SPECIAL VALUES OF DERIVATIVES OF L-FUNCTIONS

DORIAN GOLDFELD

Columbia University

$\S1$. Generalities on Modular Forms and 1–Cocycles

Consider an unramified covering

 $Y \\ \downarrow \pi \\ X$

of complex manifolds X, Y. Let $\Gamma(O_Y^*)$ denote the group of invertible holomorphic functions on $Y, G = \operatorname{Gal}(Y/X)$, and let $H^1(G, \Gamma(O_Y^*))$ be the group of one-cocycles of G with values in $\Gamma(O_Y^*)$.

A map

$$\sigma: G \times Y \longrightarrow \mathbb{C}^* = \mathbb{C} - \{0\}$$

is an element of H^1 if and only if it satisfies

$$\sigma(g_1g_2, y) = \sigma(g_1, g_2y) \cdot \sigma(g_2, y)$$

for all $g_1, g_2 \in G, y \in Y$. Given such a σ , we may also define an action of G on $Y \times \mathbb{C}$ via

$$g \cdot (y, w) = (gy, \sigma(g, y)w)$$

where $\sigma(g, y)w$ is ordinary multiplication of complex numbers. Factoring by this action defines a map

$$\phi: H^1 \longrightarrow \operatorname{Pic}(X)$$

given by

$$\phi(\sigma) = G \backslash (Y \times \mathbb{C})$$

for all $\sigma \in H^1$. This leads to the sequence

$$H^1(G, \Gamma(O_Y^*)) \xrightarrow{\phi} \operatorname{Pic}(X) \xrightarrow{\pi^*} \operatorname{Pic}(Y),$$

which we claim is exact. To see this, note that for $\mathcal{L} \in \operatorname{Pic}(X)$, we have $\pi^* \mathcal{L} = Y \times \mathbb{C}$ is trivial. Further, for $y \in Y$, $g \in G$,

$$\{y\} \times \mathbb{C} \simeq \{gy\} \times \mathbb{C}$$

Typeset by \mathcal{AMS} -TEX

^{*}Research supported in part by NSF grant no. DMS 9200716

is an isomorphism of \mathbb{C} -vector spaces. Such an isomorphism must be given by $\sigma(g, y) \in \mathbb{C}$,

$$\{y\} \times \{w\} \ \mapsto \ \{gy\} \times \{\sigma(g,y)w\}$$

which implies that $\sigma(g, y) \in H^1$ and $\mathcal{L} \simeq G \setminus (Y \times \mathbb{C})$. Further, $G \setminus (Y \times \mathbb{C})$ is trivial if and only if there exists a section $s \in G \setminus (Y \times \mathbb{C})$ which has no zeros or poles. Thus

$$\operatorname{Ker}(\phi) = \left\{ \sigma(g, y) = \frac{f(gy)}{f(y)} \mid f \in \Gamma(O_Y^*) \right\}.$$

Example: If Y is contractable then $G \cong \pi_1(X)$. If we define

$$K(G,Y) = \left\{ \sigma \in H^1 \mid \sigma(g,y) = \frac{f(gy)}{f(y)}, \ f \in \Gamma(O_Y^*) \right\}$$

then we have the exact sequence

$$0 \longrightarrow K(G, Y) \longrightarrow H^1(G, \Gamma(O_Y^*)) \longrightarrow \operatorname{Pic}(X) \longrightarrow 0.$$

Consider now a covering $\pi : Y \longrightarrow X$ which has ramified points, and a cocycle $\sigma \in H^1$ which may not be invertible. In this case the action of G on $Y \times \mathbb{C}$ may not be well defined. We can circumvent this problem by requiring that

$$\sigma(g, y) = 1$$

for all $g \in G, y \in Y$ such that gy = y. Under this assumption, the quotient $\mathcal{L}_{\sigma} = G \setminus (Y \times \mathbb{C})$ under the action of σ will be a line bundle on X.

We now focus on another example of the general construction outlined above which is of primary interest in number theory. Let

$$\mathfrak{h} = \{ z \mid \operatorname{Im}(z) > 0 \}$$

denote the upper half-plane, and let

$$\mathfrak{h}^* = \mathfrak{h} \cup \mathbb{Q} \cup \{i\infty\}$$

denote the extended upper half-plane. Consider a congruence subgroup

$$G \subset \mathrm{SL}(2,\mathbb{Z}),$$

which is of finite index in $SL(2,\mathbb{Z})$. Then G acts discontinuously on \mathfrak{h}^* by linear fractional transformations. In this special situation we choose $Y = \mathfrak{h}^*$ and $X = G \setminus \mathfrak{h}^*$ in the general construction outlined above. For this example, a one cocycle $\sigma \in H^1$, is a map

$$\sigma: G \times \mathfrak{h}^* \longrightarrow \mathbb{C}$$

which satisfies the cocycle relation

$$\sigma(g_1g_2, z) = \sigma(g_1, g_2z) \cdot \sigma(g_2, z),$$

for all $g_1, g_2 \in G$ and $z \in \mathfrak{h}^*$. This leads to an action of G on $\mathfrak{h}^* \times \mathbb{C}$ given by

$$g \cdot (z, w) = (gz, \sigma(g, z)w)$$

for all $g \in G, z \in \mathfrak{h}^*$, and $w \in \mathbb{C}$. We may thus consider the diagram below.

$$\mathfrak{h}^* imes \mathbb{C} \longrightarrow \mathfrak{h}^*$$
 $\downarrow \qquad \qquad \downarrow$
 $G \setminus (\mathfrak{h}^* imes \mathbb{C}) \longrightarrow G \setminus \mathfrak{h}^*$

Fix a cocycle $\sigma \in H^1$. A modular form for G (with cocyle σ) is a holomorphic function $f: \mathfrak{h}^* \longrightarrow \mathbb{C}$ which satisfies

$$f(gz) = \sigma(g, z)f(z)$$

for all $g \in G$ and $z \in \mathfrak{h}^*$. Following Borel [2], a modular form is a section of the line bundle $\mathcal{L} = G \setminus (\mathfrak{h}^* \times \mathbb{C})$ lifted to \mathfrak{h}^* via the natural projection.

Example: We may take
$$G = SL(2, \mathbb{Z})$$
. For $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G$ and $z \in \mathfrak{h}^*$ let $\sigma(g, z) = (cz + d)^{12}$.

Then the Ramanujan Delta function,

$$\Delta(z) = e^{2\pi i z} \prod_{n=1}^{\infty} (1 - e^{2\pi i n z})^{24}$$

is a modular form with cocycle σ .

\S 2. Action of the Hecke Operators on Line Bundles

Let G be a congruence subgroup which is of finite index in $SL(2,\mathbb{Z})$. Consider the commensurator subgroup, denoted Com(G), which is defined by

$$\operatorname{Com}(G) = \left\{ \rho \in \operatorname{GL}(2,\mathbb{R}) \mid [G : (\rho^{-1}G\rho) \cap G] < \infty, \\ [\rho^{-1}G\rho : (\rho^{-1}G\rho) \cap G] < \infty \right\}$$

Clearly, $G \leq \text{Com}(G) \leq \text{GL}(2,\mathbb{R})$. For every $\rho \in \text{Com}(G)$, we may write

$$G = \bigcup_{k} \left(\left(\rho^{-1} G \rho \right) \cap G \right) \delta_k$$

as a finite union of right cosets. Each such $\rho \in \text{Com}(G)$ defines a Hecke operator, denoted T_{ρ} , which is defined as a formal sum

$$T_{\rho} = \sum_{k} \alpha_{k}$$

where we have set $\alpha_k = \rho \delta_k$.

Let $\mathcal{L} = G \setminus (\mathfrak{h}^* \times \mathbb{C})$ be a line bundle in $\operatorname{Pic}(G \setminus \mathfrak{h}^*)$ associated to a one cocycle $\sigma \in H^1$. For $\rho \in \operatorname{Com}(G)$, we define the action of the Hecke operator T_{ρ} on σ by

$$T_{\rho}\,\sigma(g,z) = \prod_{k} \sigma(\alpha_{k}g\alpha_{k}^{-1},\alpha_{k}z)$$

for all $g \in G, z \in \mathfrak{h}^*$.

To check that this is well defined, we observe that

$$T_{\rho} \sigma(g_1, g_2, z) = \prod_k \sigma(\alpha_k g_1 g_2 \alpha_k^{-1}, \alpha_k z)$$

=
$$\prod_k \sigma(\alpha_k g_1 \alpha_k^{-1} \alpha_k g_2 \alpha_k^{-1}, \alpha_k z)$$

=
$$\prod_k \sigma(\alpha_k g_1 \alpha_k^{-1}, \alpha_k g_2 z) \cdot \prod_k \sigma(\alpha_k g_2 \alpha_k^{-1}, \alpha_k z)$$

=
$$T_{\rho} \sigma(g_1, g_2 z) \cdot T_{\rho} \sigma(g_2, z)$$

Since each one–cocycle $\sigma \in H^1$ defines a line bundle

$$\mathcal{L} = g \setminus (\mathfrak{h}^* \times \mathbb{C})$$

the above action on one–cocycles determines an action of the Hecke operators on line bundles.

§3. A Theorem of Manin

Let $N \geq 1$ be a fixed integer. For the remainder of this paper we shall be working exclusively with the congruence subgroup

$$\Gamma_0(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}(2, \mathbb{Z}) \mid c \equiv 0 \pmod{N} \right\}.$$

For this group we have the following Hecke operators. Let m > 1 be an integer which is coprime to N. Then

$$\rho = \begin{pmatrix} m & 0\\ 0 & 1 \end{pmatrix} \in \operatorname{Com}(\Gamma_0(N)).$$

A calculation shows that the Hecke operator T_{ρ} (denoted, henceforth, as T_m) is simply

$$T_m = \sum_{r|m} \sum_{b=0}^{r-1} \begin{pmatrix} mr^{-1} & b \\ 0 & r \end{pmatrix}.$$

Let M > 1 be a divisor of N. Define the matrix

$$W_M = \begin{pmatrix} Mx & y \\ Nz & Mw \end{pmatrix}$$

for integers x, y, z, w which satisfy $M^2 x w - Nyz = M$. The matrices W_M normalize $\Gamma_0(N)$ and satisfy

$$W_{M'}W_{M''} = W_{M'M''}, \qquad \forall M', M'' \mid N,$$
$$\prod_{q^e \mid \mid N} W_{q^e} = W_N = \begin{pmatrix} 0 & -1 \\ N & 0 \end{pmatrix},$$

where the last product goes over all prime powers q^e exactly dividing N. For M|N, we define the Hecke operator T_M to simply be $T_M = W_M$.

Consider a holomorphic cusp form

$$f(z) = \sum_{n=1}^{\infty} a(n) e^{2\pi i n z}$$

of weight two for the congruence group $\Gamma_0(N)$. Then

$$f\left(\frac{az+b}{cz+d}\right) = (cz+d)^2 f(z),$$

for all $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(N)$, and

is a holomorphic differential one-form for the Riemann surface

$$X_0(N) = \Gamma_0(N) \backslash \mathfrak{h}^*.$$

f(z)dz

Furthermore, every differential one-form arises in this manner from a weight two holomorphic cusp form for $\Gamma_0(N)$. The Hecke operators T_m act on differential oneforms as follows. For (m, N) = 1, we define the action

$$T_m f(z) dz = \sum_{r|m} \sum_{b=0}^{r-1} f\left(\frac{mr^{-1}z+b}{r}\right) d\left(\frac{mr^{-1}z+b}{r}\right),$$

and for M|N,

$$T_M f(z)dz = f(W_M z)d(W_M z).$$

Following Atkin and Lehner [1], we say f(z) is a newform if

$$\begin{split} &a(1)=1\\ &T_p\,f(z)dz=a(p)f(z)dz \qquad \forall \text{ primes } p,\ p \not\mid N\\ &T_q\,f(z)dz=-a(q)f(z)dz \qquad \forall \text{ primes } q \mid N. \end{split}$$

Now, suppose $\gamma \in \Gamma_0(N)$, and $\tau \in \mathfrak{h}^*$. The integral

$$I(\gamma) = -2\pi i \int_{\tau}^{\gamma\tau} f(z) \, dz$$

is independent of τ (this can easily be seen by differentiating with respect to τ , the result is 0) and must be a period of $X_0(N)$. Manin studied the action of the Hecke operators on homology by defining

$$T_m I(\gamma) = -2\pi i \int_{\tau}^{\gamma \tau} T_m f(z) \, dz.$$

A change of variable gives the action of T_m on the closed loop joining τ and $\gamma \tau$. Let $f(z) = \sum_{n=1}^{\infty} a(n)e^{2\pi i n z}$ be a newform for $\Gamma_0(N)$ with associated L-function

$$L_f(s) = \sum_{n=1}^{\infty} a(n) n^{-s}.$$

Let m > 1 be an integer coprime to N. Manin [3] proved the beautiful identity

$$L_f(1) = \frac{2\pi i}{A} \sum_{r|m} \sum_{b=0}^{r-1} \int_0^{\frac{b}{r}} f(z) \, dz$$

where

$$A = \left(\sum_{r|m} r\right) - a(m).$$

The integrals

$$-2\pi i \int_0^{\frac{b}{r}} f(z) \, dz$$

are period integrals since 0 is equivalent to $\frac{b}{r}$ under the action of $\Gamma_0(N)$ when r|mand (m, N) = 1.

§4. A Formula for $\mathbf{L}_{f}'(1)$

Let $N \geq 1$ be a fixed integer. For the remainder of this paper we shall be working exclusively with the congruence subgroup

$$\Gamma_0(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}(2, \mathbb{Z}) \mid c \equiv 0 \pmod{N} \right\},\$$

and

$$\Gamma_0^*(N) = \left\langle \Gamma_0(N), W_N \right\rangle$$

which is the group generated by $\Gamma_0(N)$ and the involution W_N .

Fix a prime p with $p \not\mid N$ and set

$$\alpha_k = \begin{pmatrix} p^{(-1)} & kp^{(-1)} \\ 0 & 1 \end{pmatrix} \qquad (0 \le k < p)$$
$$\alpha_p = \begin{pmatrix} p & 0 \\ 0 & 1 \end{pmatrix}.$$

Since f(z) is a newform of weight two for $\Gamma_0(N)$ it follows that f(z)dz is an eigenfunction for all the T_p . We have

$$T_p f(z)dz = \sum_{k=0}^{p} f(\alpha_k z)d(\alpha_k z)$$
$$= a(p)f(z)dz.$$

The basic 1–cocycle for the group $SL(2,\mathbb{R})$ is

$$j(\gamma, z) = cz + d$$
 for $z = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}(2, \mathbb{R}),$

which satisfies the multiplicative cocycle relation

$$j(\gamma_1\gamma_2, z) = j(\gamma_1, \gamma_2 z) \cdot j(\gamma_2, z)$$

for all $\gamma_1, \gamma_2 \in \mathrm{SL}(2, \mathbb{R}), z \in \mathfrak{h}$.

Assume there exists a non–constant function

$$u:\mathfrak{h}^*\longrightarrow\mathbb{C}$$

which is holomorphic for $z \in \mathfrak{h}$, has polynomial growth at infinity, i.e.

$$|u(z)| \ll |\log z|^{\delta}$$
 for some $\delta > 0$, as $z \to i\infty$,

and satisfies

$$u(\gamma z) = u(z) + c \log(j(\gamma, z)) + c' \log(j(\gamma, z_0)) + u(\gamma z_0) - u(z_0)$$

for fixed complex constants c, c' and all $\gamma \in \Gamma_0^*(N)$, $z, z_0 \in \mathfrak{h}^*$ (Note that we must have c' = -c, which can be seen upon setting $z = z_0$). Let f(z) be a newform of weight 2 for $\Gamma_0(N)$. For $\gamma \in \Gamma_0^*(N)$ and $\tau \in \mathfrak{h}$ we shall define the function

$$\sigma(\gamma,\tau) = \int_{\tau}^{\gamma\tau} f(z)u(z) \, dz.$$

Clearly this integral is independent of the path of integration for $\tau \in \mathfrak{h}$ since u(z) is holomorphic on \mathfrak{h} . It is also independent of the path of integration for $\tau \in \mathbb{Q} \cup \{i\infty\}$ since f(z) vanishes at the cusps and u(z) has at most polynomial growth at the cusps.

We compute

$$\sigma(\gamma_1 \gamma_2, \tau) = \int_{\tau}^{\gamma_1 \gamma_2 \tau} f(z) u(z) dz$$
$$= \int_{\tau}^{\gamma_2 \tau} f(z) u(z) dz + \int_{\gamma_2 \tau}^{\gamma_1 \gamma_2 \tau} f(z) u(z) dz$$
$$= \sigma(\gamma_1, \gamma_2 \tau) + \sigma(\gamma_2, \tau),$$

so that σ is an additive cocycle for the group $\Gamma_0^*(N)$.

We wish to compute the action of the Hecke operators on this cocycle. To facilitate this matter we introduce the following notation. Let α_k be as in the beginning of this section. For every such α_k and $\gamma \in \Gamma_0(N)$ there exists a permutation $\pi(k)$ (of the integers between 0 and p) and a matrix $\gamma_k^* \in \Gamma_0(N)$ such that

$$\alpha_k \gamma = \gamma_k^* \alpha_{\pi(k)}$$

$$\gamma_k^* = \alpha_k \gamma \alpha_{\pi(k)}^{-1}.$$

Since the differential one–form f(z)dz is an eigenfunction of all the Hecke operators, it follows that for all primes $p \not| N$,

$$T_p f(z) dz = \sum_{k=0}^{p} f(\alpha_k z) d(\alpha_k z)$$
$$= a(p) f(z) dz$$

where a(p) is the p^{th} coefficient in the Fourier expansion of f(z).

For $\gamma \in \Gamma_0(N)$, we let $z_{\gamma} \in \mathfrak{h}^*$ denote the fixed point of γ . Thus

$$\gamma z_{\gamma} = z_{\gamma}.$$

With this notation in place, we will show that for all $\tau, \tau_0 \in \mathfrak{h}^*, \gamma \in \Gamma_0(N)$,

$$T_p\Big(\sigma(\gamma,\tau) - \sigma(\gamma,\tau_0)\Big) = a(p) \cdot \Big(\sigma(\gamma,\tau) - \sigma(\gamma,\tau_0)\Big) + \sum_{k=0}^p C_k$$

where

$$C_k = \left(-c' \log(j(\gamma, z_{\gamma})) + c' \log(j(\gamma_k^*, z_{\gamma_k^*}))\right) \cdot \int_{\alpha_{\pi(k)}\tau_0}^{\alpha_{\pi(k)}\tau} f(z) \, dz.$$

To prove this identity note that for any $\tau_1 \in \mathfrak{h}^*$

$$\frac{d}{d\tau}\sigma(\gamma,\tau) = \frac{f(\gamma\tau)}{j(\gamma,\tau)^2}u(\gamma\tau) - f(\tau)u(\tau)$$
$$= f(\tau) \cdot \Big[c\log(j(\gamma,\tau)) + c'\log(j(\gamma,\tau_1)) + u(\gamma\tau_1) - u(\tau_1)\Big].$$

Choosing $\tau_1 = z_{\gamma}$ (the fixed point of γ) yields

$$\frac{d}{d\tau}\sigma(\gamma,\tau) = f(\tau) \cdot \Big[c\log(j(\gamma,\tau)) + c'\log(j(\gamma,z_{\gamma}))\Big].$$

It follows that

$$\sigma(\gamma,\tau) - \sigma(\gamma,\tau_0) = \int_{\tau_0}^{\tau} f(z) \cdot \left[c \log(j(\gamma,z)) + c' \log(j(\gamma,z_{\gamma})) \right] dz.$$

Next we compute

$$T_p \sigma(\gamma, \tau) = \sum_{k=0}^p \int_{\alpha_k \tau}^{\alpha_k \gamma \tau} f(z) u(z) dz$$
$$= \sum_{k=0}^p \int_{\alpha_{\pi(k)} \tau}^{\gamma_k^* \alpha_{\pi(k)} \tau} f(z) u(z) dz + \sum_{k=0}^p \int_{\alpha_k \tau}^{\alpha_{\pi(k)} \tau} f(z) u(z) dz.$$

But

$$\sum_{k=0}^{p} \int_{\alpha_k \tau}^{\alpha_{\pi(k)}\tau} g(z) \, dz = 0$$

for any function g(z).

Hence

$$T_p \sigma(\gamma, \tau) = \sum_{k=0}^p \int_{\alpha_{\pi(k)}\tau}^{\gamma_k^* \alpha_{\pi(k)}\tau} f(z)u(z) dz$$

= $\sum_{k=0}^p \int_{\alpha_{\pi(k)}\tau_0}^{\alpha_{\pi(k)}\tau} f(z) \Big[c \log j \left(\gamma_k^*, z\right) + c' \log j \left(\gamma_k^*, z_{\gamma_k^*}\right) \Big] dz + \sum_{k=0}^p \sigma(\gamma_k^*, \alpha_{\pi(k)}\tau_0).$

But

$$\sum_{k=0}^{p} \sigma\left(\gamma_{k}^{*}, \alpha_{\pi(k)}\tau_{0}\right) = \sum_{k=0}^{p} \int_{\alpha_{\pi(k)}\tau_{0}}^{\gamma_{k}^{*}\alpha_{\pi(k)}\tau_{0}} f(z)u(z) dz$$
$$= T_{p} \sigma(\gamma, \tau_{0}).$$

It follows that

$$T_p \left[\sigma(\gamma, \tau) - \sigma(\gamma, \tau_0) \right] =$$

$$= \sum_{k=0}^p \int_{\alpha_{\pi(k)}\tau_0}^{\alpha_{\pi(k)}\tau} f(z) \left[c \log j \left(\gamma_k^*, z\right) + c' \log j \left(\gamma_k^*, z_{\gamma_k^*}\right) \right] dz$$

$$= \sum_{k=0}^p \int_{\tau_0}^{\tau} f \left(\alpha_{\pi(k)}z\right) \left[c \log j \left(\gamma_k^*, \alpha_{\pi(k)}z\right) + c' \log j \left(\gamma_k^*, z_{\gamma_k^*}\right) \right] d \left(\alpha_{\pi(k)}z\right).$$

We observe that

$$\log j \left(\gamma_k^*, \alpha_{\pi(k)} z\right) = \log j \left(\alpha_k \gamma \alpha_{\pi(k)}^{-1}, \alpha_{\pi(k)} z\right)$$
$$= \log j \left(\alpha_k \gamma, z\right) + \log j \left(\alpha_{\pi(k)}^{-1}, \alpha_{\pi(k)} z\right)$$
$$= \log j \left(\alpha_k, \gamma z\right) + \log j \left(\gamma, z\right) + \log j \left(\alpha_{\pi(k)}^{-1}, \alpha_{\pi(k)} z\right).$$

Since

$$\log j\left(\alpha_k^{\pm 1}, w\right) = 0$$

for any $w \in \mathfrak{h}$ and all α_k , it immediately follows that

$$\log j\left(\gamma_k^*, \alpha_{\pi(k)}z\right) = \log j(\gamma, z).$$

We obtain

$$\begin{split} T_p \left[\sigma(\gamma, \tau) - \sigma(\gamma, \tau_0) \right] &= \\ &= \sum_{k=0}^p \int_{\tau_0}^{\tau} f(\alpha_{\pi(k)} z) \left[c \log j\left(\gamma, z\right) + c' \log j\left(\gamma_k^*, z_{\gamma_k^*}\right) \right] d\left(\alpha_{\pi(k)} z\right) \\ &= a(p) \int_{\tau_0}^{\tau} f\left(z\right) c \log j(\gamma, z) \, dz \ + \ \sum_{k=0}^p \int_{\alpha_{\pi(k)} \tau_0}^{\alpha_{\pi(k)} \tau} f(z) c' \log j\left(\gamma_k^*, z_{\gamma_k^*}\right) \, dz, \end{split}$$

from which the stated result easily follows.

These results will now be applied to obtain a closed formula for $L'_f(1)$. We begin with the well known formula

$$(2\pi)^{-s}\Gamma(s+1)\mathbf{L}_f(s+1) = -2\pi i \int_0^{i\infty} f(z)\mathrm{Im}(z)^s dz.$$

Henceforth, we assume that $L_f(s)$ has a zero of odd order at s = 1. Upon differentiating with respect to s and setting s = 0 it follows that

$$\mathcal{L}'_f(1) = -2\pi i \int_0^{i\infty} f(z) \log z \, dz.$$

Recall the identities

$$\sigma(\gamma,\tau) = \int_{\tau}^{\gamma\tau} f(z)u(z)\,dz,$$

$$\sigma(\gamma,\tau) - \sigma(\gamma,\tau_0) = \int_{\tau_0}^{\tau} f(z) \Big[c \log j(\gamma,z) + c' \log j(\gamma,z_{\gamma}) \Big] dz.$$

Choosing $\gamma = W_N$, $\tau_0 = 0$, and $\tau = i\infty$ in the above identities yields

$$-2\int_0^{i\infty} f(z)u(z)\,dz = \int_0^{i\infty} f(z)c\log j(W_N,z)\,dz.$$

Here we have used the fact that $L_f(1) = 0$ which is equivalent to

$$\int_0^{i\infty} f(z) \, dz = 0,$$

in addition to the identity

$$f(W_N z)d(W_N z) = f(z)dz$$

10

which is equivalent to the fact that $L_f(s)$ has an odd order zero at s = 1. Note that

$$j(W_N, z) = Nz.$$

Hence

$$-2\pi i \int_0^{i\infty} f(z) \log z \, dz = \frac{4\pi i}{c} \int_0^{i\infty} f(z) u(z) \, dz$$

or equivalently

$$L'_f(1) = \frac{4\pi i}{c} \int_0^{i\infty} f(z)u(z) dz$$
$$= \frac{2\pi i}{c} \Big[\sigma(W_N, 0) - \sigma(W_N, i\infty) \Big]$$

Let p be a prime which does not divide N. Then we define the Hecke action

$$T_p \operatorname{L}'_f(1) = \frac{2\pi i}{c} T_p \left[\sigma(W_N, 0) - \sigma(W_N, i\infty) \right].$$

It immediately follows from our previous computations that

$$T_p L'_f(1) = a(p)L'_f(1) + \sum_{k=0}^p C_k$$

where

$$C_k = A_k \int_{\alpha_{\pi(k)}0}^{\alpha_{\pi(k)}i\infty} f(z) \, dz$$

and

$$A_{k} = \frac{2\pi i}{c} \left[-c \log j(\gamma, z_{\gamma}) + c' \log j\left(\gamma_{k}^{*}, z_{\gamma_{k}^{*}}\right) \right]$$

with $\gamma = W_N$. By results of Manin [3], and the fact that the fixed point z_{γ} always lies in a quadratic number field, it follows that

$$\sum_{k=0}^{p} C_k$$

must be a complex number which lies in the field generated by \mathbb{Q} , c, c', πi , the periods of f, and the logarithms of quadratic algebraic numbers.

We shall now prove our main theorem.

Theorem[1] Let f(z) be a holomorphic newform of weight two for $\Gamma_0(N)$ for which $L_f(s)$ has an odd order zero at s = 1. Let $u : \mathfrak{h}^* \to \mathbb{C}$ be a holomorphic function on \mathfrak{h} having polynomial growth at ∞ which satisfies

$$u(\gamma z) = u(z) + c \log j(\gamma, z) + c' \log j(\gamma, z_0) + u(\gamma z_0) - u(z_0)$$

for fixed constants $c, c' \in \mathbb{C}$ and all $\gamma \in \Gamma_0^*(N), z, z_0 \in \mathfrak{h}^*$. Then for any integer m > 1, coprime to N, we have

$$\mathcal{L}'_{f}(1) = \frac{1}{A} \sum_{r|m} \sum_{b=0}^{r-1} \int_{0}^{\frac{b}{r}} f(z)u(z) \, dz + B$$

where

$$A = \frac{c}{4\pi i} \left[\left(\sum_{r|m} r \right) - a(m) \right],$$

and B lies in the field generated by $\mathbb{Q}, c, c', \pi i, a(m)$, the periods of f, and the logarithms of quadratic algebraic numbers.

Remark: This formula expresses $L'_f(1)$ as a finite linear combination of additive one cocycles for $\Gamma_0(N)$. It gives the natural generalization of Manin's theorem on $L_f(1)$ (see section 3) to higher derivatives.

Proof: We give the proof when m = p is a prime number. The general case is similar and left to the reader. We have already shown that

$$T_p \operatorname{L}'_f(1) = a(p) \operatorname{L}'_f(1) + B$$

with

$$B = \sum_{k=0}^{p} C_k$$

But

$$\begin{split} T_p \, \mathcal{L}'_f(1) &= \frac{2\pi i}{c} T_p \left[\sigma(W_N, 0) - \sigma(W_N, i\infty) \right] \\ &= \frac{4\pi i}{c} \sum_{k=0}^p \int_{\alpha_k 0}^{\alpha_k i\infty} f(z) u(z) \, dz \\ &= \frac{4\pi i}{c} \sum_{k=0}^p \int_{\alpha_k 0}^{i\infty} f(z) u(z) \, dz \\ &= \frac{4\pi i}{c} \sum_{k=0}^p \left[\int_{\alpha_k 0}^0 + \int_0^{i\infty} \right] f(z) u(z) \, dz \\ &= \frac{4\pi i}{c} \sum_{k=0}^p \int_{\alpha_k 0}^0 f(z) u(z) \, dz + (p+1) \mathcal{L}'_f(1). \end{split}$$

The stated result follows immediately from this computation.

$\S5.$ Construction of Special One–Cocycles

In the previous section we outlined a closed formula for the derivative of an L– function (associated to a newform f of weight two for $\Gamma_0(N)$) at the special value s = 1 in terms of one–cocycles of the form

$$\sigma(\gamma,\tau) = \int_{\tau}^{\gamma\tau} f(z)u(z) \, dz.$$

It was required that u(z) have polynomial growth at ∞ and satisfy

$$u(\gamma z) = u(z) + c \log j(\gamma, z) + c' \log j(\gamma, z_{\gamma}) + u(\gamma z_0) - u(z_0),$$

12

for all $\gamma \in \Gamma_0(N)$ and $z, z_0 \in \mathfrak{h}^*$. We now explicitly construct such a function u(z). Define

$$u(z) = \log \left(\Delta(z) \cdot \Delta(Nz) \right)$$

where

$$\Delta(z) = e^{2\pi i z} \prod_{n=1}^{\infty} \left(1 - e^{2\pi i n z} \right)^{24}$$

is the Ramanujan cusp form of weight twelve for the modular group. Then u(z) satisfies the modular relations

$$u(\gamma z) = u(z) + 24\log j(\gamma, z)$$

for all $\gamma \in \Gamma_0(N)$.

Furthermore, for the involution W_N , we have

$$u(W_N z) = \log\left(\Delta\left(\frac{-1}{Nz}\right) \cdot \Delta\left(\frac{-1}{z}\right)\right)$$
$$= \log\left((Nz)^{12}\Delta(Nz) \cdot z^{12}\Delta(z)\right)$$
$$= u(z) + 24\log(Nz) - 12\log(N).$$

It follows that u(z) satisfies

$$u(\gamma z) = u(z) + 24 \Big[\log j(\gamma, z) - \log j(\gamma, z_0) \Big] + u(\gamma z_0) - u(z_0)$$

for all $\gamma \in \Gamma_0^*(N)$, $z, z_0 \in \mathfrak{h}^*$. Furthermore, u(z) has polynomial growth at infinity and is holomorphic for $z \in \mathfrak{h}$. Thus we may express $L'_f(1)$ in terms of the special one-cocycles

$$\sigma(\gamma,\tau) = \int_{\tau}^{\gamma\tau} f(z) \log \left(\Delta(z) \cdot \Delta(Nz) \right) dz$$

for $\gamma \in \Gamma_0(N), \ \tau \in \mathbb{Q}$.

Another explicit one-cocycle may be constructed from the (almost holomorphic) Eisenstein series $E_2(z)$ of weight two for the modular group. We have

$$E_2(z) = \frac{-2\pi i}{z - \bar{z}} + \frac{\pi^2}{3} - 8\pi^2 \sum_{n=1}^{\infty} \sigma_1(n) e^{2\pi i n z}$$

where

$$\sigma_s(n) = \sum_{\substack{d|n\\d \ge 1}} d^s.$$

If we define the holomorphic function

$$E_2^*(z) = E_2(z) + \frac{2\pi i}{z - \bar{z}}$$

then a simple computation shows that $E_2^*(z)$ satisfies the modular relations

$$\frac{E_2^*(\gamma z)}{j(\gamma, z)^2} = E_2^*(z) - \frac{2\pi i c}{cz+d}$$

for all

$$\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}(2, \mathbb{Z})$$

If we lift $E_2^*(z)$ to $\Gamma_0(N)$ by defining

$$E_2^*(z, N) = E_2^*(z) + E_2^*N(z)$$

then the antiderivative of $E_2^*(z, N)$ with respect to z can be used to define a function u(z).

§7. Acknowledgment

The author would like to take this opportunity to thank Shou-Wu Zhang and Nikolaos Diamantis for many helpful discussions.

§8. References

[1] A.O.L Atkin, J. Lehner, Hecke operators on $\Gamma_o(m)$, Math. Ann. 185 (1970), 134-160.

[2] A. Borel, *Introduction to automorphic forms*, Proc. Symp. Pure Math. 9, Amer. Math. Soc. (1966), 199-210.

[3] Y.T. Manin, *Parabolic points and zeta functions of modular forms*, (Russian) Isv. Acad. Nauk. Vol 6 (1972), No. 1, 19-64.