An adelic open image theorem for abelian schemes

New-York Number Theory Seminar - October 24th, 2013

Anna Cadoret - I.A.S./Ecole Polytechnique

The aim of this talk is to extend to arbitrary abelian scheme, Serre's celebrated adelic open image theorem for elliptic curves.

More precisely, let X be a smooth, separated and geometrically connected scheme over a number field k and let $A \to X$ be an abelian scheme. These data give rise to an adelic representation $\rho: \pi_1(X) \to \prod_{\ell} \operatorname{GL}(T_{\ell}(A_n))$ of the étale fundamental group of X on the Tate module of the generic fiber of $A \to X$. Given a closed point $x \in X$ with residue field k(x), one can regard $\Gamma_{k(x)}$ as a decomposition group inside $\pi_1(X)$ and then the 'local' representation $\rho_x := \rho|_{\Gamma_{k(x)}} : \Gamma_{k(x)} \to \prod_{\ell} \operatorname{GL}(T_{\ell}(A_{\eta}))$ identifies with the representation $\Gamma_{k(x)} \to \prod_{\ell} \operatorname{GL}(T_{\ell}(A_x))$. Let G, \overline{G} and G_x denote the image of ρ , $\rho|_{\pi_1(X_{\overline{k}})}$ and ρ_x respectively and, for every prime ℓ , let $G_{\ell^{\infty}}, \overline{G}_{\ell^{\infty}}$ and $G_{\ell^{\infty},x}$ denote the projection of G, \overline{G} and G_x on the ℓ th factor and $G_{\ell}, \overline{G}_{\ell}$ and $G_{\ell,x}$ their reduction modulo ℓ . Given a prime ℓ , it is known that the set of all closed points $x \in X$ such that $G_{\ell,x}$ is not open in G_{ℓ} is independent of ℓ (by previous work of A. Tamagawa and the speaker, this set is also known to be reasonably sparse in the sense that if X is a curve then its intersection with the set of points of bounded degree is finite). Let us denote it by X^{ex} . Then,

Theorem: For every closed point $x \notin X^{ex}$ the group G_x is open in G.

This statement extends as it is to families of 1-motives.

Fix a closed point $x \notin X^{ex}$. The proof decomposes into three steps:

- 1. General properties of motivic representations of étale fundamental groups Up to replacing X with a connected étale cover, reduce to the case where

 - $(\ell$ -independency) $G = \prod_{\ell} G_{\ell}, \overline{G} = \prod_{\ell} \overline{G}_{\ell}, G_x = \prod_{\ell} G_{\ell,x};$ \overline{G}_{ℓ} is generated by its ℓ -Sylow for $\ell \gg 0;$ $\overline{G}_{\ell}^{ab} = 0$ and $|Z(\overline{G}_{\ell})| \leq B$ (independent of ℓ) for every prime ℓ .
- 2. Serre-Nori's approximation theory Up to replacing X with a connected étale cover one has $\overline{G}_{\ell} \subset G_{\ell,x}$ for $\ell \gg 0$.
- 3. Frattini lifting properties of ℓ -adic Lie-groups The inclusion $\overline{G}_{\ell} \subset G_{\ell,x}$ lifts to an inclusion $\overline{G}_{\ell^{\infty}} \subset G_{\ell^{\infty},x}$ for $\ell \gg 0$.

I will try and sketch the proofs of the intermediate steps (1) and (2) and state the main grouptheoretical result of (3). If time allows, I will also say a few words about the extension to 1-motives.