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 PARTITIONS, EGYPTIAN FRACTIONS, AND FREE

 PRODUCTS OF FINITE ABELIAN GROUPS

 MICHAEL ANSHEL AND DORIAN GOLDFELD

 (Communicated by Andrew Odlyzko)

 ABSTRACT. Some computational questions concerning free products of finite
 abelian groups are reduced to questions in additive number theory involving
 partitions and Egyptian fractions. These in turn are resolved employing the

 Mathematica TM computer system.

 1. INTRODUCTION

 In [2], it is shown that if

 (1) G = GI * G* Gr
 is the free product of r > 2 finite abelian groups Gi of order qi > 2, then the
 commutator subgroup G' of G is a free group of rank s where

 (2) s q-q i (q -

 and q = q, q2 rqr is the index of G' in G. Without loss of generality we may
 assume q1 ? q2 ? < qr. We refer to (q1, q2, , q ) as an order type of
 G.

 The following basic question provoked our investigation:

 To what extent does the index q, the number offactors r, and

 (3) the commutator subgroup G' of G (given by (1) above) uniquely

 determine the order type (q, , q2, ' * qr) ?
 For given positive integers q, r, s, with r > 2, let F(q, r, s) denote the

 class of all groups G which are free products of r finite abelian groups and
 whose commutator subgroup G' satisfies

 [G: G']=q, rank(G')=s,
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 890 MICHAEL ANSHEL AND DORIAN GOLDFELD

 and let F(q, r) = Us r(q, r, s) . Let C (q, r, s) denote the number of distinct
 order types associated with the groups of F(q, r, s). For fixed q, r question
 (3) is equivalent to asking for which values of s E Z is C(q, r, s) = 1. Ac-

 cordingly, let C(q, r) denote the number of s E Z for which

 C(q, r, s) > 1.

 We shall completely determine C(q, r) in the special case that q is a prime

 power and r is small. This answers (3) for this case. If q is a prime power

 and r is large, we reduce (3) to a linear diophantine problem and provide an
 effective algorithm for computing C(q, r).

 It is known [4] that the number of nonisomorphic abelian groups of order

 m = rlFJ 1j (here 1i denote the distinct primes dividing m ) is given by

 (4) N(m) = p(el)p(e2) ...p(ek),
 where p is the partition function. It follows that if {q, r, s} uniquely de-

 termines the order type (q1, q2, ... , qr) then the number of factorizations
 defining groups in F(q, r, s) is precisely 7JI= N(qi). It is a consequence of
 the Kurosh isomorphism theorem [5, p. 245] that distinct factorizations of type
 (1) define nonisomorphic groups.

 We now reformulate the question (3) as a problem concerning partitions
 and Egyptian fractions. Following Schroeder [6], an Egyptian fraction is a unit
 fraction, i.e. a rational number with numerator equal to one. Traditionally,
 an Egyptian fraction expansion is the representation of a rational number as a
 sum of distinct unit fractions (see [3]). Note that for the Egyptians, the basic
 fractions were the unit fractions and the special fraction 2 . The Rhind papyrus
 (2000-1800 B.C.) gives an algorithm for representing rational numbers as sums
 of these basic fractions [7]. We generalize the traditional concept of expansion
 and define an Egyptian fraction decomposition as the representation of a rational
 number as a sum of unit fractions which may not necessarily be distinct.

 Let q be a positive integer. For a E Q, r = 2, 3, ... let M(q, r, a) denote
 the number of r-tuples of integers {q1, q2, ..., qr}, satisfying

 (a) 2 < q q < 2 ..< qr
 (b) q qlq2... qr (multiplicative condition),

 r

 (c) c = E (Egyptian fraction decomposition),
 1=1 qi

 and let M(q, r) denote the number of aE Q for which M(q, r, a) > 1. The
 condition M(q, r) = 0 is equivalent to the fact that for each a E Q, if an

 r-tuple {q1, q2, ... I qr} satisfying (5) exists, then it must be unique.
 It is easily checked that

 (6) M(q, r, r- 1 +(1 -s)/q) = C(q, r, s)
 and

 M(q, r) = C(q, r),

 and this provides the required reformulation.
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 PARTITIONS, EGYPTIAN FRACTIONS AND FREE PRODUCTS 891

 We shall show that the computation of M(q, r) is equivalent to a certain
 linear diophantine problem in the special case that q is a power of a prime 1.

 Our main results are:

 Theorem 1. Let q = I' be a prime power. If r < 21 + 1 then M(q, r) = 0;
 hence any rational number a has at most one Egyptian fraction decomposition of
 type (5). If r = 21 + 1 then M(q, r) is precisely the number of integer solutions

 {a, b} satisfying

 1 < a < b < 2b -a+ 1,

 n = (21 + 1)b + 31.

 Moreover, if r = 21 + 1 then M(q, r, a) < 2 for all rational a.

 Theorem 2. Let q = I' be a prime power. If 2 < r < 21 + 1 then the number of
 nonisomorphic commutator subgroups associated to groups in 1(q, r) is

 E 1,
 el+e2+-* +er=n

 l<e,< ..< er

 the number of integer partitions of n into r positive parts, unless r = 21+1, n =
 31 + b(21 + 1) with b = 2, 3, 4 ..In this case, the number of nonisomorphic
 commutator subgroups is given by

 E 1 - (b- 1).
 el+e2+ +er=n

 1<el< .<er

 Let -v be a class of finite abelian groups. We say -v is order determined

 provided G, H E v are isomorphic if and only if IGI = IHI (e.g. the finite
 cyclic groups). Let Fr (q, r) denote those groups G E F(q, r) whose factors

 Gi E-.
 As a consequence of Theorem 1, we shall obtain:

 Corollary 3. Let v be a class offinite abelian groups which is order determined
 and possesses groups of every possible order and let q = In be a prime power. If
 r < 21+1 or r = 21+1 and n - 31 (mod 21+1), then G, H E J(q, r) are
 isomorphic if and only if their commutator subgroups G', H' are isomorphic.

 Remarks. If q = In is a prime power, our methods yield an algorithm for
 determining C (q, r) for any fixed r > 21 + 1. In general, this algorithm reduces

 the computation of C (q, r) to counting the number of solutions of a certain
 linear diophantine problem, of the type considered in [1].

 To illustrate Theorem 1 we consider the case where 1 = 2, b = 2, r = 5, n =

 16. We have M(2 16, 5) = 1 and the associated decompositions are
 1 1 1 1 1 1 1 1 1 1 _ 13 ~~~~~~~~~~~~~~~ 13~
 2+8+ 16+ 16+ 16 4+4+4+32+32 16'

 Similarly, when 1 = 2, b = 3, r = 5, n = 21, we have M(2 21, 5) = 2. The
 associated decompositions are

 1 1 1 1 1 _ 1 1 1 1 1 13

 4 16 32 32 32 8 8 8 64 64 32'
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 892 MICHAEL ANSHEL AND DORIAN GOLDFELD

 1 1 1 1 1 1 1 1 1 1 41

 2 + 16 + 32 + 32 + 64 4 4 8 +128 + 128 64'
 If q is not a prime power, then the situation becomes considerably more

 complex. Nevertheless, if r = 2 we will always have M(q, 2) = 0. This is

 because the equations

 q, q2 q=
 1 1

 + =o

 ql q2

 either have no solutions in integers q1, q2, or else must have a unique solution,

 2 < q, < q2, in integers q1, q2. On the other hand, if r = 3, it is not hard to
 find q for which M(q, r) > 1. This occurs, for example, if r = 3 and q = 600

 since
 5 1 1 1 11 1
 12 4+ 10+ 15 5+ 6 +20'

 4 10 . 15= 5 6 . 20 =600

 and
 29 1 1 1 1 1 1

 60 3 10 +20 4 5 30'
 3 10*20=4*5*30=600.

 A more interesting example is furnished by r = 3, q = 2*3*5*7*11*13*17.
 In this example

 35963 1 1 1 1 1 1

 510510 - 17 + 154 +195 26 + 33 + 595
 and

 17 . 154. 195 =26 * 33 * 595 = 510510 = q.

 2. PROOF OF THEOREMS 1 AND 2

 Let I be a prime number, and let
 m

 [a,l, a2, am]=E
 i=1

 represent a length m Egyptian fraction decomposition of ae = Ei= p a (with

 respect to 1). We let Em (a) denote the set of all such length m decompositions.

 Similarly, define

 Em() ={[al,a2,...,am] E Em(ae) Ia a2?< a}.
 Since

 =-a F-a-i + I-a-I

 / times

 we see that

 / times

 [a, , a2,.* , am] = [ai, . .., aj_j a1 + 1,.., a1 + I aj+, .. ., am].
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 PARTITIONS, EGYPTIAN FRACTIONS AND FREE PRODUCTS 893

 It is, therefore, natural to define an expansion operator

 Ti: Em(a) - ,Em+i (a)

 where

 / times

 Ti([al , a2, .. am]) = al.., aj_j, ai + 1..,ai + 1aj+j,.. am]

 This operator may be extended to an operator

 T: Em (ct) PowW(Em+i_t(a))

 where for A E Em (a),

 m

 T(A) = U Ti(A).
 i=l

 We can further extend T to an operator on subsets

 T: Pow (Em (a)) Pow (Em+il (a) )

 by requiring that for X E Pow(Em (a))

 T(X)= U T(A).
 AEX

 A EEm (a)

 If 0 < a < I is a rational number given by a reduced fraction whose denom-
 inator is of the form lm , then a has a unique l-adic expansion

 m

 a = E c(ai) I-al

 O<a1 <a2< <am

 where 1 < c(ai) < I - 1 for 1 < i < m. Set c = Em1I c(ai). This data
 determines a unique element A. E EQ (a) given by

 A= [rep(a1, c(a,)), rep(a2I c(a2), ..), rep(am, c(am))]

 where

 rep(a, t) = a , a... , a

 t times
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 894 MICHAEL ANSHEL AND DORIAN GOLDFELD

 We now prove the fundamental lemma:

 Lemma 4. Let 0 < a < I be a rational number given by a reducedfraction whose

 denominator is of the form I", and let A. be as above. Then any Egyptian
 fraction decomposition of a

 [a1, a2, .an],
 satisfies

 [al, a2, ,an] E T(Aa)

 for some integer k which depends on n and 1. Hence

 En (ae) C Tk(Aj9.

 Proof of Lemma 4. We define an ordering operator Ord: E n(a) En (a) as
 follows:

 Ord([al , a2, ..., an]) = [a', a2, 2 ., an]
 where

 {al , a2,*, an} = al, a2.. n

 as sets and

 a < a < an-

 Let A = [al, a2, ... , an] E En (a). Without loss of generality we may assume
 that a1 < a2 < ... < an. By abuse of notation, we also consider A as a set
 {al, a2, ... , an}. If I elements of A are equal to a1, say,

 ai = aj+, * aj+l-l '
 then we call

 {aj, aj+i, ..., aj+l_ 1}
 an 1-block of a 's. If such an I-block occurs then we may define a contraction

 operator T1 by

 1-block

 T(a,.., aj_l , ai. ..., a+ , aj+l,., a)

 = [al n, ai-_ , ai-1 aj+l ... an]

 which replaces the 1-block

 { aj , aj+, j, aj+,_l}

 by the single element a1 - 1.

 We now prove Lemma 4. The assumption 0 < a < I ensures that

 0 < a> < a2 < * < a.

 Now recursively contract and reorder, that is recursively apply the contraction

 operator

 Ord o T.
 J
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 to

 [a,l, a2,*, an]

 whenever some /-block of a1's occurs. After finitely many contractions de-

 pending on n and I we obtain a new Egyptian fraction decomposition

 B = [bl , b2, ,.. bs I E Es (?8)

 where s < n and no value bi is repeated I or more times. It follows that

 B = A

 must be the unique I-adic expansion of a. By reversing all steps, it is clear that
 if B = A is obtained after k contractions of A then

 [al, a2, , an] E T (E(Aj).
 This completes the proof.

 For A = [al, ..., am] E Em(a), we define

 m

 S(A) = Lal,
 i=l1

 L(A) = m

 We now prove Theorem 1. Let q = In and r < 21 + 1. Fix a E Q. It follows

 from (5c) and the conditions r < 21 + 1 n > 1 that a < 2 + 1/I. Assume (5)

 has two solutions {q1, q, 5q2 q qI} and {q> 5q, qI} where

 qi = Ia, and ql = la,

 for 1 < i < r. This gives rise to two sets

 U= [al,a2,. , a r] and V= [a,a2, a... ,ai]

 in E, (a). It follows that we must have

 U, V E T' (AO)

 where 0 <, < 3 since r < 21 + 1. Moreover the condition
 r r

 1qi 4qi = q
 i=l i=l

 implies that S(U) = S(V).
 We have used a Macintosh II computer with the computer language

 Mathematica ? [8] to find all solutions in integers ,u and Egyptian fraction
 decompositions

 00

 U, V, AE U U Em(ae)
 al(Q m=1
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 896 MICHAEL ANSHEL AND DORIAN GOLDFELD

 to the problem

 (7) U , V e T" (A) (O < < 3),
 S(U) = S(V),

 U V( as sets.),

 L(U) =L(V) < 21 + 1.

 The only solution to (7) found was

 (8) A = [a, b, c] with l < a < b < c,
 1 times 1 times

 U= a+ , ..., a 1Ib 5 C

 (I-1) times I times

 V= a, b+ 1, ...,5 b + 1,5 b +2,5 ...,5 b+2, c.

 Here S(U) = la + b + Ic + 21. S(V) = a + (21 - 1)b + c + 31- 1, and the
 condition S(U) = S(V) implies that c = 2b - a + 1. Since S(U) = S(V) = n,
 we must also have n = a + (21 - l)b + c + cl - 1. These results imply that if
 r < 21 + 1 then M(ly, r) = 0, while if r = 21 + 1, then

 M(ln, r) = Card{[a, b, c] I 1 < a < b < c, c = 2b-a+ 1, n = (21 + l)b+31}

 which is precisely the formula given in Theorem 1.

 We now briefly describe the algorithm for solving (7). First, if the length of
 A is greater than three then we must have U, V E T(A). It is easily checked
 that there can be no solutions to (7) in this case. If the length of A is three, set

 A = [a, b, c],

 with a < b < c. Then T(A) consists of the following 3 elements:

 [rep(a+ 1, 1), b, c],

 [a, rep(b + ,1), c],

 [a, b, rep(c+ 1,1)].

 One immediately checks that there can be no solutions to (7) among the above
 3 elements. Similarly T 2(A) consists of the following elements:

 [rep(a + l, l - 1), rep(a + 2, 1), b, c],

 [rep(a + 1, 1), rep(b + 1, 1), c],

 [rep(a + ?, 1), b, rep(c + I, 1)],

 [rep(a + 1, 1), rep(b +1,1), c],

 [a, rep(b+ 1,1-1), rep(b+2, 1), c],

 [a, rep(b + 1, 1), rep(c + 1, 1)],
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 PARTITIONS, EGYPTIAN FRACTIONS AND FREE PRODUCTS 897

 [rep(a + 1, 1), b, rep(c + 1, 1)],

 [a, rep(b + 1, 1), rep(c + 1, 1)],

 [a, b, rep(c + 1, I - 1), rep(c + 2, 1)].

 By examining all eighty-one pairs of the above elements, it is shown that the

 only solutions to (7) of the above type are given by (8). The calculations for A

 of lengths one and two are entirely similar and lead to no additional solutions
 of (7).

 To prove Theorem 2, note that from (2) the number of nonisomorphic com-

 mutator subgroups associated to groups in F(q, r) is just

 E 1 - C(q, r)
 2l q< r
 q ...qr=q

 since in this case C(q, r, s) < 2 for all ranks s E 2, by Theorem 1 and (6).

 But setting qi = le and q = In, we have

 E 1 = E 1.
 (_1 q2 < qr el+ +er=n
 q, . q r=q 1 <el <. er

 Moreover, C(q, r) = M(q, r), and by Theorem 1, M(q, r) = 0 unless n =

 (21 + I)b + 31, in which case M(q, r) = b - 1.

 3. ANOTHER PROOF OF THEOREM 1

 The referee has kindly allowed us to include an alternative proof of Theorem
 1 which was discovered while reviewing this paper.

 Suppose {P1, , Pr} and {q1, , qr} are given in increasing order, and
 suppose Hpi = Hqi = In, where I > 2 is prime, and a = ZP71 = EqiT1

 Then Pi= la and q, = Ib, ai , bi > l and Zai =Zbi = n . Let c1 (resp.
 d ) denote the number of a 's (resp. b1's) which equal j. Then {cy} and {d }

 satisfy the following conditions:

 (i) E c, = di = r,
 (ii) Z jcj = jd = n,
 (iii) Z cjl'J = Zdj = aI .

 Conversely, any choice of {cj} and {dJ} satisfying (i) through (ii) will satisfy
 the conditions outlined in the first sentences. Let ej = Cj - di and let P(x)
 denote the polynomial Z(cj - d J)x . Then (i) through (iii) imply that P(1) =
 P'(1) = P(lF1) = 0 so that, as real polynomials,
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 898 MICHAEL ANSHEL AND DORIAN GOLDFELD

 Since the e1's are integers and the factor has leading unit terms, it is easy

 to show by induction that the fj's are also integers: (9) gives the complete

 parametrization of {pi} and {qi} satisfying the conditions of the problem.
 We are interested in the case r < 21 + 1 . Since I= e cj - d < c + d , this

 implies that P := E ej < 2r < 41 + 2. One possible direction is to observe

 from (9) that P(-1) = Z(-l )ej < ? ej and P(-1) = 4(1 + 1) Z(-l) fj,
 hence Z(-i) jj =0; that is, (x + 1) IP(x) .

 It is actually easier to backtrack somewhat. Write

 (1 0) P(X) = E ejxj = (I - Ix) E gjxj,

 where each gi is an integer, and further, E gj =E jgj = 0 (in view of (9)).
 Write E gjxj as a sum (the same number of) xt',s and -xuj's:

 E gjxj = X I + . . + x ts _ Xui- . - xus (tl < ..< tS ' U < .. < U5s) .

 There may be some repeats among the t's and among the u's if IgjI > 2, but
 no ti is also a u; . Further, Eti = Eu1 because E jgj =0 . It follows that

 P( ) =Xt Ix t+ +.. + xt S- Xts+1 _ x ul + JXU1+1 u + U Us +1

 What is IIPI , the sum of the absolute values of the coefficients of P(x) ? It
 is 2s(/ + 1) minus whatever cancellation occurs. Observe that the xti's and

 x t1+1scannot cancel with any xuj or xuj+1, because no ti is a u; . If any
 power of x repeats, it does so with the same sign, and no cancellation occurs.

 Any cancellation occurs among the ti's and among the uj's; since x , and
 xuI can't cancel, having minimal exponent, at most s - 1 powers of x are

 cancelled among the t's and among the u's, so IIPII > 2s(I + 1) - 4(s - 1) . Thus,
 41+2 > 2s(1+ 1) -4(s - 1) = 2s(1- 1) +4. It follows that (21- 1)/(/- 1) > s.

 If / > 3, this implies that s = 1 or 2. If / = 2, then s = 1, 2 or 3; but if
 s = 3, then the maximal cancellation occurs.

 If s = 1, then Ztj = Zuj implies that t1 = u1, which is excluded. If
 s = 2, then tl + t2 = u1 + u2. Assume without loss of generality that a = t1 <
 ul = b and that u2= b + d. Then t2= c = 2b + d - a > u2 and

 p(X) = Xa _ jXa+1 _ xb + /xb+d + Ixb+dt1 xb+d + Ixb+d+l + XC ixc1+

 The only opportunity to cancel in IIP occurs if d = 1, and IPI = 41 + 2 in
 this case. This is the case identified in Theorem 1. Finally, suppose I = 2 and

 s = 3; then the maximal cancellation must occur among both the t 's and the

 u1's. Thus, t2=t1+1 and t3=t1+I or t2+I,and Et =3t +2 or 3t +3.

 Similarly, E ui = 3ul + 2 or 3U1 + 3, so t= u1, which is a contradiction.
 Thus, the only case which occurs is the one given in the first theorem.
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