Sums of Kloosterman Sums

D. Goldfeld ${ }^{1}$ and P. Sarnak ${ }^{2}$

1 Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
2 Courant Institute of Mathematical Sciences, New York, NY 10012, USA

1. Introduction

The classical Kloosterman sum is defined by

$$
S(m, n, c)=\sum_{\substack{a=1 \\ a(a, c)=1 \\ a d \equiv 1(\bmod c)}}^{c} e\left(\frac{a m+d n}{c}\right)
$$

where $m, n \in Z^{+}$and $e(z)=e^{2 \pi i z}$. It is known to satisfy [see 14]

$$
\begin{equation*}
|S(m, n, c)| \leqq d(c) c^{1 / 2}(m, n, c)^{1 / 2} \tag{1.1}
\end{equation*}
$$

where (m, n, c) denotes the greatest common divisor, and $d(c)$ the number of divisors of c.

Many problems in number theory, especially additive problems may be reduced to estimating sums of the type

$$
\sum_{c \leqq x} \frac{S(m, n, c)}{c}
$$

One expects considerable cancellation in this sum, and Linnik [8], and Selberg [12] have conjectured that

$$
\sum_{c \leqq x} \frac{S(m, n, c)}{c}=O\left(x^{s}\right) \quad \forall \varepsilon>0
$$

and $x>(m, n)^{\frac{1}{2}+\varepsilon}$.
Recently, Kuznetsov [7] was able to show that

$$
\sum_{c \leqq x} \frac{S(m, n, c)}{c} \underset{\varepsilon, m, n}{\ll} x^{1 / 6+\varepsilon} \quad(\varepsilon>0) .
$$

This result was generalized by Deshouillers and Iwaniec [4] to Kloosterman sums associated to congruence subgroups, and to ones associated to a general discrete subgroup with finite volume by Proskurin [9]. In the last case the $1 / 6$ is replaced by $1 / 3$ while in both generalizations exceptional eigenvalues (see (2.1)) may create additional terms. All of the above results are based on a general trace formula developed in [7] and [1].

In the following Γ will denote a subgroup of $S L_{2}(Z)$ of finite index, though there is no need to make this restriction. Let q be the smallest positive integer such that

$$
\left(\begin{array}{ll}
1 & q \\
0 & 1
\end{array}\right) \in \Gamma
$$

and put

$$
\Gamma_{\infty}=\left\{\left(\begin{array}{cc}
1 & n q \\
0 & 1
\end{array}\right): n \in Z\right\}
$$

As in [12] let $k \in R^{+}$, and χ be a multiplier for this k. Then for $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, $\gamma^{\prime}=\left(\begin{array}{ll}a^{\prime} & b^{\prime} \\ c^{\prime} & d^{\prime}\end{array}\right) \in \Gamma$ we must have the consistency condition

$$
\begin{gathered}
\chi(-1)=e^{i k \pi} \\
j_{\gamma \gamma^{\prime}}(z)^{k} \chi\left(\gamma \gamma^{\prime}\right)=j_{\gamma^{\prime}}\left(\gamma^{\prime}(z)\right)^{k} j_{\gamma^{\prime}}(z)^{k} \chi(\gamma) \chi\left(\gamma^{\prime}\right)
\end{gathered}
$$

where $j_{y}(z)=c z+d$. We also fix $0 \leqq \alpha<1$ so that

$$
\chi\left(\left(\begin{array}{ll}
1 & q \\
0 & 1
\end{array}\right)\right)=e^{-2 \pi i \alpha}
$$

The notation is as in [12].
We define the generalized Kloosterman sum, $c>0$

$$
S(m, n, c, \chi)=\sum_{\substack{0 \leq a<c \\ 0 \leq d \in q \\ \gamma \in I}} \overline{\chi(\gamma)} e\left(\frac{(m-\alpha) a+(n-\alpha) d}{q c}\right)
$$

and Selberg's Kloosterman zeta function

$$
Z_{m, n}(s, \chi)=\sum_{c>0} \frac{S(m, n, c, \chi)}{c^{2 s}}
$$

Our aim in this paper is to prove the following theorems.
Theorem 1. The function $Z_{m, n}(s, \chi)$ is meromorphic in $\operatorname{Re}(s)>\frac{1}{2}$ with at most a finite number of simple poles all in $\left(\frac{1}{2}, 1\right)$, and satisfies the growth condition

$$
\left|Z_{m, n}(s, \chi)\right|=O\left(\frac{|s|^{1 / 2}}{\sigma-\frac{1}{2}}\right)
$$

for $s=\sigma+i t, \sigma>\frac{1}{2}$ as $t \rightarrow \infty$. The implied constant depends on Γ, χ, k, m, n.

Theorem 2. Let

$$
\beta=\varlimsup_{c \rightarrow \infty} \frac{\log |S(m, n, c, \chi)|}{\log c}
$$

then

$$
\sum_{c \leqq x} \frac{S(m, n, c, \chi)}{c}=\sum_{j=1}^{l} \tau_{j} x^{\alpha_{j}}+O\left(x^{\beta / 3+\varepsilon}\right) \quad(\varepsilon>0)
$$

for certain constants τ_{j} and real $0<\alpha_{j}<1$. The implied constant depends only on Γ, χ, k, m, n.
Remarks and Further Results. 1. The meromorphic continuation of $Z_{m, n}(s, \chi)$ to the entire complex plane was first obtained by Selberg [12]. The estimate on $Z_{m, n}(s, \chi)$ for large t, which is usually difficult to develop for these types of functions, is new. By a careful choice of constants in our proof we may replace the $O\left(\frac{|s|^{1 / 2}}{\sigma-\frac{1}{2}}\right)$ by $O\left(\frac{|m n|}{q^{2}} \operatorname{Vol}(\Gamma \backslash \mathscr{H}) \frac{|s|^{1 / 2}}{\left|\sigma-\frac{1}{2}\right|}\right)$ with the implied constant depending at most on k. It is likely that this is the true order of growth.
2. The number τ_{j} appears only if there are exceptional eigenvalues in the interval $\left(0, \frac{1}{4}\right)$ for the Laplacian on $\Gamma \backslash \mathscr{H}$ [see (2.1)].

The τ 's are computed explicitly in (3.3). It follows from Weil's estimate (1.1) that $\beta \leqq \frac{1}{2}$ for congruence subgroups. In general all we know is that $\beta \leqq 1$. Thus Theorem 2 agrees with the results in [7,3 and 9]. As in Remark 1, the O constant can be changed similarly.
3. Interesting examples are the groups $\Gamma=\Gamma_{0}(4 N), N \in Z^{+}$and $k=\frac{1}{2}$.

It follows by [13] that $\beta=\frac{1}{2}$ for these sums.
Indeed in these cases we have been able to show that aside from the exceptional eigenvalue at $\lambda=\frac{3}{16}$, due to θ-functions all exceptional eigenvalues are greater than or equal to $15 / 64$. It follows from Theorem 2 that

$$
\sum_{c \leqq x} \frac{S(m, n, c, \chi)}{c}=A x^{1 / 2}+O\left(x^{1 / 4}\right)
$$

($A=A(m, n, \chi)$).
Using further work of Vardi [13], one finds that the last asymptotic relation is closely related to the distribution of solutions of certain quadratic congruences.
4. In the case of weight $k=1$, there are no exceptional eigenvalues [11]. Let $N \in \mathbb{N}$, and let χ be an odd Dirichlet character to modulus N, i.e. $\chi(-1)=-1$. Define the Kloosterman sums (see [2])

$$
S(m, n, N c, \chi)=\sum_{\substack{a \bmod N c \\ d \text { mod } N c \\ a d \equiv \equiv(\bmod N c)}} \chi(d) e\left(\frac{m a+n d}{c}\right), \quad m, n, c>0
$$

It follows from Weil's estimates that $\beta=\frac{1}{2}$, and since these sums come up in odd weight, we obtain using Theorem 2,

Theorem 4.

$$
\sum_{c \leqq x} \frac{S(m, n, N c, \chi)}{c} \ll x^{\frac{1}{\varepsilon}+\varepsilon} \quad \forall \varepsilon>0
$$

2. Proof of Theorem 1

Let $L^{2}(\Gamma \backslash \mathscr{H}, \chi, k)$ be the Hilbert space of functions $\mathrm{g}: \mathscr{H} \rightarrow C$ satisfying

$$
\begin{gather*}
g(\gamma z)=\chi(\gamma)\left(\frac{c z+d}{|c z+d|}\right)^{k} g(z), \quad \gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma \tag{i}\\
\iint_{D_{r}}|g(z)|^{2} \frac{d x d y}{y^{2}}<\infty
\end{gather*}
$$

where D_{Γ} is a fundamental domain for $\Gamma \backslash \mathscr{H}$.
The operator

$$
\begin{equation*}
\Delta_{k}=y^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)-i k y \frac{\partial}{\partial x} \tag{2.1}
\end{equation*}
$$

has a self acjoint extension to $L^{2}(\Gamma \backslash \mathscr{H}, x, k)$, with real spectrum. As pointed out in [12], the spectrum below $1 / 4$ is finite dimensional. Let $u_{1}, u_{2}, \ldots, u_{l}$ and $\lambda_{1}, \ldots, \lambda_{1}<\frac{1}{4}$, with

$$
\Delta_{k} u_{j}+\lambda_{j} u_{j}=0, \quad 1 \leqq j \leqq l
$$

be the corresponding normalized eigenfunctions and eigenvalues. By separation of variables, such an eigenfunction has a Fourier expansion of the type

$$
\begin{equation*}
u_{j}(z)=\sum_{n=-\infty}^{\infty} \hat{u}_{j}(x, y) e\left(\frac{n-\alpha}{q} x\right) \tag{2.2}
\end{equation*}
$$

where

$$
\hat{u}_{j}(n, y)=\rho_{j}(n) W_{\frac{k}{2} \operatorname{sgm}\left(\frac{n-\alpha}{q}\right), s,-\frac{1}{2}}\left(4 \pi\left|\frac{n-\alpha}{q}\right| y\right),
$$

if $n-\alpha \neq 0$ and

$$
\hat{u}_{j}(0, y)=\rho_{j}(0) y^{s_{j}}+\rho_{j}^{\prime}(0) y^{1-s_{j}}, \quad \text { if } n=\alpha=0
$$

where $\lambda_{j}=s_{j}\left(1-s_{j}\right), \rho_{j}(n)$ are constants, and $W_{\beta, \mu}(y)$ is the Whittaker function which decays exponentially in y as $y \rightarrow \infty$ and satisfies the ordinary differential equation

$$
\frac{d^{2} W}{d y^{2}}+\left(-\frac{1}{4}+\frac{\beta}{y}+\frac{\frac{1}{4}-\mu^{2}}{y^{2}}\right) W=0
$$

We shall have frequent recourse to the following Mellin transform [5, p. 860]

$$
\begin{align*}
& \int_{0}^{\infty} e^{-2 \pi N y} y^{s} W_{\beta, \mu}(4 \pi N y) \frac{d y}{y} \tag{2.3}\\
& \quad=(4 \pi N)^{-s} \frac{\Gamma\left(s+\frac{1}{2}+\mu\right) \Gamma\left(s+\frac{1}{2}-\mu\right)}{\Gamma(s-\beta+1)}
\end{align*}
$$

which holds for $N>0$ and $\operatorname{Re}\left(s+\frac{1}{2} \pm \mu\right)>0$.

Following Selberg [12], we introduce the nonholomorphic Poincaré series for $m>0, m \in Z$,

$$
\begin{aligned}
P_{m}(z, s, \chi) & =P_{m}(z, s, \chi, k) \\
& =\sum_{\gamma \in \Gamma_{\infty} \backslash I} \overline{\chi(\gamma)}\left(\frac{c z+d}{|c z+d|}\right)^{-k} e\left(\frac{m-\alpha}{q} \gamma(z)\right) \frac{y^{s}}{|c z+d|^{2 s}}
\end{aligned}
$$

where $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$.
Just as in the case of ordinary Eisenstein series the above converges absolutely and uniformly in $\operatorname{Re}(s)>1$. Since $m>0$ it is also clear that $P_{m}(z, s, x) \in L^{2}(\Gamma \backslash \mathscr{H}, \chi, k)$. Furthermore, $P_{m}(z, s, \chi)$ satisfies the following recursion relation,

$$
\begin{equation*}
P_{m}(z, s, \chi)=-4 \pi\left(\frac{m-\alpha}{q}\right)\left(s-\frac{k}{2}\right) R_{s(1-s)}\left(P_{m}(z, s+1, \chi)\right) \tag{2.4}
\end{equation*}
$$

for $\operatorname{Re}(s)>1$, where

$$
\mathscr{R}_{\lambda}=\left(\Delta_{k}+\lambda\right)^{-1}
$$

is the resolvent of Δ_{k}. By the remark following (2.1) it is clear that $R_{s(1-s)}$ is holomorphic in $\operatorname{Re}(s)>\frac{1}{2}$ except possibly at the points $s_{j}, j=1,2, \ldots, l$. It then follows from (2.4) that $P_{m}(z, s, \chi)$ may be meromorphically continued to $\operatorname{Re}(s)>\frac{1}{2}$ with at most a finite number of simple poles at the points $s=s_{j}$ for $\frac{1}{2}<s_{j}<1$.

The residue is given by the following

$$
\operatorname{Res}_{s=s_{j}}\left\langle P_{m}(\cdot, s, \chi), u_{j}\right\rangle u_{j}(z)
$$

Here

$$
\begin{aligned}
\left\langle P_{m}(\cdot, s, \chi), u_{j}\right\rangle & =\iint_{D} P_{m}(z, s, \chi) \overline{u_{j}(z)} \frac{d x d y}{y^{2}} \\
& =q \overline{\rho_{j}(m)} \int_{0}^{\infty} W_{\frac{k}{2}, s_{j}-\frac{1}{2}}\left(\pi\left(\frac{m-\alpha}{q}\right) y\right) e^{-2 \pi\left(\frac{m-\alpha}{q}\right) y} y^{s-1} \frac{d y}{y} \\
& =q \overline{\rho_{j}(m)}\left(\frac{4 \pi(m-\alpha)}{q}\right)^{1-s} \frac{\Gamma\left(s+s_{j}-1\right) \Gamma\left(s-s_{j}\right)}{\Gamma(s-k / 2)}
\end{aligned}
$$

after using (2.3). Hence

$$
\begin{equation*}
\underset{s=s_{j}}{\operatorname{Res} P_{m}(z, s, \chi)=q \overline{\rho_{j}(m)} 4 \pi\left(\frac{m-\alpha}{q}\right)^{1-s_{j}} \frac{\Gamma\left(2 s_{j}-1\right)}{\Gamma\left(s_{j}-k / 2\right)} u_{j}(z), ~(z)} \tag{2.5}
\end{equation*}
$$

Lemma 1. Let $s=\sigma+i t$, for $\frac{1}{2}<\sigma \leqq 2$ and $|t|>1$

$$
\iint_{D_{\Gamma}}\left|P_{m}(z, s, \chi)\right|^{2} \frac{d x d y}{y^{2}}=O\left(\frac{m^{2}}{\left(\sigma-\frac{1}{2}\right)^{2}}\right)
$$

where the implied constant depends only on Γ, χ and k.

Proof. First for $\frac{3}{2} \leqq \sigma \leqq 3$

$$
\left|P_{m}(z, s)\right|=O(1)
$$

uniformly in z and t since the series converges absolutely.
It then follows from (2.4) and the bound [10, pp. 342]

$$
\left|\mathscr{R}_{\lambda}\right| \leqq \frac{1}{\text { distance }\left(\lambda, \text { spectrum }\left(A_{k}\right)\right)}
$$

that

$$
\left(\iint_{D}\left|P_{m}(z, s, \chi)\right|^{2} \frac{d x d y}{y^{2}}\right)^{1 / 2}=O\left(\frac{m-\alpha}{q}\right) \frac{\left|s-\frac{k}{2}\right|}{|t||2 \sigma-1|}
$$

since $\operatorname{dist}\left(s(1-s)\right.$, spectrum $\left.A_{k}\right) \geqq \operatorname{Im}(s(1-s))=|t(2 \sigma-1)|$.
Lemma 2. For $m, n>0, \sigma>\frac{1}{2}$, we have

$$
\begin{aligned}
& \iint_{D_{\Gamma}} P_{m}(z, s, \chi) \overline{P_{n}(z, \bar{s}+2, \chi)} \frac{d x d y}{y^{2}} \\
& \quad=(-i)^{k} 4^{-s-1} \pi^{-1}\left(\frac{n-\alpha}{q}\right)^{-2} \frac{\Gamma(2 s+1)}{\Gamma(s+k / 2) \Gamma(s-k / 2+2)} Z_{m, n}(s, \chi)+R(s),
\end{aligned}
$$

where $R(s)$ is holomorphic in $\sigma>\frac{1}{2}$ and $|R(s)|=O\left(1 / \sigma-\frac{1}{2}\right)$ in this region.
Proof. We compute

$$
\begin{aligned}
& \iint_{D_{\Gamma}} P_{m}(z, s, \chi) \overline{P_{n}(z, \omega, \chi)} \frac{d x d y}{y^{2}}=\delta_{m, n}\left(\frac{4 \pi(n-\alpha)}{q}\right)^{1-s-\bar{\omega}} \Gamma(s+\bar{\omega}-1) \\
& \quad+\sum_{c \neq 0} \frac{S(m, n, c, \chi)}{|c|^{2 s}} \int_{0}^{\infty} \int_{-\infty}^{\infty} \frac{y^{\bar{\omega}-s}}{\left(x^{2}+1\right)^{s}}\left(\frac{x+i}{\left(x^{2}+1\right)^{1 / 2}}\right)^{-k} \\
& \cdot e\left[-\left(\frac{m-\alpha}{q}\right)\left(\frac{1}{y c^{2}(x+i)}\right)-\left(\frac{n-\alpha}{q}\right)(x y-i y)\right] \cdot \frac{d x d y}{y}
\end{aligned}
$$

Using the formula [5, p. 321],

$$
\int_{-\infty}^{\infty} \frac{(x+i)^{-k}}{\left(x^{2}+1\right)^{s-k / 2}} e^{-2 \pi i\left(\frac{m-\alpha}{q}\right) x y} d x=\frac{-\pi(-i)^{k}\left(y \pi\left(\frac{m-\alpha}{q}\right)\right)^{s-1}}{\Gamma(s+k / 2)} W_{\frac{k}{2}, s-\frac{1}{2}}\left(\frac{4 \pi(m-\alpha)}{q} y\right)
$$

in conjunction with (2.3) it follows on setting $\omega=\bar{s}+2$ that

$$
\begin{aligned}
& \left\langle P_{m}(\cdot, s, \chi), P_{n}(\cdot, \bar{s}+2, \chi)\right\rangle=\delta_{m, n}\left(\frac{4 \pi(n-\alpha)}{q}\right)^{-2 s-1} \Gamma(2 s+1) \\
& \quad+(-i)^{k} 4^{-s-1} \pi^{-1}\left(\frac{n-\alpha}{q}\right)^{-2} \frac{\Gamma(2 s+1)}{\Gamma(s+k / 2) \Gamma(s-k / 2+2)} Z_{m, n}(s, \chi) \\
& \quad+\sum_{c \neq 0} \frac{S(m, n, c)}{|c|^{2 s}} R_{m, n}(s, c)
\end{aligned}
$$

where

$$
\begin{aligned}
R_{m, n}(s, c)= & \int_{0}^{\infty} \int_{-\infty}^{\infty} \frac{y^{2}}{\left(x^{2}+1\right)^{s}}\left(\frac{x+i}{\left(x^{2}+1\right)^{1 / 2}}\right)^{-k} \\
& \cdot\left(\exp \left\{-2 \pi i\left(\frac{m-x}{q}\right) \frac{x-i}{y c^{2}\left(x^{2}+1\right)}\right\}-1\right) \\
& \cdot \exp \left\{-2 \pi i\left(\frac{n-\alpha}{q}\right)(x y-i y)\right\} \frac{d x d y}{y}
\end{aligned}
$$

Now

$$
\begin{aligned}
& \int_{0}^{\infty} y\left|\exp \left\{-2 \pi i\left(\frac{m-\alpha}{q}\right) \frac{x-i}{y c^{2}\left(x^{2}+1\right)}\right\}-1\right| \exp \left\{-2 \pi\left(\frac{n-\alpha}{q}\right) y\right\} d y \\
& \ll \int_{0}^{c-2} y d y+\int_{c^{-2}}^{\infty} y \frac{\exp \left\{-2 \pi\left(\frac{n-\alpha}{q}\right) y\right\}}{c^{2} y} d y \ll c^{-2}
\end{aligned}
$$

Therefore $\left|R_{m, n}(s, c)\right| \ll c^{-2} /\left|\sigma-\frac{1}{2}\right|$ which implies that

$$
\sum_{c \neq 0} \frac{S(m, n, c, \chi)}{|c|^{2 s}} R_{m, n}(s, c)
$$

is holomorphic in $\sigma>\frac{1}{2}$ and $O\left(1 / \sigma-\frac{1}{2}\right)$ in this region. Q.E.D.
Theorem 1 follows easily from Lemmas 1 and 2 and Stirling's formula

$$
\left|\frac{\Gamma(2 s+1)}{\Gamma(s+k / 2) \Gamma(s-k / 2+2)}\right| \sim \frac{|t|^{-1 / 2}}{\sqrt{2 \pi}}, \quad|t| \rightarrow \infty .
$$

3. Proof of Theorem 2

Choose $\varepsilon>0$. By Theorem 1 and the Phragmén Lindelöf principle [6, Th. 14] it follows that

$$
\begin{equation*}
\left|Z_{m, n}\left(\frac{1+s}{2}, \chi\right)\right| \ll|t|^{\frac{1}{2}-\frac{\sigma}{2 \beta}+\varepsilon} \tag{3.1}
\end{equation*}
$$

for $0<\varepsilon \leqq \sigma \leqq \beta+\varepsilon$. Now proceeding as in the proof of the prime number theorem [3, p. 104]

$$
\sum_{c \leqq x} \frac{S(m, n, c, \chi)}{c}=\frac{1}{2 \pi i} \int_{+\beta-i T}^{+\beta-i T} Z_{m, n}\left(\frac{s+1}{2}, \chi\right) \frac{\chi^{s}}{s} d s+O\left(\frac{x^{\beta+\varepsilon}}{T}\right)
$$

As was shown before, the function $Z_{m, n}\left(\frac{s+1}{2}, \chi\right)$ has poles at $s=2 s_{j}-1$ and a computation shows

$$
\begin{align*}
& \operatorname{Res}_{s=2 s_{j}-1} Z_{m, n}\left(\frac{1+s}{2}, \chi\right)=\tau_{j}(m, n) \\
& =\frac{q^{2} \overline{\rho_{j}(m)} \rho_{j}(n)\left(\left(\frac{m-\alpha}{q}\right)\left(\frac{n-\alpha}{q}\right)\right)^{-s_{j}+1} \Gamma\left(s_{j}+k / 2\right) \Gamma\left(2 s_{j}-1\right)}{(-i)^{k} 4^{2 s_{j}} \pi^{3 s_{j}+1} \Gamma\left(s_{j}-k / 2\right)} \tag{3.2}
\end{align*}
$$

Now shifting the line of integration in (3.2) to $\operatorname{Re}(s)=\varepsilon$, using (3.1) and (3.3) we obtain

$$
\sum_{|c| \leqq x} \frac{S(m, n, c)}{|c|}=\sum_{\frac{1}{2}<s_{j}<1} \tau_{j}(m, n) \frac{x^{2 s_{j}-1}}{2 s_{j}-1}+O\left(x^{\varepsilon} T^{1 / 2+\varepsilon}+\frac{x^{\beta+\varepsilon}}{T}\right)
$$

Choosing $T=x^{2 \beta / 3}$ proves the theorem.
Acknowledgements. The authors would like to thank Professor D. Héjhal for his remarks and suggestions.

References

1. Bruggeman, R.W.: Fourier coefficients of cusp forms. Invent. Math. 45, 1-18 (1978)
2. Davenport, H.: On certain exponential sums. J. für Mathematik 169, 158 (1933)
3. Davenport, H.: Multiplicative number theory. Berlin-Heidelberg-New York: Springer 1980
4. Deshouillers, J.M., Iwaniec, H.: Kloosterman sums and Fourier coefficients of cusp forms. Preprint 1981
5. Gradshteyn, I.S., Ryzhik, I.M.: Table of integrals, series, and products. New York: Academic Press 1980
6. Hardy, G., Riesz, M.: Dirichlet series. Cambridge: Cambridge University Press 1915
7. Kuznetsov, N.V.: Peterson hypothesis, for parabolic forms of weight zero and Linnik hypothesis. Sums of Kloosterman sums. Math. Sbornik 111, (153, no. 3) 334-383 (1980)
8. Linnik, Y.V.: Additive problems and eigenvalues of the modular operators. Proc. Internat. Congr. Math. Stockholm 1962, pp. 270-284
9. Proskurin, N.V.: Summation formulas for generalized Kloosterman sums. Zap. Naven. Sem. Leningrad Otdel. Mat. Inst. Steklov 82, 103-135 (1979)
10. Riesz, F., Nagy, B.: Functional analysis. New York: Frederick Ungar Publishing Company 1978
11. Roelcke, W.: Das Eigenwertproblem der automorphen Formen.... Math. Ann. 167, 292-337 (1966)
12. Selberg, A.: On the estimation of Fourier coefficients of modular forms. Proc. Symposia in Pure Math. VIII A.M.S., Providence 1965, pp. 1-15
13. Vardi, I.: Mass. Inst. Tech. Ph.D. Thesis, 1982
14. Weil, A.: On some exponential sums. Proc. Natl. Acad. Sci. USA 34, 204-207 (1948)

Oblatum 5-IV-1982 \& 10-V-1982

