SPECIAL VALUES OF DERIVATIVES OF L-FUNCTIONS

Dorian Goldfeld

Columbia University

§1. Generalities on Modular Forms and 1-Cocycles

Consider an unramified covering

$$
\begin{aligned}
& Y \\
& \downarrow \pi \\
& X
\end{aligned}
$$

of complex manifolds X, Y. Let $\Gamma\left(O_{Y}^{*}\right)$ denote the group of invertible holomorphic functions on $Y, G=\operatorname{Gal}(Y / X)$, and let $H^{1}\left(G, \Gamma\left(O_{Y}^{*}\right)\right)$ be the group of one-cocycles of G with values in $\Gamma\left(O_{Y}^{*}\right)$.

A map

$$
\sigma: G \times Y \longrightarrow \mathbb{C}^{*}=\mathbb{C}-\{0\}
$$

is an element of H^{1} if and only if it satisfies

$$
\sigma\left(g_{1} g_{2}, y\right)=\sigma\left(g_{1}, g_{2} y\right) \cdot \sigma\left(g_{2}, y\right)
$$

for all $g_{1}, g_{2} \in G, y \in Y$. Given such a σ, we may also define an action of G on $Y \times \mathbb{C}$ via

$$
g \cdot(y, w)=(g y, \sigma(g, y) w)
$$

where $\sigma(g, y) w$ is ordinary multiplication of complex numbers. Factoring by this action defines a map

$$
\phi: H^{1} \longrightarrow \operatorname{Pic}(X)
$$

given by

$$
\phi(\sigma)=G \backslash(Y \times \mathbb{C})
$$

for all $\sigma \in H^{1}$. This leads to the sequence

$$
H^{1}\left(G, \Gamma\left(O_{Y}^{*}\right)\right) \xrightarrow{\phi} \operatorname{Pic}(X) \xrightarrow{\pi^{*}} \operatorname{Pic}(Y),
$$

which we claim is exact. To see this, note that for $\mathcal{L} \in \operatorname{Pic}(X)$, we have $\pi^{*} \mathcal{L}=Y \times \mathbb{C}$ is trivial. Further, for $y \in Y, g \in G$,

$$
\{y\} \times \mathbb{C} \simeq\{g y\} \times \mathbb{C}
$$

[^0]is an isomorphism of \mathbb{C}-vector spaces. Such an isomorphism must be given by $\sigma(g, y) \in \mathbb{C}$,
$$
\{y\} \times\{w\} \mapsto\{g y\} \times\{\sigma(g, y) w\}
$$
which implies that $\sigma(g, y) \in H^{1}$ and $\mathcal{L} \simeq G \backslash(Y \times \mathbb{C})$. Further, $G \backslash(Y \times \mathbb{C})$ is trivial if and only if there exists a section $s \in G \backslash(Y \times \mathbb{C})$ which has no zeros or poles. Thus
$$
\operatorname{Ker}(\phi)=\left\{\left.\sigma(g, y)=\frac{f(g y)}{f(y)} \right\rvert\, f \in \Gamma\left(O_{Y}^{*}\right)\right\} .
$$

Example: If Y is contractable then $G \cong \pi_{1}(X)$. If we define

$$
K(G, Y)=\left\{\sigma \in H^{1} \left\lvert\, \sigma(g, y)=\frac{f(g y)}{f(y)}\right., f \in \Gamma\left(O_{Y}^{*}\right)\right\}
$$

then we have the exact sequence

$$
0 \longrightarrow K(G, Y) \longrightarrow H^{1}\left(G, \Gamma\left(O_{Y}^{*}\right)\right) \longrightarrow \operatorname{Pic}(X) \longrightarrow 0
$$

Consider now a covering $\pi: Y \longrightarrow X$ which has ramified points, and a cocycle $\sigma \in H^{1}$ which may not be invertible. In this case the action of G on $Y \times \mathbb{C}$ may not be well defined. We can circumvent this problem by requiring that

$$
\sigma(g, y)=1
$$

for all $g \in G, y \in Y$ such that $g y=y$. Under this assumption, the quotient $\mathcal{L}_{\sigma}=$ $G \backslash(Y \times \mathbb{C})$ under the action of σ will be a line bundle on X.

We now focus on another example of the general construction outlined above which is of primary interest in number theory. Let

$$
\mathfrak{h}=\{z \mid \operatorname{Im}(z)>0\}
$$

denote the upper half-plane, and let

$$
\mathfrak{h}^{*}=\mathfrak{h} \cup \mathbb{Q} \cup\{i \infty\}
$$

denote the extended upper half-plane. Consider a congruence subgroup

$$
G \subset \mathrm{SL}(2, \mathbb{Z})
$$

which is of finite index in $\operatorname{SL}(2, \mathbb{Z})$. Then G acts discontinuously on \mathfrak{h}^{*} by linear fractional transformations. In this special situation we choose $Y=\mathfrak{h}^{*}$ and $X=$ $G \backslash \mathfrak{h}^{*}$ in the general construction outlined above. For this example, a one cocycle $\sigma \in H^{1}$, is a map

$$
\sigma: G \times \mathfrak{h}^{*} \longrightarrow \mathbb{C}
$$

which satisfies the cocycle relation

$$
\sigma\left(g_{1} g_{2}, z\right)=\sigma\left(g_{1}, g_{2} z\right) \cdot \sigma\left(g_{2}, z\right)
$$

for all $g_{1}, g_{2} \in G$ and $z \in \mathfrak{h}^{*}$. This leads to an action of G on $\mathfrak{h}^{*} \times \mathbb{C}$ given by

$$
g \cdot(z, w)=(g z, \sigma(g, z) w)
$$

for all $g \in G, z \in \mathfrak{h}^{*}$, and $w \in \mathbb{C}$. We may thus consider the diagram below.

Fix a cocycle $\sigma \in H^{1}$. A modular form for G (with cocyle σ) is a holomorphic function $f: \mathfrak{h}^{*} \longrightarrow \mathbb{C}$ which satisfies

$$
f(g z)=\sigma(g, z) f(z)
$$

for all $g \in G$ and $z \in \mathfrak{h}^{*}$. Following Borel [2], a modular form is a section of the line bundle $\mathcal{L}=G \backslash\left(\mathfrak{h}^{*} \times \mathbb{C}\right)$ lifted to \mathfrak{h}^{*} via the natural projection.

Example: We may take $G=\operatorname{SL}(2, \mathbb{Z})$. For $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G$ and $z \in \mathfrak{h}^{*}$ let

$$
\sigma(g, z)=(c z+d)^{12}
$$

Then the Ramanujan Delta function,

$$
\Delta(z)=e^{2 \pi i z} \prod_{n=1}^{\infty}\left(1-e^{2 \pi i n z}\right)^{24}
$$

is a modular form with cocycle σ.

§2. Action of the Hecke Operators on Line Bundles

Let G be a congruence subgroup which is of finite index in $\operatorname{SL}(2, \mathbb{Z})$. Consider the commensurator subgroup, denoted $\operatorname{Com}(G)$, which is defined by

$$
\begin{aligned}
\operatorname{Com}(G)=\{\rho \in \operatorname{GL}(2, \mathbb{R}) \mid[G:(& \left.\left.\rho^{-1} G \rho\right) \cap G\right]<\infty \\
& {\left.\left[\rho^{-1} G \rho:\left(\rho^{-1} G \rho\right) \cap G\right]<\infty\right\} }
\end{aligned}
$$

Clearly, $G \leq \operatorname{Com}(G) \leq \operatorname{GL}(2, \mathbb{R})$. For every $\rho \in \operatorname{Com}(G)$, we may write

$$
G=\bigcup_{k}\left(\left(\rho^{-1} G \rho\right) \cap G\right) \delta_{k}
$$

as a finite union of right cosets. Each such $\rho \in \operatorname{Com}(G)$ defines a Hecke operator, denoted T_{ρ}, which is defined as a formal sum

$$
T_{\rho}=\sum_{k} \alpha_{k}
$$

where we have set $\alpha_{k}=\rho \delta_{k}$.
Let $\mathcal{L}=G \backslash\left(\mathfrak{h}^{*} \times \mathbb{C}\right)$ be a line bundle in $\operatorname{Pic}\left(G \backslash \mathfrak{h}^{*}\right)$ associated to a one cocycle $\sigma \in H^{1}$. For $\rho \in \operatorname{Com}(G)$, we define the action of the Hecke operator T_{ρ} on σ by

$$
T_{\rho} \sigma(g, z)=\prod_{k} \sigma\left(\alpha_{k} g \alpha_{k}^{-1}, \alpha_{k} z\right)
$$

for all $g \in G, z \in \mathfrak{h}^{*}$.
To check that this is well defined, we observe that

$$
\begin{aligned}
T_{\rho} \sigma\left(g_{1}, g_{2}, z\right) & =\prod_{k} \sigma\left(\alpha_{k} g_{1} g_{2} \alpha_{k}^{-1}, \alpha_{k} z\right) \\
& =\prod_{k} \sigma\left(\alpha_{k} g_{1} \alpha_{k}^{-1} \alpha_{k} g_{2} \alpha_{k}^{-1}, \alpha_{k} z\right) \\
& =\prod_{k} \sigma\left(\alpha_{k} g_{1} \alpha_{k}^{-1}, \alpha_{k} g_{2} z\right) \cdot \prod_{k} \sigma\left(\alpha_{k} g_{2} \alpha_{k}^{-1}, \alpha_{k} z\right) \\
& =T_{\rho} \sigma\left(g_{1}, g_{2} z\right) \cdot T_{\rho} \sigma\left(g_{2}, z\right)
\end{aligned}
$$

Since each one-cocycle $\sigma \in H^{1}$ defines a line bundle

$$
\mathcal{L}=g \backslash\left(\mathfrak{h}^{*} \times \mathbb{C}\right)
$$

the above action on one-cocycles determines an action of the Hecke operators on line bundles.

§3. A Theorem of Manin

Let $N \geq 1$ be a fixed integer. For the remainder of this paper we shall be working exclusively with the congruence subgroup

$$
\Gamma_{0}(N)=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}(2, \mathbb{Z}) \right\rvert\, c \equiv 0(\bmod N)\right\}
$$

For this group we have the following Hecke operators. Let $m>1$ be an integer which is coprime to N. Then

$$
\rho=\left(\begin{array}{cc}
m & 0 \\
0 & 1
\end{array}\right) \in \operatorname{Com}\left(\Gamma_{0}(N)\right)
$$

A calculation shows that the Hecke operator T_{ρ} (denoted, henceforth, as T_{m}) is simply

$$
T_{m}=\sum_{r \mid m} \sum_{b=0}^{r-1}\left(\begin{array}{cc}
m r^{-1} & b \\
0 & r
\end{array}\right) .
$$

Let $M>1$ be a divisor of N. Define the matrix

$$
W_{M}=\left(\begin{array}{cc}
M x & y \\
N z & M w
\end{array}\right)
$$

for integers x, y, z, w which satisfy $M^{2} x w-N y z=M$. The matrices W_{M} normalize $\Gamma_{0}(N)$ and satisfy

$$
\begin{aligned}
& W_{M^{\prime}} W_{M^{\prime \prime}}=W_{M^{\prime} M^{\prime \prime}}, \quad \forall M^{\prime}, M^{\prime \prime} \mid N \\
& \prod_{q^{e}} \| N
\end{aligned} W_{q^{e}}=W_{N}=\left(\begin{array}{cc}
0 & -1 \\
N & 0
\end{array}\right), ~ \$
$$

where the last product goes over all prime powers q^{e} exactly dividing N. For $M \mid N$, we define the Hecke operator T_{M} to simply be $T_{M}=W_{M}$.

Consider a holomorphic cusp form

$$
f(z)=\sum_{n=1}^{\infty} a(n) e^{2 \pi i n z}
$$

of weight two for the congruence group $\Gamma_{0}(N)$. Then

$$
f\left(\frac{a z+b}{c z+d}\right)=(c z+d)^{2} f(z)
$$

for all $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma_{0}(N)$, and

$$
f(z) d z
$$

is a holomorphic differential one-form for the Riemann surface

$$
X_{0}(N)=\Gamma_{0}(N) \backslash \mathfrak{h}^{*}
$$

Furthermore, every differential one-form arises in this manner from a weight two holomorphic cusp form for $\Gamma_{0}(N)$. The Hecke operators T_{m} act on differential oneforms as follows. For $(m, N)=1$, we define the action

$$
T_{m} f(z) d z=\sum_{r \mid m} \sum_{b=0}^{r-1} f\left(\frac{m r^{-1} z+b}{r}\right) d\left(\frac{m r^{-1} z+b}{r}\right)
$$

and for $M \mid N$,

$$
T_{M} f(z) d z=f\left(W_{M} z\right) d\left(W_{M} z\right)
$$

Following Atkin and Lehner [1], we say $f(z)$ is a newform if

$$
\begin{array}{lc}
a(1)=1 & \\
T_{p} f(z) d z=a(p) f(z) d z & \forall \text { primes } p, p \nmid N \\
T_{q} f(z) d z=-a(q) f(z) d z & \forall \text { primes } q \mid N .
\end{array}
$$

Now, suppose $\gamma \in \Gamma_{0}(N)$, and $\tau \in \mathfrak{h}^{*}$. The integral

$$
I(\gamma)=-2 \pi i \int_{\tau}^{\gamma \tau} f(z) d z
$$

is independent of τ (this can easily be seen by differentiating with respect to τ, the result is 0) and must be a period of $X_{0}(N)$. Manin studied the action of the Hecke operators on homology by defining

$$
T_{m} I(\gamma)=-2 \pi i \int_{\tau}^{\gamma \tau} T_{m} f(z) d z
$$

A change of variable gives the action of T_{m} on the closed loop joining τ and $\gamma \tau$.
Let $f(z)=\sum_{n=1}^{\infty} a(n) e^{2 \pi i n z}$ be a newform for $\Gamma_{0}(N)$ with associated L-function

$$
L_{f}(s)=\sum_{n=1}^{\infty} a(n) n^{-s}
$$

Let $m>1$ be an integer coprime to N. Manin [3] proved the beautiful identity

$$
L_{f}(1)=\frac{2 \pi i}{A} \sum_{r \mid m} \sum_{b=0}^{r-1} \int_{0}^{\frac{b}{r}} f(z) d z
$$

where

$$
A=\left(\sum_{r \mid m} r\right)-a(m)
$$

The integrals

$$
-2 \pi i \int_{0}^{\frac{b}{r}} f(z) d z
$$

are period integrals since 0 is equivalent to $\frac{b}{r}$ under the action of $\Gamma_{0}(N)$ when $r \mid m$ and $(m, N)=1$.

§4. A Formula for $\mathbf{L}_{f}^{\prime}(1)$

Let $N \geq 1$ be a fixed integer. For the remainder of this paper we shall be working exclusively with the congruence subgroup

$$
\Gamma_{0}(N)=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}(2, \mathbb{Z}) \right\rvert\, c \equiv 0 \quad(\bmod N)\right\}
$$

and

$$
\Gamma_{0}^{*}(N)=\left\langle\Gamma_{0}(N), W_{N}\right\rangle
$$

which is the group generated by $\Gamma_{0}(N)$ and the involution W_{N}.
Fix a prime p with $p X N$ and set

$$
\begin{aligned}
\alpha_{k} & =\left(\begin{array}{cc}
\left.p^{(}-1\right) & \left.k p^{(}-1\right) \\
0 & 1
\end{array}\right) \quad(0 \leq k<p) \\
\alpha_{p} & =\left(\begin{array}{ll}
p & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

Since $f(z)$ is a newform of weight two for $\Gamma_{0}(N)$ it follows that $f(z) d z$ is an eigenfunction for all the T_{p}. We have

$$
\begin{aligned}
T_{p} f(z) d z & =\sum_{k=0}^{p} f\left(\alpha_{k} z\right) d\left(\alpha_{k} z\right) \\
& =a(p) f(z) d z
\end{aligned}
$$

The basic 1-cocycle for the group $\operatorname{SL}(2, \mathbb{R})$ is

$$
j(\gamma, z)=c z+d \quad \text { for } z=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \operatorname{SL}(2, \mathbb{R})
$$

which satisfies the multiplicative cocycle relation

$$
j\left(\gamma_{1} \gamma_{2}, z\right)=j\left(\gamma_{1}, \gamma_{2} z\right) \cdot j\left(\gamma_{2}, z\right)
$$

for all $\gamma_{1}, \gamma_{2} \in \operatorname{SL}(2, \mathbb{R}), z \in \mathfrak{h}$.
Assume there exists a non-constant function

$$
u: \mathfrak{h}^{*} \longrightarrow \mathbb{C}
$$

which is holomorphic for $z \in \mathfrak{h}$, has polynomial growth at infinity, i.e.

$$
|u(z)| \ll|\log z|^{\delta} \quad \text { for some } \delta>0, \text { as } z \rightarrow i \infty
$$

and satisfies

$$
u(\gamma z)=u(z)+c \log (j(\gamma, z))+c^{\prime} \log \left(j\left(\gamma, z_{0}\right)\right)+u\left(\gamma z_{0}\right)-u\left(z_{0}\right)
$$

for fixed complex constants c, c^{\prime} and all $\gamma \in \Gamma_{0}^{*}(N), z, z_{0} \in \mathfrak{h}^{*}$ (Note that we must have $c^{\prime}=-c$, which can be seen upon setting $z=z_{0}$). Let $f(z)$ be a newform of weight 2 for $\Gamma_{0}(N)$. For $\gamma \in \Gamma_{0}^{*}(N)$ and $\tau \in \mathfrak{h}$ we shall define the function

$$
\sigma(\gamma, \tau)=\int_{\tau}^{\gamma \tau} f(z) u(z) d z
$$

Clearly this integral is independent of the path of integration for $\tau \in \mathfrak{h}$ since $u(z)$ is holomorphic on \mathfrak{h}. It is also independent of the path of integration for $\tau \in \mathbb{Q} \cup\{i \infty\}$ since $f(z)$ vanishes at the cusps and $u(z)$ has at most polynomial growth at the cusps.

We compute

$$
\begin{aligned}
\sigma\left(\gamma_{1} \gamma_{2}, \tau\right) & =\int_{\tau}^{\gamma_{1} \gamma_{2} \tau} f(z) u(z) d z \\
& =\int_{\tau}^{\gamma_{2} \tau} f(z) u(z) d z+\int_{\gamma_{2} \tau}^{\gamma_{1} \gamma_{2} \tau} f(z) u(z) d z \\
& =\sigma\left(\gamma_{1}, \gamma_{2} \tau\right)+\sigma\left(\gamma_{2}, \tau\right)
\end{aligned}
$$

so that σ is an additive cocycle for the group $\Gamma_{0}^{*}(N)$.
We wish to compute the action of the Hecke operators on this cocycle. To facilitate this matter we introduce the following notation. Let α_{k} be as in the beginning of this section. For every such α_{k} and $\gamma \in \Gamma_{0}(N)$ there exists a permutation $\pi(k)$ (of the integers between 0 and p) and a matrix $\gamma_{k}^{*} \in \Gamma_{0}(N)$ such that

$$
\begin{aligned}
& \alpha_{k} \gamma=\gamma_{k}^{*} \alpha_{\pi(k)} \\
& \gamma_{k}^{*}=\alpha_{k} \gamma \alpha_{\pi(k)}^{-1}
\end{aligned}
$$

Since the differential one-form $f(z) d z$ is an eigenfunction of all the Hecke operators, it follows that for all primes $p \nmid N$,

$$
\begin{aligned}
T_{p} f(z) d z & =\sum_{k=0}^{p} f\left(\alpha_{k} z\right) d\left(\alpha_{k} z\right) \\
& =a(p) f(z) d z
\end{aligned}
$$

where $a(p)$ is the $p^{\text {th }}$ coefficient in the Fourier expansion of $f(z)$.
For $\gamma \in \Gamma_{0}(N)$, we let $z_{\gamma} \in \mathfrak{h}^{*}$ denote the fixed point of γ. Thus

$$
\gamma z_{\gamma}=z_{\gamma}
$$

With this notation in place, we will show that for all $\tau, \tau_{0} \in \mathfrak{h}^{*}, \gamma \in \Gamma_{0}(N)$,

$$
T_{p}\left(\sigma(\gamma, \tau)-\sigma\left(\gamma, \tau_{0}\right)\right)=a(p) \cdot\left(\sigma(\gamma, \tau)-\sigma\left(\gamma, \tau_{0}\right)\right)+\sum_{k=0}^{p} C_{k}
$$

where

$$
C_{k}=\left(-c^{\prime} \log \left(j\left(\gamma, z_{\gamma}\right)\right)+c^{\prime} \log \left(j\left(\gamma_{k}^{*}, z_{\gamma_{k}^{*}}\right)\right)\right) \cdot \int_{\alpha_{\pi(k)} \tau_{0}}^{\alpha_{\pi(k)} \tau} f(z) d z
$$

To prove this identity note that for any $\tau_{1} \in \mathfrak{h}^{*}$

$$
\begin{aligned}
\frac{d}{d \tau} \sigma(\gamma, \tau) & =\frac{f(\gamma \tau)}{j(\gamma, \tau)^{2}} u(\gamma \tau)-f(\tau) u(\tau) \\
& =f(\tau) \cdot\left[c \log (j(\gamma, \tau))+c^{\prime} \log \left(j\left(\gamma, \tau_{1}\right)\right)+u\left(\gamma \tau_{1}\right)-u\left(\tau_{1}\right)\right]
\end{aligned}
$$

Choosing $\tau_{1}=z_{\gamma}$ (the fixed point of γ) yields

$$
\frac{d}{d \tau} \sigma(\gamma, \tau)=f(\tau) \cdot\left[c \log (j(\gamma, \tau))+c^{\prime} \log \left(j\left(\gamma, z_{\gamma}\right)\right)\right]
$$

It follows that

$$
\sigma(\gamma, \tau)-\sigma\left(\gamma, \tau_{0}\right)=\int_{\tau_{0}}^{\tau} f(z) \cdot\left[c \log (j(\gamma, z))+c^{\prime} \log \left(j\left(\gamma, z_{\gamma}\right)\right)\right] d z
$$

Next we compute

$$
\begin{aligned}
T_{p} \sigma(\gamma, \tau) & =\sum_{k=0}^{p} \int_{\alpha_{k} \tau}^{\alpha_{k} \gamma \tau} f(z) u(z) d z \\
& =\sum_{k=0}^{p} \int_{\alpha_{\pi(k)} \tau}^{\gamma_{k}^{*} \alpha_{\pi(k)} \tau} f(z) u(z) d z+\sum_{k=0}^{p} \int_{\alpha_{k} \tau}^{\alpha_{\pi(k) \tau} \tau} f(z) u(z) d z .
\end{aligned}
$$

But

$$
\sum_{k=0}^{p} \int_{\alpha_{k} \tau}^{\alpha_{\pi(k)} \tau} g(z) d z=0
$$

for any function $g(z)$.
Hence

$$
\begin{aligned}
T_{p} \sigma(\gamma, \tau)= & \sum_{k=0}^{p} \int_{\alpha_{\pi(k)} \tau}^{\gamma_{k}^{*} \alpha_{\pi(k)} \tau} f(z) u(z) d z \\
= & \sum_{k=0}^{p} \int_{\alpha_{\pi(k)} \tau_{0}}^{\alpha_{\pi(k) \tau} \tau} f(z)\left[c \log j\left(\gamma_{k}^{*}, z\right)\right. \\
& \left.+c^{\prime} \log j\left(\gamma_{k}^{*}, z_{\gamma_{k}^{*}}\right)\right] d z+ \\
& +\sum_{k=0}^{p} \sigma\left(\gamma_{k}^{*}, \alpha_{\pi(k)} \tau_{0}\right) .
\end{aligned}
$$

But

$$
\begin{aligned}
\sum_{k=0}^{p} \sigma\left(\gamma_{k}^{*}, \alpha_{\pi(k)} \tau_{0}\right) & =\sum_{k=0}^{p} \int_{\alpha_{\pi(k)} \tau_{0}}^{\gamma_{k}^{*} \alpha_{\pi(k)} \tau_{0}} f(z) u(z) d z \\
& =T_{p} \sigma\left(\gamma, \tau_{0}\right)
\end{aligned}
$$

It follows that

$$
\begin{aligned}
& T_{p}\left[\sigma(\gamma, \tau)-\sigma\left(\gamma, \tau_{0}\right)\right]= \\
& \quad=\sum_{k=0}^{p} \int_{\alpha_{\pi(k)} \tau_{0}}^{\alpha_{\pi(k) \tau} \tau} f(z)\left[c \log j\left(\gamma_{k}^{*}, z\right)+c^{\prime} \log j\left(\gamma_{k}^{*}, z_{\gamma_{k}^{*}}\right)\right] d z \\
& \quad=\sum_{k=0}^{p} \int_{\tau_{0}}^{\tau} f\left(\alpha_{\pi(k)} z\right)\left[c \log j\left(\gamma_{k}^{*}, \alpha_{\pi(k)} z\right)+c^{\prime} \log j\left(\gamma_{k}^{*}, z_{\gamma_{k}^{*}}\right)\right] d\left(\alpha_{\pi(k)} z\right) .
\end{aligned}
$$

We observe that

$$
\begin{aligned}
\log j\left(\gamma_{k}^{*}, \alpha_{\pi(k)} z\right) & =\log j\left(\alpha_{k} \gamma \alpha_{\pi(k)}^{-1}, \alpha_{\pi(k)} z\right) \\
& =\log j\left(\alpha_{k} \gamma, z\right)+\log j\left(\alpha_{\pi(k)}^{-1}, \alpha_{\pi(k)} z\right) \\
& =\log j\left(\alpha_{k}, \gamma z\right)+\log j(\gamma, z)+\log j\left(\alpha_{\pi(k)}^{-1}, \alpha_{\pi(k)} z\right) .
\end{aligned}
$$

Since

$$
\log j\left(\alpha_{k}^{ \pm 1}, w\right)=0
$$

for any $w \in \mathfrak{h}$ and all α_{k}, it immediately follows that

$$
\log j\left(\gamma_{k}^{*}, \alpha_{\pi(k)} z\right)=\log j(\gamma, z)
$$

We obtain

$$
\begin{aligned}
& T_{p}\left[\sigma(\gamma, \tau)-\sigma\left(\gamma, \tau_{0}\right)\right]= \\
& \quad=\sum_{k=0}^{p} \int_{\tau_{0}}^{\tau} f\left(\alpha_{\pi(k)} z\right)\left[c \log j(\gamma, z)+c^{\prime} \log j\left(\gamma_{k}^{*}, z_{\gamma_{k}^{*}}\right)\right] d\left(\alpha_{\pi(k)} z\right) \\
& \quad=a(p) \int_{\tau_{0}}^{\tau} f(z) c \log j(\gamma, z) d z+\sum_{k=0}^{p} \int_{\alpha_{\pi(k)} \tau_{0}}^{\alpha_{\pi(k) \tau} \tau} f(z) c^{\prime} \log j\left(\gamma_{k}^{*}, z_{\gamma_{k}^{*}}\right) d z
\end{aligned}
$$

from which the stated result easily follows.
These results will now be applied to obtain a closed formula for $L_{f}^{\prime}(1)$. We begin with the well known formula

$$
(2 \pi)^{-s} \Gamma(s+1) \mathrm{L}_{f}(s+1)=-2 \pi i \int_{0}^{i \infty} f(z) \operatorname{Im}(z)^{s} d z
$$

Henceforth, we assume that $\mathrm{L}_{f}(s)$ has a zero of odd order at $s=1$. Upon differentiating with respect to s and setting $s=0$ it follows that

$$
\mathrm{L}_{f}^{\prime}(1)=-2 \pi i \int_{0}^{i \infty} f(z) \log z d z
$$

Recall the identities

$$
\begin{gathered}
\sigma(\gamma, \tau)=\int_{\tau}^{\gamma \tau} f(z) u(z) d z \\
\sigma(\gamma, \tau)-\sigma\left(\gamma, \tau_{0}\right)=\int_{\tau_{0}}^{\tau} f(z)\left[c \log j(\gamma, z)+c^{\prime} \log j\left(\gamma, z_{\gamma}\right)\right] d z
\end{gathered}
$$

Choosing $\gamma=W_{N}, \tau_{0}=0$, and $\tau=i \infty$ in the above identities yields

$$
-2 \int_{0}^{i \infty} f(z) u(z) d z=\int_{0}^{i \infty} f(z) c \log j\left(W_{N}, z\right) d z
$$

Here we have used the fact that $\mathrm{L}_{f}(1)=0$ which is equivalent to

$$
\int_{0}^{i \infty} f(z) d z=0
$$

in addition to the identity

$$
f\left(W_{N} z\right) d\left(W_{N} z\right)=f(z) d z
$$

which is equivalent to the fact that $\mathrm{L}_{f}(s)$ has an odd order zero at $s=1$. Note that

$$
j\left(W_{N}, z\right)=N z .
$$

Hence

$$
-2 \pi i \int_{0}^{i \infty} f(z) \log z d z=\frac{4 \pi i}{c} \int_{0}^{i \infty} f(z) u(z) d z
$$

or equivalently

$$
\begin{aligned}
\mathrm{L}_{f}^{\prime}(1) & =\frac{4 \pi i}{c} \int_{0}^{i \infty} f(z) u(z) d z \\
& =\frac{2 \pi i}{c}\left[\sigma\left(W_{N}, 0\right)-\sigma\left(W_{N}, i \infty\right)\right]
\end{aligned}
$$

Let p be a prime which does not divide N. Then we define the Hecke action

$$
T_{p} \mathrm{~L}_{f}^{\prime}(1)=\frac{2 \pi i}{c} T_{p}\left[\sigma\left(W_{N}, 0\right)-\sigma\left(W_{N}, i \infty\right)\right]
$$

It immediately follows from our previous computations that

$$
T_{p} \mathrm{~L}_{f}^{\prime}(1)=a(p) \mathrm{L}_{f}^{\prime}(1)+\sum_{k=0}^{p} C_{k}
$$

where

$$
C_{k}=A_{k} \int_{\alpha_{\pi(k)} 0}^{\alpha_{\pi(k)} i \infty} f(z) d z
$$

and

$$
A_{k}=\frac{2 \pi i}{c}\left[-c \log j\left(\gamma, z_{\gamma}\right)+c^{\prime} \log j\left(\gamma_{k}^{*}, z_{\gamma_{k}^{*}}\right)\right]
$$

with $\gamma=W_{N}$. By results of Manin [3], and the fact that the fixed point z_{γ} always lies in a quadratic number field, it follows that

$$
\sum_{k=0}^{p} C_{k}
$$

must be a complex number which lies in the field generated by $\mathbb{Q}, c, c^{\prime}, \pi i$, the periods of f, and the logarithms of quadratic algebraic numbers.

We shall now prove our main theorem.
Theorem[1] Let $f(z)$ be a holomorphic newform of weight two for $\Gamma_{0}(N)$ for which $\mathrm{L}_{f}(s)$ has an odd order zero at $s=1$. Let $u: \mathfrak{h}^{*} \rightarrow \mathbb{C}$ be a holomorphic function on \mathfrak{h} having polynomial growth at ∞ which satisfies

$$
u(\gamma z)=u(z)+c \log j(\gamma, z)+c^{\prime} \log j\left(\gamma, z_{0}\right)+u\left(\gamma z_{0}\right)-u\left(z_{0}\right)
$$

for fixed constants $c, c^{\prime} \in \mathbb{C}$ and all $\gamma \in \Gamma_{0}^{*}(N), z, z_{0} \in \mathfrak{h}^{*}$. Then for any integer $m>1$, coprime to N, we have

$$
\mathrm{L}_{f}^{\prime}(1)=\frac{1}{A} \sum_{r \mid m} \sum_{b=0}^{r-1} \int_{0}^{\frac{b}{r}} f(z) u(z) d z+B
$$

where

$$
A=\frac{c}{4 \pi i}\left[\left(\sum_{r \mid m} r\right)-a(m)\right]
$$

and B lies in the field generated by $\mathbb{Q}, c, c^{\prime}, \pi i, a(m)$, the periods of f, and the logarithms of quadratic algebraic numbers.

Remark: This formula expresses $\mathrm{L}_{f}^{\prime}(1)$ as a finite linear combination of additive one cocycles for $\Gamma_{0}(N)$. It gives the natural generalization of Manin's theorem on $\mathrm{L}_{f}(1)$ (see section 3) to higher derivatives.

Proof: We give the proof when $m=p$ is a prime number. The general case is similar and left to the reader. We have already shown that

$$
T_{p} \mathrm{~L}_{f}^{\prime}(1)=a(p) \mathrm{L}_{f}^{\prime}(1)+B
$$

with

$$
B=\sum_{k=0}^{p} C_{k} .
$$

But

$$
\begin{aligned}
T_{p} \mathrm{~L}_{f}^{\prime}(1) & =\frac{2 \pi i}{c} T_{p}\left[\sigma\left(W_{N}, 0\right)-\sigma\left(W_{N}, i \infty\right)\right] \\
& =\frac{4 \pi i}{c} \sum_{k=0}^{p} \int_{\alpha_{k} 0}^{\alpha_{k} i \infty} f(z) u(z) d z \\
& =\frac{4 \pi i}{c} \sum_{k=0}^{p} \int_{\alpha_{k} 0}^{i \infty} f(z) u(z) d z \\
& =\frac{4 \pi i}{c} \sum_{k=0}^{p}\left[\int_{\alpha_{k} 0}^{0}+\int_{0}^{i \infty}\right] f(z) u(z) d z \\
& =\frac{4 \pi i}{c} \sum_{k=0}^{p} \int_{\alpha_{k} 0}^{0} f(z) u(z) d z+(p+1) \mathrm{L}_{f}^{\prime}(1)
\end{aligned}
$$

The stated result follows immediately from this computation.

§5. Construction of Special One-Cocycles

In the previous section we outlined a closed formula for the derivative of an L function (associated to a newform f of weight two for $\Gamma_{0}(N)$) at the special value $s=1$ in terms of one-cocycles of the form

$$
\sigma(\gamma, \tau)=\int_{\tau}^{\gamma \tau} f(z) u(z) d z
$$

It was required that $u(z)$ have polynomial growth at ∞ and satisfy

$$
u(\gamma z)=u(z)+c \log j(\gamma, z)+c^{\prime} \log j\left(\gamma, z_{\gamma}\right)+u\left(\gamma z_{0}\right)-u\left(z_{0}\right)
$$

for all $\gamma \in \Gamma_{0}(N)$ and $z, z_{0} \in \mathfrak{h}^{*}$. We now explicitly construct such a function $u(z)$.
Define

$$
u(z)=\log (\Delta(z) \cdot \Delta(N z))
$$

where

$$
\Delta(z)=e^{2 \pi i z} \prod_{n=1}^{\infty}\left(1-e^{2 \pi i n z}\right)^{24}
$$

is the Ramanujan cusp form of weight twelve for the modular group. Then $u(z)$ satisfies the modular relations

$$
u(\gamma z)=u(z)+24 \log j(\gamma, z)
$$

for all $\gamma \in \Gamma_{0}(N)$.
Furthermore, for the involution W_{N}, we have

$$
\begin{aligned}
u\left(W_{N} z\right) & =\log \left(\Delta\left(\frac{-1}{N z}\right) \cdot \Delta\left(\frac{-1}{z}\right)\right) \\
& =\log \left((N z)^{12} \Delta(N z) \cdot z^{12} \Delta(z)\right) \\
& =u(z)+24 \log (N z)-12 \log (N)
\end{aligned}
$$

It follows that $u(z)$ satisfies

$$
u(\gamma z)=u(z)+24\left[\log j(\gamma, z)-\log j\left(\gamma, z_{0}\right)\right]+u\left(\gamma z_{0}\right)-u\left(z_{0}\right)
$$

for all $\gamma \in \Gamma_{0}^{*}(N), z, z_{0} \in \mathfrak{h}^{*}$. Furthermore, $u(z)$ has polynomial growth at infinity and is holomorphic for $z \in \mathfrak{h}$. Thus we may express $\mathrm{L}_{f}^{\prime}(1)$ in terms of the special one-cocycles

$$
\sigma(\gamma, \tau)=\int_{\tau}^{\gamma \tau} f(z) \log (\Delta(z) \cdot \Delta(N z)) d z
$$

for $\gamma \in \Gamma_{0}(N), \tau \in \mathbb{Q}$.
Another explicit one-cocycle may be constructed from the (almost holomorphic) Eisenstein series $\mathrm{E}_{2}(z)$ of weight two for the modular group. We have

$$
\mathrm{E}_{2}(z)=\frac{-2 \pi i}{z-\bar{z}}+\frac{\pi^{2}}{3}-8 \pi^{2} \sum_{n=1}^{\infty} \sigma_{1}(n) e^{2 \pi i n z}
$$

where

$$
\sigma_{s}(n)=\sum_{\substack{d \mid n \\ d \geq 1}} d^{s}
$$

If we define the holomorphic function

$$
\mathrm{E}_{2}^{*}(z)=\mathrm{E}_{2}(z)+\frac{2 \pi i}{z-\bar{z}}
$$

then a simple computation shows that $\mathrm{E}_{2}^{*}(z)$ satisfies the modular relations

$$
\frac{\mathrm{E}_{2}^{*}(\gamma z)}{j(\gamma, z)^{2}}=\mathrm{E}_{2}^{*}(z)-\frac{2 \pi i c}{c z+d}
$$

for all

$$
\gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}(2, \mathbb{Z})
$$

If we lift $\mathrm{E}_{2}^{*}(z)$ to $\Gamma_{0}(N)$ by defining

$$
\mathrm{E}_{2}^{*}(z, N)=\mathrm{E}_{2}^{*}(z)+\mathrm{E}_{2}^{*} N(z)
$$

then the antiderivative of $\mathrm{E}_{2}^{*}(z, N)$ with respect to z can be used to define a function $u(z)$.

§7. Acknowledgment

The author would like to take this opportunity to thank Shou-Wu Zhang and Nikolaos Diamantis for many helpful discussions.

§8. References

[1] A.O.L Atkin, J. Lehner, Hecke operators on $\Gamma_{o}(m)$, Math. Ann. 185 (1970), 134-160.
[2] A. Borel, Introduction to automorphic forms, Proc. Symp. Pure Math. 9, Amer. Math. Soc. (1966), 199-210.
[3] Y.T. Manin, Parabolic points and zeta functions of modular forms, (Russian) Isv. Acad. Nauk. Vol 6 (1972), No. 1, 19-64.

[^0]: *Research supported in part by NSF grant no. DMS 9200716

