')/~, represents  the po in t  x', then  the isogeny character of (C'u, E')/K, is 
t r ivial  (since it represents  a poin t  on X1) and  the two N-isogenies  (C'N, E')/K, and 
(CN,E)/r, are twists of one ano ther  by a 1-cocycle represent ing a class in 
HI(Gal(K'/K'),  du?(CN,  E)). By L e m m a  5.1 it follows that  thei r  isogeny characters  
differ by a quadra t i c  character .  Thus  r res t r ic ted to G a l ( / ( ' / K ' )  is of o rde r  d ividing 
2t ;  hence r 2t is unramif ied  except  in character is t ic  N, and  therefore so is ct 2t. 

Proposi t ion 5.1. I f  E has potentially good reduction in characteristic N, the isogeny 
character r may be written in the form 

r = ~ .Z k (5.3) 

where a2t is unramified everywhere, and where the integer k takes on only these values 
modulo m: 

k - O ,  or 1 m o d m ,  

k --- 1/2 m o d  m (only poss ible  if m ~ 0 mod  2), 

k - l ~ 3  or 2/3 m o d m  (only poss ible  if m ~ 0  m o d 3 ) .  6 

Proof Begin with a decompos i t i on  r = a .Z k as in L e m m a  5.2. Thus  ~ is unramif ied  at 
N. Since E has poten t ia l ly  good reduc t ion  at  N there  is a finite extension field L of 
K N such that  E/e(L ) has good  reduct ion.  Tha t  is, the N6ron  mode l  E/r ) is an abel ian  
scheme. By ([35] or  more  convenient ly  d i sp layed  in [32] 5.6a 0 we may  suppose  
tha t  e, the absolu te  ramif ica t ion  index of  L,  is of the  form e = 2 e 0 where e o = 2 or  3. 
The  kernel  of  mul t ip l i ca t ion  by N in E/e(L ) is a finite flat g roup  scheme E [N]/e(L) of 
o rde r  N 2. If  0 is the fundamenta l  charac te r  over L of  level 1 ( t e rminology  as in [32] 
w 1) we have  the re la t ion  Z =  0 ~ by ([32] Prop.  8) as characters  on the inert ia  
subgroup  I ~ Gat(L/L). Consequen t ly  we have the equa t ion  r = 0" where a = 2e 0 k 
(again, as charac ters  on the iner t ia  subgroup  I). I f  c and  d > 0 are integers, let (c)d 
s tand  for the unique integer congruent  to  c mod  d, in the range:  O<(C)d < d. 

By R a y n a u d ' s  theorem [31] appl ied  to  E[N]w(L ) we have:  

or  equiva lent ly  

O<=(e 0 �9 k )m~e O. 

6 This proposition might be compared with Theorem 10 of([ 19] : introduction) which asserts that a 
rational point x e X0(N)(Q) may specialize to one of a set of five particular connected components of the 
N6ron fibre in characteristic N. Indeed, after Theorem 7.1 it is clear that the value k rood m of the isogeny 
character r of(Cs, E) determines, and is determined by, the connected component of the N6ron fibre in 
characteristic N containing the specialization of x. It would be of interest to establish a more general 
relationship of this type, valid for rational points over finite extensions of Qu, by local arguments 
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Let us first suppose that we have strict inequalities in the above. If e0 = 2, then 
we have 2 k =  1 modulo m which implies that m~a0 rood 2 and k--1/2 mod m. If 
eo = 3, then 3 k =  1 or 2 rood m, which implies that m ~ 0  rood 3, and k ~  1/3 or 2/3 
mod m. In this case the given decomposition r = e .)~k satisfies the requirements of 
the conclusion of prop. 5.1. 

Now suppose that an equality occurs. Without loss of generality we may 
suppose that e 0 �9 k - 0 mod m (for otherwise replace the point x EXo(N ) by w(x), k by 
1 -k ,  ...). Since e 0 is either 2 or 3 a glance at the table (5.1) shows that g.c.d. (Co, m) 
divides t. Consequently Z k is of order dividing 2 t. We may achieve the assertion of 
the proposition, therefore, by taking ct = r and k = 0. 

An Alternate Route 

To apply Proposition 5.1 we must know that E has potentially good reduction at N. 
This can be obtained by applying Proposition 3.1 in characteristic N. This, in turn, 
requires an appeal to some delicate geometry in characteristic N (e.g., Prop. 1.2 and 
the discussion of w 2(e) using Grothendieck duality). When K = Q one can avoid 
these considerations and obtain the conclusions of Proposition 5.1 (and therefore 
also a proof of Theorem 7.1), by the following alternate argument. Suppose 
(C N, E)/ is an N-isogeny (N prime, +2,  3, 5, 7 and 13). Let 2 be the image of 
x =j(C N, E) in J, the Eisenstein quotient of J. Since J(Q) is finite, the point 2 is of 
finite order. If s is nonzero, by the specialization lemma, ~ does not specialize to 
zero in any characteristic 4= 2. It follows that x cannot specialize to ~ in any char- 
acteristic + 2. Applying this argument both to x and w x we see that without loss of 
generality we may suppose either that E has potentially good reduction in all 
characteristic+ 2 (including N), or 2 = 0  in J(Q). In the first case, Proposition 5.1 
applies as above. 

We now suppose ,2 =0,  and use ([19] III  Cot. 1.4) to deduce that x specializes to 
the irreducible component  containing ~ in X tN~ . . . .  th We shall extend the o~ J/F2v �9 
diagram (5.3) of schemes over S '=  Spec Z El/N] to a diagram of algebraic spaces 
over S: 

Lemma 5.4. I f  Wo( N)/s denotes the coarse moduli space over Spec Z = S associated to 
the problem of classifying elliptic curves together with 6tale finite subgroup schemes of 
order N, and XI(N)/s denotes the (coarse) moduli space associated to the problem of 
classifying elliptic curves together with an isomorphism between the constant group 
scheme Z / N Z  and an ~tale finite subgroup scheme in E, then there is a diagram of 
smooth algebraic spaces and finite fiat morphisms over S 

.~(N)  ,.~2(N) " ,.~o(N) 

where ~(N)/s, =Xi(N)/s, ( i= 1, 2, and 0). Moreover, the morphism 

3f2 (N)/s ~ ' ~o(N)/s 

is a finite &ale (Galois) morphism, with Galois group equal to W. ( = the quotient of 
(Z/NZ)* of order n). 
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Proof of Lemma 5.4. We quote Deligne-Rapoport [8]. Note that ~rl(N ) is just the 
algebraic stack ~/" ([8] V 2.2; their p is our N) and 5~o(N ) is the coarse moduli 
scheme associated to the algebraic stack ~B'p. For  a general discussion of algebraic 
stacks, see [7], w 4. 

The stack V is a finite 6tale covering of ~'p with Galois group (Z/N)*. Division 
by the subgroup of order 2t in (Z/N)* yields an intermediate stack ~ ,  and we take 
the coarse moduli space of this intermediate stack to be f2  (N)/s. 

Making use of([8] 18.2.1) we can determine the strict henselizations of the local 
rings of ~ and of Y'2 (N). The essential point is that the automorphism group of any 
geometric point z of ~W is equal to the automorphism group of the image of z in the 
stack ~3'p, giving that ~ is unramified. 

Since x specializes to the irreducible component containing ~ in X tN~ . . . .  th 0 ~, I / F N  ' 

one obtains that the closure ofx in Y'o(N)/s is a section over S= Spec Z. Since 5~C2(N)/s 
~Y'o(N)/s is a finite (cyclic) 6tale morphism, and since Q has no nontrivial 
everywhere unramified (finite cyclic) extensions, x lifts to an S-valued section of 
f2(N)/s. 

It follows that x/~ lifts to a K-valued point of X1 (N) where K/Q is a cyclic field 
extension of degree dividing t. Since ~ug(CN, E) = { + 1}, it follows that the isogeny 
character r: Gal (0 /Q)-~(Z/NZ)* is of order 2 t. Therefore we can take k = 0, r = 
for (5.3), and obtain the conclusion of Proposition 5.1. 

w 6. Congruences Implied by the Existence of an N-Isogeny 

Now let K be a number field, N a rational prime which remains prime in K, and p a 
prime of K of characteristic 4: N. 

Let a K-rational N-isogeny (CN, E) be given such that 

E has potentially good reduction at p and at N. (6.1) 

Write the isogeny character of (CN, E) in the form given by Proposition 5.1 
above: r=~.Z* and consider the restriction a~ of a to a decomposition group 
Gal(/(~/Kp) at p. By local class field theory we have a factorization 

Gal(/(p/Kp)ab ~ U(K~) x Z (6.2) 

dependent upon a choice of uniformizing parameter for p. 
We may consider the corresponding factorization ~p = 7p' b~, where 7~ factors 

through the projection to U(K~) in the factorization above, and b~ is an unramified 
character. By Proposition 5.1, 7p has order dividing 2t, and by construction, if 
L c / ( p  is the splitting field for the character 7~, then L/K~ is totally ramified. 

Let P be the unique prime of ~0(L). We shall first prove that, under our 
hypotheses, E/L has good reduction at P. That is, the N6ron model E/r ) is an abelian 
scheme. The reason for this is the following: The isogeny character for (CN, E)/L is 
b~ .X k, which is unramified. Since formation of N6ron model commutes with 6tale 
base change, it suffices to show that E/e(m is an abelian scheme, where M c / (  is the 
splitting field of the isogeny character r. But since E has potentially good reduction, 
either E/e(m is an abelian scheme, or its closed fibre is of additive type. But the latter 
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case is excluded since E possesses a rat ional  point of order  N (which is > 4) over M, 
and the residue characteristic is different from N (the group of connected 
components  of a N & o n  fibre of additive type is of order  _<_ 4 by [40] w 6 Table). 

Since L/K is totally ramified, we have (~(L)/P=kp ~- kp = (~(K~)/p. Denote  by 
E/ko, ) the fibre of the N6ron model  E/e;tL) modulo P. By the above discussion, E/k(~ ) is 
an elliptic curve, possessing an N-isogeny rational over kp with isogeny character  
equal to b~ .Z k. 

Notation. Let qo be a power of a rational prime p. Let  q be a power of q0. Let 
a(Fq/Fqo ) denote  any integer which is the trace of Frobenius over the field Fq of some 
elliptic curve which can be defined over Fqo. If q = qo, write a(Fq)= a(Fq/Fq). Note  
that  a(Fq) 2 < 4q by the "R iemann  Hypothesis" .  

Example. (As can be verified by hand-calculation.) 

a(F2,2/F2)= + 128, - 128, or - 4 7  

a(Fa~2/F3) = + 658, - 1358, or + 1458. (6.3) 

Now let ~eGal (kp/kp)  be the Frobenius automorphism,  and set q o = N p  
= card(k~). 

Proposition 6.3. With the notation and assumptions (6.1) above, we have: 

(1) b~(a,), qk o + b; l(ap), q~-k is congruent mod N to one of the a(F%), 

(2) qk + ql-k is congruent to one of the a(Fq/Fqo ) m o d N ,  

where q = q~o and v is the order of the character b~. 

Proof. Equat ion (1) is obtained by computing the trace of Frobenius of E/k(~ ), while 
Equat ion (2) comes from computing the trace of Frobenius of E raised to the 
extension field of kp of degree v. 

Corollary 6.1. With the notation and assumptions (6.1) as above, suppose that K = Q. 
Then 

(1) b~(G~).pk + b~ l~r~)'pl-k is congruent to one of the a(Fp) m o d N ,  

(2) pla.a + p12-lEa is congruent to one of the a(Fp12/Fp) m o d N .  

Proof. When K = Q, Proposi t ion 5.1 gives us that bp has order dividing 2t, which in 
turn divides 12. 

w 7. Rational Isogenies of Prime Degree 

Theorem 7.1. Let N be a prime number such that the genus of X o ( N) is > 0 (i.e., N = 11 
or N => 17). Then there are no elliptic curves over Q possessing Q-rational N-isogenies 
except when N = 11, 17, 19, 37, 43, 67, or 163. Equivalently, there are no noncuspidal 
Q-rational points on Xo(N ) except for the above values of N. In the above cases a 
complete list of the Q-rational noncuspidal points of Xo(N ) is given in the table at the 
beginning of the introduction. 
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Proof of Theorem 7.1. We suppose  that  N =  11 or N >  17, and (C s, E)/Q is an N- 
isogeny. Corol la ry  4.4 insures us that  E has potential ly good  reduct ion at all pr imes 
p > 2 and therefore the hypothesis  of  Proposi t ion 5.1 is satisfied for K -- Q, p > 2. Let  
r=ct.X k be its isogeny character,  as in Proposi t ion  5.1. 

Note  that  the canonical  involution w on Xo(N) interchanges k and 1 - k  and 
therefore we need only consider the three cases: k - 0 ,  1/3, and 1/2 modulo  m. By 
twisting appropr ia te ly  by quadra t ic  characters,  we suppose that  k -  0 m o d  N -  1, 
3k=_ 1 m o d  N -  1 and 2 k =  1 + m  rood N -  1 in the three respective cases above.  

k = 0: Apply  Proposi t ion 6.3 with p = 3. F o r m u l a  (2) and Example  (6.3) give 

1 + 3 1 2 = 6 5 8 ,  - 1 3 5 8 ,  or  +1458 m o d N  

and the only pr imes N for which this congruence is satisfied are: 

N = 2 ,  3, 5, 7, 13, 19, 37, and 97. 

The case N = 37 does occur, while N = 19 and 97 do not. 7 Besides citing [-19] the 
mos t  efficient way to el iminate the cases N =  19, and 97, is to repeat  the above 
a rgument  using Propos i t ion  6.3 taking p = 5. When  p > 5, it is no longer practical  to 
do the required ar i thmetic  by hand. I a m  grateful to Neal  Kobl i tz  who did this (for 
all p < 23) on a computer .  In particular,  he found that the only primes N dividing 
1 + 512 _ a(F51~/F5) are 

N = 2 ,  3, 5, 7, 13, 17, 31, 37, 61, 157, and 229 

and thus 19 and 97 cannot  occur when k - 0  m o d m .  

k =- 1/3. Again  we take p = 3 and  apply formula  (2) of Proposi t ion 6.3, and Example  
(6.3). We get the congruences 

34 + 38 - 658, - 1358, o r  + 1458 m o d  N 

and the only pr imes N for which this congruence is satisfied are: 

N = 2 ,  3, 5, 11, and 17. 

Both cases N =  11 and 17 do occur. 

k = 1/2. Here  we may  suppose tha t  2k = 1 + m m o d  N - 1, t = 1 or  3, and N -= - 1 
m o d  4. 

Claim. I f  the above case occurs then for all odd primes p < N/4 we have ( P ) = - 1 .  

( P ) =  +1 ,  i.e., p " - + 1  m o d N .  Then pl-k=pk Proof Suppose 2<p<N/4  and 

rood N and p2k=p m o d  N. Apply  formula  (1) of  Proposi t ion  6.3 to p and (noting 
that  either bp(ap) or  -bp~rp) is a 3-rd root  of  1) we have:  

pk(O -{- 19- 1) .= a(Fp) m o d  N 

7 Which follows from [19] Table in introduction 
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where O is a 3-rd root of 1. If O is a primitive 3-rd root of 1, then 

-- pk = a(Fp) m odN 

and squaring gives a (Fp) 2 = p (using the "Riemann hypothesis") which is absurd, for 
a(Fp) must be a rational integer. If O = 1, then 

4p=-a(Fp) 2 m o d N  

and the Riemann hypothesis gives us that a ( F y =  4p again implying an irrational 
value for a(Fp). 

To conclude our theorem, we shall now prove that the above claim implies that 

Q(]/-~- N) has class number 1 and hence (by Baker-Stark-Heegner [3, 37, 38]) we 
have N = l l ,  19, 43, 67, or 163 (ignoring the genus 0 cases). 

Since N = - 1  mod4,  quadratic reciprocity applied to (7.1) implies that for 

2<p<N/4 ,  p remains prime in Q ( ~ ) .  
Thus all ideals I of odd norm < N/4 are principal in the ring of integers of 

Q(I/~NN). To be sure, if we had the stronger assertion that all ideals of norm < N/4 
were principal, then Q ( I / - N )  would have class number 1 by Minkowski's 

theorem: the absolute value of the discriminant of Q ( I ~ N )  is N; the Minkowski 

constant is 2/~; and 2 / ~ . I / N < N / 4  for N >  11. We shall prove this stronger 

assertion. If2 does not split in Q( ] / / -N) ,  there is nothing to prove. Suppose, then, 
that 2 does split, in which case N =  - 1 or 7 rood 16. We must show that one (and 
hence both) of the primes of norm 2 are principal. If N = - 1 rood 16, consider the 

element ~=(3 + ] / - N ) / 2 .  One sees that the norm of e is twice an odd number; 
hence (c~) = p .  I where p is one of the primes of norm 2, and I is an "odd"  ideal, with 
norm (9 + N)/8. Since N > 11, the norm of I is less than N/4, and therefore I is 

principal. Consequently so is p. If N = 7 mod 16, take the element c~ = (1 + ~ ) / 2 ,  
and repeat the above argument. 

w 8. N-Isogenies Over Quadratic Imaginary Fields in which N Remains Prime 

Proposition 8.1. Let K be a quadratic imaginary field. There is a finite set of primes 
~3#( K) such that, if N is a rational prime which remains prime in K and N q~ JV'(K), then 
there is no elliptic curve defined over K possessing a K-rational N-isogeny. 

Proof Firstly it was shown in [18] that there is a finite set of primes ~'~ (K) such that 
if N is a rational prime which remains prime in K and Nq~JVi(K), then there is a 
nontrivial optimal quotient A of Jo(N) such that A(K) is finite. It follows from 
Corollary 4.5 that any elliptic curve E/r possessing a K-rational N-isogeny (N 
remaining prime in K, and Nr ~ (K)) has potentially good reduction at all primes p 
of K of characteristic > 3 if 3 is unramified in K, and at all primes of characteristic 
> 5 in general. 

Fix (CN, E)/K with N as in the assertion of the proposition. Let h denote the class 
number of K, and consider the isogeny character r=ct .Z k, as in Proposition 5.1. 
Consider the two cases: 
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k~  1/2 mod m: This is the easy case. Choose p a prime of K of characteristic 3 (if3 
is unramified in K) or 5 (if 3 is ramified). Set q o = N P  and q=q~2h. 

Proposition 6.3, formula (2), then gives the congruence 

l+q-a(FJFqo ) m o d N  (if k = 0  m o d N -  1), 

q~h+q8h=a(Fq/Fqo) m o d N  (if 3 k = l  m o d N - 1 ) .  

Let ~2(K) denote the set of rational primes dividing one of the numbers 

1 + q - a (Fq/Fqo) 
q,~ h + qS) h _a(Vq/Vqo ) (8.1) 

for the above choice of qo and q, where a(Fq/Fqo ) ranges as above through all- 
integers which are the trace of Frobenius over Fq of some elliptic curve definable 
over Fqo. By the "Riemann hypothesis" (8. l) is a finite set of nonzero integers. Hence 
JV2(K ) is finite, and by Proposition 5.1 and 6.3, N belongs to JV2(K), if k ~  1/2 
rood m. 

k - l ~ 2  modm:(Hence N = - l  mod4; 2 k = l + m  m o d N - 1 ;  2 t = 2  or 6.) 

With the notation of Proposition 6.3 we have 

where p is any prime of K of characteristic p, with 3 < p < N. We may also take p = 3 
if3 doesn't ramify in K. Recall that the character bo depends upon the splitting (6.2) 
and therefore on the prime p. It is of order dividing 6. h. 

Fix c, a positive number such that the ideal class group of K is generated by 
classes which are represented by prime ideals p of residual characteristic > 5 such 
that Np<c.  

Let M ~ 0 be the number field generated by all 12. h-th roots of unity, and by 

F / ~  for all prime ideals p with Np <c. 
Consider the finite set ~ consisting of pairs of algebraic integers of the form 

where: 

(i) O is a 12. h-th root of unity. 
(ii) p is a prime of K of residual characteristic __> 5, and Np < c. 

(iii) 1 / ~ "  O is not an eigenvalue of Frobenius of any elliptic curve defined over 
kp. 

Let ~ (K) denote the (finite) set of rational primes N which divide any one of 
the integers 

NM/Q(V~ " (0  + O-  1) - -  a(k~)), (8.3) 

where NMte is the norm from M to Q, ( V ~ ,  o)e6~, and a(kp) satisfies our 
notational convention (i.e. a(kp) ranges through all integers which are the trace of 
Frobenius of some elliptic curve defined over k~). 
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The set (8.3) is a finite set of nonzero integers by (iii) and the "Riemann 
hypothesis". 

Now suppose Nr JV 3 (K). Let/~(p) denote the order of the element b,(a,) in the 
multiplicative group F}. Let B(p) be a primitive fi(p)-th root of 1 in M. Let Np* 

=(NNP).Np and choose a square root of (NNP) in M. We then have a definite 

choice of square root of NO*: 

Let L=Q(B(p),  ~ ) a M ,  and C =(9(L). There is a homomorphism 

~: Z [B(p), ]/Xp*]--+ F N 

which sends B(p) to b,(~r,) and ~ to + Xk(a,). We may change our compatible 

choicesofsquareroots(of(NNP) andNp*),ifnecessary, sothat@sendslfN-p*to 

Since N is prime to 2. Np, an elementary argument shows that the N-adic 
completions of (9 and Z [-B(p), ~ ]  are equal, and therefore @ extends to a 
homomorphism @: (9 --+ Fu. 

Suppose p has residual characteristic> 5, and Np < c. 

Let 6) = 6)(p) = V  (~VP) �9 B(p). Then 6) is a 12. h-th root of 1, 

and 

By (8.2), for a suitable a(kp) we have: 

It follows that N divides the norm 

(?) ') 
but since N r ~ ;  (K), we then must have that l / ~ .  O does not satisfy condition (iii), 
or, 

V ~ '  ( o  + o -  1) = a(ko), 

for a suitable a(kp). 
This equation implies (by elementary calculation, separating the cases Np = p 

and Np =p2) that O has only these possible orders: 1, 2, 3, 4, or 6. It follows that 
eCrp)12 = 1 for all p of residual characteristic=> 5, and such that Np<c. 
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Since el 2 is an unramified character (Prop. 5.3), by choice of the number c, we 
have ~12=1. In particular, O = O ( p )  has order dividing 12 for all p of residual 
characteristic>=5 and such that Np <N.  But since N - -  1 mod4,  the possible 
orders of B(p) are: 1, 2, 3, or 6. 

Lemma 8.1. I f  (CN, E)/K is an N-isogeny with N q~ ~ (K) w ~ (K) w ~U 3 (K), then for 

all rational primes p which split or ramify in K, such that 3 < p < N/4, we have ( P ) = 

i n \  
Proof Suppose that p is a prime of K s u c h  that N p = p  and | I T | =  +1, where 
3<p<N/4 .  

Then by formula (8.2) we have 

a(Fp) 2 =p(b 2 + b -  2 +2) mod N 

where b=bp~%) is an element in F* of order 1, 2, 3, or 6. Thus 

a ( F y  = 4. p mod N if order (b) = 1 or 2, 

--= 3- p mod N if order (b) = 3 or 6. 

Using the "Riemann hypothesis" one sees that the above congruences imply: 

a(Fp)Z=4-p if order (b )= l  or 2, 
= 3. p if order (b) = 3 or 6. 

But neither equality is possible since a(Fp) is a rational integer and p > 3. 

Let ~ ( K )  be the set of prime numbers N such that ( P  ) = - l for all primes p 

such that 3 < p < N/4 and p either splits or ramifies in K. By Goldfeld's theorem (see 
Appendix) Jff4(K) is a finite set. 

By the above discussion it is clear that Proposition 8.1 is proved where Jff(K) is 
the finite set of primes ~11(K) u ~2 (K) u ~3 (K) u ~ (K). 

Appendix. An Analogue of the Class Number One Problem 

By D. Goldfeld 

1. Let K be an algebraic number field of fimte degree over Q with discriminant k, 
and let S be a finite set of rational primes. Define Y ( K ,  S) to be the set of rational 
integers N satisfying the conditions: 

- N is a discriminant of a quadratic field and for all primes lr S, l < IN[/4,/f  l 

splits completely in K, then I doesn't split in Q ( ] / -  N). 

In the case that K is equal to Q or a quadratic ficld, we shall show that J ( (K,  S) is a 
finite set. The method of proof, however, is ineffective and all that can be deduced is 
the existence of a large constant C(K, S) depending only on K and S such that 
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NeJV'(K,S)~tNI<C(K,S), (degree K < 2 )  

with at most one possible exception. The exceptional N can occur only if the 

Dedekind zeta function of either Q ( ] ~ - N )  or Q ( ~ )  has a Siegel zero; i.e., a 
real zero near to one. 

Remark. For ]kl < 10, S = {2, 3}, c(K, S) may be taken to be e 1~176 However, we are 
grateful to Joe Buhler for making some computations which suggest that this 
constant can be much improved. Extracting from his print-out, we have made the 
following table: 

key." S={2,3};  K = Q ( l / k ) ;  
p = largest prime__< 32,768 in JV'(K, S). 

k - 1  - 2  - 3  - 7  - 1 1  - 1 9  - 4 3  - 6 7  - 1 6 3  

p 193 163 163 163 163 163 163 163 239 

It does not seem possible at present to establish the finiteness of ~U(K, S) if the 
degree of K is greater than two, although various well-known hypotheses do 
suggest that this is in fact the case. In particular, the truth of the generalized 
Riemann hypothesis for algebraic number fields would imply an effective version of 
Theorem A for all K, while the weaker Lindel6fhypothesis would give a similar but 
ineffective result. 

2. In the sequel we take K = Q(l/k) to be a quadratic field, and for - N # k put F 

= Q ( I ~ , I / - N )  and let 

~F(s) =~(s) L(s, zk ) L(s, zN ) L(S, ZkZN) 

be the Dedekind zeta function of the biquadratic field F. Here Zk and ZN are 
primitive quadratic characters of Z/kZ and Z/NZ, respectively, while 

~(s)= n-S, L(s,x)= ~x(n)n s 
n= 1 n= 1 

are the usual Riemann zeta function and Dirichlet L-function. 
Now, define 

f(s) =~e(S) [ I  (1 - p-  s)(1 --Zk(P)P- ~)(1 --ZN(P)P- ~)(1 --ZkZN(P)P- s) = i An n -s 
p e S  n= 1 

g(s)=((2s)21] (1 _p-2S)z=  i B,,n-'. 
p~S  n= 1 

Lemma A. I f  N e X ( K ,  S), then An=Bn for all n<lNI/4. 

Proof. f(s) has the Euler product 

f(s) -- lrl (1 - l- ~)- 1(1 --Zk(l) l- ~)- 1(1 --ZN(/) l- ~)- 1(1 --ZkZN(I) l- ~)- 1. 
l r  



160 B. Mazur 

But for 1r and 1< [N[/4 eitherZk(l)= -- 1 orzN(1 ) = -- 1, so the Euler factor f o r / m u s t  
be of  the form 

(1 - l - 2 S )  - 2  

which is precisely the l-th Euler  factor for g(s). q.e.d. 

Theorem A. I f  k is a quadratic field, then there exists an effectively computable 
constant C(K, S) depending only on K and S such that NeJV'(K, S) implies that 
IN[ < C(K, S) with at most one possible exception. 

Proof We use an idea of L innik-Vinogradov [15]. Assume the theorem is false. 
Then by L e m m a  A there will be at least two discriminants  INI > C(K, S) for which 

1 2+ioo 4 S z+i~ (IN[/4)~ 
, , ,  ( I N I / )  , 1 ~ g(S)s(s+l)...(s+r) as 2hi 2--ioo f JtS)s(s ~- l)m..(s+r) aS=2~gi 2-ioo (1) 

since 

1 2 + i r a  X s 

i ds=O 2hi 2-'~ s(s+ 1)...(s + r) 

for 0 < x < 1 and any positive integer r. To  ensure the absolute  convergence of all the 
relevant  integrals, we can s imply take r >  5. 

Shifting the line of integrat ion to R e ( s ) =  - � 8 8  and not ing that  g(s) has a double  
pole at s =�89 it follows that  

g(O) 1 2+!i~g(s ) ([N[/4)' ds=cl i]/~+c2 tF/~log,Ni4_ n~ 
2ni2 �9 s(s+l)...(s+r) 

1 - ~ + ~ o  (igl/4)s 
+f~ i  ~ g(S)s(s+l)...(s+r) ds= []/~(cl +c21~ 

- ~ -  ~oo ( 2 )  

for effectively computab le  constants  ca, c2, c 3 depending only on S and r. 
On  the other  hand,  

1 z+io~ (INI/4)s ds 
2hi 2-io~" f(S) s(s+l)...(s+ r) 

_ 1 � 8 9  INI . ~ + _ _  ~ (IN[/4) ~ 
- 4 ( r + l ) ! A  2ni~_iof(S)s(s+l)...(s+r)dS (3) 

where 

A =L(1,Z~)/41,zN) L(1,Z~ZN), 

~--p]~Is (1-~)(1-Zkp (~p)) (1-ZN(P'/p / (1 ZkZ~(P)). 

By the Siegel-Tatuzawa Theo rem (see [35, 11, 42]) 

A>c4IN[-" ( s>0)  (4) 



Rational Isogenies of Prime Degree 161 

excep t  l o t  at  m o s t  one  e x c e p t i o n a l  N.  H e r e  c 4 is an  effect ively c o m p u t a b l e  cons t an t  
d e p e n d i n g  on  k and  e. Also ,  us ing Burgess '  b o u n d s  [6] (ob t a ined  by us ing  the  

k n o w n  R i e m a n n  hypo thes i s  for hypoe l l i p t i c  curves  o v e r  finite fields) 

]L(l+it, z)l~q3+~[�89 it] (Z m o d q )  

it is eas i ly  seen tha t  

3 
If(�89 + i  t)] < cs INI T + ~  1�89 i t] 4 (5) 

whe re  c s can  be effect ively  c o m p u t e d  and  depends  on ly  on  k and  e. I t  fo l lows f rom 

(3), (4) and  (5) tha t  

1 2 + i ~  (iNi/4)s 

2rci 2 ~i f(S) s(s+ l)...(s+r) dS>c6]Nll-~+O(lN[8-+~). 

Since  this con t r ad i c t s  (1) a n d  (2) for  e < a ~  and  suff icient ly large N the  T h e o r e m  is 
p roved ,  q.e.d.  
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