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 DORIAN GOLDFELD

 Beyond the Last Theorem
 In May of last year two mathematicians published a proof ofFermafs conjecture, the most famous

 mathematical brainteaser of all time. So what comes next?

 On August 8,1900, at the Interna
 tional Congress of Mathematics
 in Paris, the German mathemati

 cian David Hilbert stood before his peers
 and posed twenty-three difficult, un
 solved problems that he believed should
 guide the future of mathematics.

 Hilbert was thirty-eight years old and
 a professor at the prestigious University
 of Gottingen. As an extraordinary gen
 eralist with a passion for order and
 rigor, he was just the man to make the
 other mathematicians of his day sit up
 and take notice. The year before, with
 the publication of his book Grundlagen
 der Geometrie (The Foundations of Geom
 etry) , he had embarked on the project
 that was to occupy the remainder of his
 career: to make rock solid the founda
 tions of mathematics. Mathematicians,
 he declared, should devote themselves
 to reducing mathematical concepts to
 rigorous axioms?lists of fundamental
 terms, relations and rules?which could
 then be proved consistent, ensuring
 that mathematical discovery is anchored
 in unassailable principles.

 Some of the problems Hilbert
 proposed to the congress (such as
 number four, the "problem of the
 straight line as the shortest distance
 between two points") reflected his own
 back-to-basics approach to mathematics.
 Others had nagged at mathematicians
 for generations. Problem ten dealt with
 Diophantine equations, algebraic

 DORIAN GOLDFELD is a professor of math
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 before the section of mathematics at the
 New York Academy of Sciences.

 equations in several variables whose
 solutions are required to be rational
 numbers?that is, whole numbers or
 fractions, the ratios of whole numbers.

 Diophantine equations take their
 name from the Greek mathematician

 Diophantus of Alexandria, who prob
 ably lived in the third century of our era
 and who discussed such problems at
 length in his treatise Arithmetica. Typi
 cal among them is a problem that fasci
 nated the Greeks, namely, finding right
 triangles the lengths of whose sides are
 in whole-number ratios to one another.
 To state the matter in the form of an

 equation, the right-triangle problem is
 to find whole numbers x, y and z that
 satisfy the Pythagorean relation x2 + y =
 z. And as many schoolchildren learn,
 the numbers 3,4 and 5 are the simplest
 triplet that solve the problem?though
 an infinite number of other such right
 triangles can be generated.

 Hilbert's tenth problem posed a chal
 lenge of breathtaking generality:

 Given a Diophantine equation with any
 number of unknown quantities and with
 rational integral numerical coefficients: To
 devise a process according to which it can be
 determined by a finite number of operations
 whether the equation is solvable in rational
 integers.

 It was an ambitious goal. Diophan
 tine equations include some of the old
 est and most tenacious problems in
 number theory. Diophantus himself had
 already raised the study of such equa
 tions to quite sophisticated heights. In
 the Arithmetica he noted that he had

 found four whole numbers x, y, z and u
 that satisfy the equation x + y + z = u.
 (An infinite number of solutions can be

 derived from the Pythagorean right tri
 angles; the simplest is given by the num
 bers 12,15,20 and 481, for x, y9 zand u,
 respectively.) That finding proved to
 seed a pivotal event in the history of

 mathematics, though many centuries
 were to pass before the seed came into
 bloom. Some time around 1637, Pierre
 de Fermat, a French provincial lawyer
 and passionate amateur mathematician,
 encountered Diophantus's result in his
 copy of a translation of Diophantus.
 "Why," wrote Fermat in the margin of
 the book, "did not Diophantus seek two
 fourth powers such that their sum is a
 square? This problem is, in fact, impos
 sible, as by my method I am able to
 prove with all rigor."

 In fact, Fermat was to make a much
 stronger assertion, and the margin of
 his copy of the Arithmetica (now appar
 ently lost) went on to proclaim:

 It is impossible to separate a cube
 into two cubes, or a biquadrate into two
 biquadrates, or in general any power
 higher than the second into two powers
 of the like degree; I have discovered a
 truly remarkable proof which this mar
 gin is too small to contain.

 For the "biquadrate" (fourth power)
 case, Fermat's earlier assertion is suffi

 cient to imply the later one: if two fourth
 powers cannot sum to a perfect square,
 they cannot sum to a fourth power ei
 ther (since any fourth power, say w, is
 also a perfect square, namely, the square
 whose side measures u). But Fermat
 was asserting much more. In modern
 notation Fermat's assertion?known to
 mathematicians as Fermat's last theo
 rem, or FLT for short?states that the
 equation xn + yn = z has no solution if x,
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 Illustration by Greg Nemec

 y and z all are positive integers and n is
 a whole number greater than 2.

 Fermat's last theorem is the consum

 mate Diophantine equation: crisp,
 clean, easy to state, virtually useless and

 maddeningly difficult to solve. In the
 three and a half centuries since its ap
 pearance it has attracted a plethora of
 would-be conquerors, drawn by the
 desire for fame and the lure, from time

 to time, of outrageously enormous
 monetary rewards.

 Then, on June 23, 1993, the news
 media reported that Andrew Wiles, a
 professor of mathematics at Princeton
 University, had solved the problem at
 last. Experts soon uncovered an embar
 rassing gap in the alleged proof, but in
 a virtuoso tour de force Wiles and his

 former student Richard Taylor, a math
 ematics professor at the University of
 Cambridge, filled in the hole and
 cracked the problem. The completed
 proof, all 130-odd pages of it, was pub
 lished in May 1995 in the Annals of

 Mathematics. And as far as the media

 and the nonmathematical public were
 concerned, that was the end of the
 matter.

 They were wrong, on several counts.
 For one thing the key proposition

 proved by Wiles and Taylor was not
 Fermat's last theorem. It was a radically
 different theorem, of which FLT was an
 incidental consequence. That theorem
 is well worth understanding in its own
 right, for it isjust as beautiful as Fermat's
 last theorem, and it is vastly more sig
 nificant. For one thing, it marks the first
 major step in a long-range program
 conceived by Robert P. Langlands, a
 mathematician at the Institute for Ad

 vanced Study in Princeton, New Jersey.
 If successful, the program will culmi
 nate in a unified theory of zeta func
 tions, extremely useful mathematical
 objects that pop up in protean diversity
 throughout many branches of math
 ematics and physics. More immediately,
 and along a different avenue of re
 search, the Wiles-Taylor proof could
 well trigger the greatest advance yet in
 the history of Diophantine analysis: a
 general theory of three-variable
 Diophantine equations.

 That lack of an overarching theory
 of Diophantine equations was the fun
 damental problem Hilbert had hoped
 to correct. Historically, Diophantine
 problems had always been stated and
 solved on a case-by-case basis. Over the
 centuries, mathematicians had devised

 an assortment of tricks, dodges and ad
 /^procedures for certain kinds of equa
 tions, but a grand pattern eluded them.

 In 1970 the Russian mathematician

 Yuri Matijasevich of the Steklov Math
 ematical Institute in Leningrad (now
 Saint Petersburg) showed that, in a strict
 sense, such a grand pattern is impos
 sible: no matter what procedure math
 ematicians devise for solving Diophan
 tine equations, there will always remain
 some equations whose solutions are un
 decidable. In other words, there are
 some equations to which solutions will
 never be found but for which it will also

 never be proved that no solutions ex
 ist?a dismal conclusion that follows

 from discoveries about the logic of
 mathematics made in 1931 by the Aus
 trian logician Kurt Godel. Hilbert's
 tenth problem could never be solved.

 In a paper that was published in
 1974 Matijasevich and the late Julia
 Robinson showed that the limbo of off

 limits problems includes certain
 Diophantine equations with thirteen
 or more variables. Before that paper
 even appeared they further lowered
 the number to nine: no algorithm can
 determine whether Diophantine equa
 tions in nine unknowns have integer
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 solutions. For such equations there can
 be no hope: the theory of logic itself
 provides an impenetrable barrier to
 their solution. What about equations
 with fewer variables? Nobody knows.
 The magic line between solvability and
 unsolvability might start as low as four
 variables or as high as eight. All that
 mathematicians can say for the present
 is that the proof of Wiles and Taylor
 indicates that Diophantine equations
 in three variables should be solvable.

 The proposition proved by Wiles and
 Taylor was the bulk of a conjecture
 generally attributed to three mathema
 ticians: Goro Shimura, also of Princeton;

 the late Yutaka Taniyama; and Andre
 Weil of the Institute for Advanced Study.
 The conjecture, now known as the STW
 conjecture, after the surnames of the three

 mathematicians, dates back to 1955,
 when it was published in Japanese as a
 research problem by Taniyama. It posed
 a kind of equivalence between the math
 ematics of objects known as elliptic
 curves and the mathematics of rigid
 motions in space. (Elliptic curves are
 not ellipses; their name stems from the
 fact that they are useful for calculating
 the arc length of ellipses?for instance,
 the distance a planet travels in its orbit
 around the sun.)

 To understand the kind of equiva
 lence posed by the STW conjecture, it is
 helpful to examine a similar connec
 tion between two ways of looking at a
 circle. In geometry a circle is defined as
 the set of all points equally distant from
 one fixed point. Plotted on the familiar
 perpendicular x-y coordinate grid, with
 the center of the circle at the origin and
 the distance set equal to 1, that defini
 tion translates into the set of all points

 y-axis

 ?L-' P ]-x-axis

 Circle

 for which x + y = 1. In algebraic terms,
 then, one can think of the circle as the
 set of solutions to that equation.

 But there is another way of looking
 at a circle. Consider a clock, an antique
 twenty-four-hour model with a single
 hand that swings around the dial once
 a day, pointing first to "high midnight,"
 then to 1:00 a.m. and so on. The clock

 has no idea what day it is; as far as it is
 concerned, 3:05 p.m. today is indistin
 guishable from 3:05 p.m. tomorrow, or
 next week or on any date you might
 imagine. In mathematical terms each
 point on the circular dial sets up an
 equivalence class comprising all the mo

 ments in the past, present and future at
 which the hand points precisely to that
 point. Schematically, the clock dial takes
 a time line marked with equally spaced
 integers (the midnight points),

 9 ' ? 1

 -3 -2-10123

 Number line

 twists it into a shape like a Slinky, and

 ... -4 -3 -2 -1 0 1 2 3

 Slinky

 then collapses the Slinky into a circle.

 All integers
 collapse to
 a point.

 /

 o
 The slinky collapses to a circle.

 What the circle does for the one
 dimensional flow of time, it can also do
 for the infinite one-dimensional space
 of the real number line. In that case the

 circle becomes a set of equivalence
 classes of pure numbers. Formally, for
 any number x, the equivalence class is
 defined to be the set of all numbers of
 the form x+ nc, in which c is the circum

 ference of the circle and n is any posi

 tive or negative whole number.
 At first glance the two descriptions of

 a circle?one in terms of algebra, the
 other in terms of equivalence classes?
 could hardly be more different. But
 they are indeed equivalent, linked by
 the Pythagorean theorem and some
 elementary geometry. Consider a func
 tion f (x), which takes a number xand
 connects it, or as mathematicians say,
 maps it, to another number f(x). To be
 well defined on the equivalence classes
 that make up the circle, / (x) must be
 periodic. That is, / (x + nc) must have
 the same value as f(x) for some num
 ber c and for every integer 1. In the case
 of a circle of radius one, the required
 periodic functions are just the sine and
 cosine functions. It is a simple conse
 quence of the Pythagorean theorem
 that cos2x + sin2x = 1. If you then replace
 cos xwith Xand replace sin xwith Y you
 get the equation X2 + Y2=l?and there
 you are, back at the original description
 of a circle. In mathematical parlance,
 by making that substitution you have
 parameterized the equation of the circle
 by periodic functions.
 The equivalence that Shimura,

 Taniyama, and Weil proposed in their
 conjecture was based on a similar
 substitution?not for circles, however,
 but for elliptic curves. The equation of an
 elliptic curve is y= x + ax + b, only
 slightly more complicated than the
 equation of a circle. And like the
 equation of a circle, it can be
 parameterized. The first person to show
 how to do so was the nineteenth-century
 German mathematician Weierstrass,
 who developed the procedure in a
 classical theorem.
 Weierstrass generalized the idea of

 equivalence classes on a number line to
 a two-dimensional plane. Imagine the
 plane as an infinite sheet of extremely
 thin, clear plastic, governed by the usual
 coordinate system, a horizontal x axis
 and a vertical y axis. Next, in your imagi
 nation, cover the plane with a grid,
 drawing regularly spaced parallel lines
 A units apart in one direction and B
 units apart in another direction. The
 lines need not be parallel to the axes, or
 even perpendicular to one another, but
 for the sake of simplicity assume they
 are. The result is a tessellation, or tiling,
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 Tiling of the plane

 of the plane into an infinite number of
 identical rectangles.

 Now imagine that you pick up a pin,
 close your eyes and stick the pin at
 random into the plane. Wherever the
 pin lands, it will wind up lodged inside
 or on the boundary of one of the rect
 angles. Because all the tiles are identi
 cal, every other rectangle in the plane
 must include exactly one point in a
 position corresponding to that of the
 pin. (Boundary points on two adjacent
 sides of each rectangle can be thought
 of as belonging to that rectangle; bound
 ary points on the other two sides then
 belong to neighboring rectangles.)
 Thus any point in the plane can be
 mapped onto a point in any of the
 rectangles in the plane; in effect, the
 whole plane can be collapsed into a
 single rectangle. The rectangles divide
 the plane into equivalence classes, just
 as the integers divide up the number
 line.

 When you encapsulate a plane into a
 single rectangle, that rectangle takes
 on some unusual characteristics. For

 one thing, the parallel sides of the
 rectangle?top and bottom left and ^
 right?become equivalent. Move far
 enough toward the top, and you
 reappear on the bottom. Move toward
 the right, and you reappear on the
 left. (You get the same effect on the
 screens of some video games.) As a
 result, whereas a circle has a single
 period, the tiling of a plane has two,
 one horizontal and the other vertical.

 There is a tidy way of representing L
 that double periodicity. First fold the V,
 top and bottom of the rectangle
 toward each other until they touch,
 and glue them together to make a

 cylinder. Then bring the rolled-up sides
 of the rectangle together, and glue them
 together, too. The finished product is a
 doughnut-shaped geometric figure, or
 torus.

 The two periods on a torus are easy
 to see. They are represented by two
 circles: one that goes through the hole
 in the doughnut, and one that goes
 around the rim. Just as periodic func
 tions can be defined on a circle, doubly
 periodic functions can be defined on a
 torus. Weierstrass showed that such

 doubly periodic functions can be used
 to parameterize elliptic curves. By choos
 ing suitable lengths for A and B in the
 original tiling, it is possible to restate
 any elliptic equation in terms of equiva
 lence classes in a plane.

 But Weierstrass's method is not the

 only way of parameterizing an elliptic
 curve. In their conjecture Shimura,
 Taniyama and Weil proposed another
 method for elliptic curves y = x + ax +b
 for which the coefficients a and b are

 \

 ^ torus

 Construction of a torus by folding opposite sides.

 integers. The STW conjecture states
 that, in addition to a torus, there is
 another surface that can supply the
 necessary equivalence. The surface is
 different for every elliptic curve, but all
 of them resemble something a child in
 kindergarten might make out of mod
 eling clay: a blob poked full of holes,
 like a torus with extra handles grafted

 Riemann surface

 onto it. To create such a surface (al
 though the procedure can be hard to
 visualize), all you have to do is take a
 polygon of the right shape, match up
 pairs of sides and fold and glue the sides
 together.

 That polygon holds the key to the
 STW conjecture. Like the rectangle that
 gives rise to a torus, it represents a
 method of defining equivalent points.
 This time, however, the equivalence
 classes stem not from tiling but from
 rigid motions of the plane. A rigid mo
 tion is a change that moves a plane

 without stretching or squashing any part
 of it. For example, imagine that every
 point in the plane suddenly hops one
 unit to the right. Or imagine that every
 point in the plane pivots through a
 right angle around some imaginary axis.
 Those are rigid motions. If you pick one

 point in the plane and trace it
 ~\ through a series of such shifts and
 / rotations, it will correspond to ex

 actly one point for each new position
 of the plane. Consequently, a se
 quence of rigid motions creates a set
 of equivalence classes, one for every
 point in the plane.

 Functions that are periodic with
 g respect to rigid motions are called
 '2 modular functions. Remember how the

 equivalence classes of a clock dial
 )wrap the number line into a closed

 circle? In much the same way, if you
 imagine a curve (a piece of string, if
 you like) that winds through or
 around various collections of holes
 in the blob I described earlier, the
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 equivalence classes of the rigid motions
 wrap the curve back to its starting point
 in a closed loop. The theory of modular
 functions is an important branch of
 mathematics with many diverse appli
 cations, including?not surprisingly,
 given the terminology?string theory, a
 branch of theoretical physics that has
 excited many cosmologists.

 Shimura, Taniyama and Weil con
 jectured that, by picking the right se
 quence of modular functions, one can
 create a surface made up of points that
 constitute solutions to any elliptic
 curve for which asnd &are integers?
 just as by picking the right set of trigo
 nometric functions (the sine and co
 sine) , one can create a curve, namely,
 a circle, whose points constitute solu
 tions to the equation x + y = 1.

 To mathematicians, the statement
 and proof of the STW conjecture were
 as revolutionary as the first mingling
 of waters in the Panama Canal. Until

 that point, the mathematics of elliptic
 functions and the mathematics of rigid
 motions had developed in isolation
 from each other and in strikingly dif
 ferent ways. The study of elliptic curves
 was a branch of number theory, small,
 specialized and provincial?not un
 like the study of Diophantine equa
 tions. In contrast, the study of rigid

 motions was a bustling, sophisticated
 suburb of topology, geometry, and
 analysis, with many applications to
 engineering and physics. Mathemati
 cians had been working on rigid mo
 tions intensely for a hundred years and
 had accumulated avast armamentarium

 of powerful mathematical machinery.
 By suggesting that the two fields could
 be linked, Shimura, Taniyama and Weil
 delivered that heavy machinery to the
 construction site of elliptic curves; by
 proving that the link held, Wiles and
 Taylor started the engines. The result
 has been a frenzy of productive math
 ematical work that has benefited each

 field and is likely to lead to solutions of
 outstanding problems in other fields as
 well.

 The cross-fertilization between fields

 also resulted in the proof of Fermat's
 last theorem. In the mid-1980s Ken
 neth A. Ribet of the University of Cali
 fornia, Berkeley, showed that if the STW

 conjecture was true, FLT would follow
 as an automatic consequence. Ribet's
 work was based on earlier work by
 Gerhard Frey of the University of
 Saarland in Saarbrucken, Germany, and
 Jean-Pierre Serre of the College of
 France in Paris. But despite the public
 ity it has received, FLT could well turn
 out to be a minor consequence. As
 charming as FLT was (and three centu
 ries of effort is proof enough of its
 fascination), much bigger mathemati
 cal game is afoot, and there are strong

 Illustration by Greg Nemec

 indications that the methods Wiles and

 Taylor used may soon bring it down.
 Traditionally, as I said earlier, the

 biggest barrier to Diophantine analysis
 has been that mathematicians must solve

 each problem on a case-by-case basis.
 There has been no unifying theory to
 connect the problems. Now it appears
 that such a theory may be close at hand.
 The key is a problem called the ABC
 conjecture, formulated in the mid-1980s
 by the French mathematician Joseph
 Oesterle of the University of Paris VI
 and the English mathematician David

 W. Masser of the Mathematics Institute

 of the University of Basel in Switzer
 land. If the ABC conjecture can be
 shown to be true, Diophantine analysis
 will no longer be the mathematical
 equivalent of fly-fishing; it will be more

 like fishing with dynamite. That is be
 cause the ABC conjecture promises to
 provide a new way of expressing
 Diophantine problems, one that trans
 lates an infinite number of Diophan
 tine equations into a single mathemati
 cal statement. The equations include
 those for most of the classical problems
 in three variables, including Fermat's
 last theorem.

 The ABC conjecture, like many prob
 lems in number theory, is straightfor

 ward enough even for non-mathemati
 cians to understand. It requires only
 one new concept: that of a square-free
 number, an integer that is not divisible
 by the square of any number. The
 numbers 15 and 17 are square free,
 but 16 and 18 are not. Now for a
 definition: the square-free part of an
 integer n is the largest square-free
 number that can be formed by multi
 plying the factors of n. Mathemati
 cians denote it sqp(n). Thus sqp(15)
 is 15; sqp (16) is 2; sqp (17) is 17; sqp(18)
 is 6. In general, if n is square free, the
 square-free part of n, sqp(n), is just n.
 Otherwise, sqp(n) is what is left of n
 after all the factors that create a square
 have been eliminated. Looked at an

 other way, sqp (n) is the product of the
 distinct prime numbers that divide n
 (a prime number is any integer that
 can be divided only by itself and by 1).
 To cite two more examples,

 sqp(9) = sqp(32) = 3; sqp(1,400) =
 sqp(23x52 x 7) = 2x 5 x7 = 70.

 The ABC conjecture deals with pairs
 of numbers that have no factors in com
 mon. Let A and 2? be two such numbers,
 and let C be their sum. Now consider

 the square-free part of A x B x C. For
 example, if A = 3 and B-l, then Cis 10
 and sqp (ABC) is 3x7x10, or 210. If you
 start plugging in numbers at random,
 you will find that in most cases sqp (ABC)
 is greater than C?in other words,
 sqp (ABQ/C is greater than 1. But that
 is not always the case. For example:

 If A is 1 and Bis 8, then C= 1 + 8 = 9, and

 sqp(ABQ/C = sqp(l x 23 x 32)/9 = (1 x
 2x3)/9 = 6/9 = 2/3.

 If A is 3 and Bis 125, then C= 3 + 125 =
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 128, and sqp (ABC) / C= sqp (3 x 53x 27) /
 128=(3x5x2)/27=15/64.

 A is 1 and Bis 512, then C= 1 + 512 = 513,

 and sqp (ABC) / C= sqp (1 x 29x 33x 19) /
 513 =(lx 2 x 3 x 19)/(33x 19) = 2/9.

 Masser proved that the ratio
 sqp(ABC)/ C can get arbitrarily small.
 That is, if you name any number greater
 than zero, however minute, then some
 where among the infinitude of positive
 integers there are numbers A and B for

 which sqp (ABC)/ Cis smaller than that
 number. Surprisingly, however, it ap
 pears that if you change the expression
 slightly, Masser's statement no longer
 holds. The ABC conjecture states that
 [sqp (ABC) ] V Cdoes reach a minimum
 value if n is any number greater than
 one?even a number such as
 1.0000000001 thatisonly slightly greater
 than 1.

 The remarkable thing about the ABC
 conjecture is that it provides a way of
 reformulating an infinite number of
 Diophantine problems?and, if it is true,
 of solving them. Fermat's last theorem,
 for instance, could be shown to result
 from a straightforward proof by contra
 diction, as follows:

 Assume Fermat' s last theorem is false;

 that is, there are positive integers x, y, z
 and k (with k greater than two) such
 that xk+y=zk. It is safe to assume further
 that x and y have no common factors
 (if they did, you could just divide every
 term by those factors and get an equiva
 lent equation without common factors).

 Now simplify the formula by setting A
 equal to x\ B equal to / and C equal to
 z\ 50 that the equation becomes A + B=
 C
 According to the ABC conjecture,

 for any value of n greater than one,
 [sqp(ABQ]n/C must be greater than
 some minimum value. At present, with
 the conjecture still unproved, no math
 ematician would dare to suggest what
 that minimum actually is for a given
 value of n, but that does not matter: the

 proof will work no matter what it is. So
 assume that n is two and the minimum

 is 1 (values that my home computer
 declares realistic for A and B well into

 the thousands). That is, [sqp(ABC)}2/
 Cis always greater than 1.

 Now sqp (ABC) is just another way of
 writing sqp (xkyzk), which, by the defini
 tion of the square-free-part function,
 must be less than or equal to xyz. And
 because x and y are less than z, xyz must
 be less than z. Thus sqp (ABC) is less
 than z, and so [sqp(ABC)]2/C is less
 than (z3)2/ C, which in turn is the same
 as z6/z\ or z (6"A). But as I just noted, if the
 ABC conjecture is true, one might as
 well assume that [sqp(ABC)]2/C is
 greater than 1, and so z(6'k) is also greater
 than one. But that is a contradiction for

 The ABC conjecture
 is the most important
 unsolved problem in
 Diophantine analy
 sis. It is more than

 utilitarian; to math
 ematicians it is also

 a thing of beauty.

 any whole number & greater than 5. The
 only way to remove the contradiction is
 to remove the assumption that FLT is
 false, and so (again, assuming the truth
 of the ABC conjecture) FLT must be
 true. By retracing the argument with a
 smaller value of n, you could bring
 about a contradiction for any whole
 number k greater than two, thereby
 proving Fermat's last theorem.

 The ABC conjecture is the most im
 portant unsolved problem in Diophan
 tine analysis. It is more than utilitarian;
 to mathematicians it is also a thing of
 beauty. Seeing so many Diophantine
 problems unexpectedly encapsulated
 into a single equation drives home the
 feeling that all the subdisciplines of
 mathematics are aspects of a single
 underlying unity, and that at its heart
 lie pure language and simple
 expressibility. No wonder mathemati
 cians are striving so hard to prove it?

 like rock climbers at the base of a sheer

 cliff, exploring line after line of minute
 cracks in the rock face in the hope that
 one of them will offer just enough pur
 chase for the climbers to pick their way
 to the top. In this case the cracks in the
 rock face are mathematical statements

 equivalent to the ABC conjecture, any
 one of which might yield the proof
 being sought.

 One promising avenue of research
 focuses on an elliptic curve called the
 Frey curve, after Gerhard Frey. The Frey
 curve is defined by the equation y=x(x
 -A) (x+B), where A and B are integers
 with no common factors. In studying
 the curve, one of the first things a math
 ematician does is calculate a number

 called the discriminant, which gives
 important information about the shape
 of the curve, the number of possible
 solutions to the equation, and where
 among the realms of real and complex
 numbers the solutions must reside. If

 you took high school algebra, your
 teacher no doubt drummed into your
 head the formula b2 - 4ac, the discrimi
 nant of the general quadratic expres
 sion ax2 + bx+ c. For the Frey curve, the
 discriminant takes a particularly simple
 and pleasing form: (ABC)2, where Cis
 equal to A plus B?an expression pro
 vocatively similar to the one at the heart
 of the ABC conjecture. The resemblance
 is more than esthetic; in fact, the dis
 criminant of the Frey curve may be the
 key that unlocks the proof of the ABC
 conjecture.

 To see why, remember how Shimura,
 Taniyama and Weil brought the heavy
 machinery of rigid motions to the theory
 of elliptic curves by proposing that ev
 ery elliptic curve with integer coeffi
 cients is related to a set of rigid motions
 in space. In the formulas that describe
 rigid motions, every rigid motion is
 governed by one crucial number, N,
 known as the conductor. Its exact defi
 nition is technical and does not matter
 here, but what does matter is some
 thing that Frey found out about it. He
 showed that the conductor of the Frey
 curve is essentially the square-free part
 of the discriminant: N = sqp [ (ABC)2].
 And the square-free part of (ABC)2, of
 course, is the same as the square-free
 part of ABC.

 continued on page 34
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 Problem 52: (Quickie) Trigonometric Identity

 (i) Case n = 2m.

 Em_1 tan(4A: + l)7r _ 2r^1 tan(4j + 1 - 4m)7r 8m " ^ 8m

 E2m_1 COt(4j + 1)7T 8m '

 E2m 1 tan(4A: + l)n _ tan(4j + 1 + 4m)7r 8m ~ ^ 8m k=m j=0

 E171-1 COt(4j + 1)7T . n 8m '

 (ii) Case n = 2m + 1.

 Em tan(4fc + l)7r _ tan(4m -f 1 ? 4j)7r 8m + 4 ~~ ^ 8m+ 4 k=0 j=0

 Em cot(4j + 1)tt 8m+ 4 '

 E2m tan(4fc + l)7r _ ^ tan(12m + 5 - 4j)7r 8m + 4 ~ ^ 8m+ 4 k=m+l j=m+l

 E2m COt(4j + 1)7T , 8m+ 4 j=ra+l

 Editorial note. The proposer conjectured that each of the
 given sums equals n. This follows from the known identity
 X]fc=o cot(a + /c7r/n) = ncot na and takes more effort to prove.

 Problem 54: (Quickie) Diophantine Equations

 (l)Define the sequence {Fn} by -^n+i ? Fn\ where Fo ?
 n. Since n(n ? 1)! = n!, it follows that an infinite set of
 solutions to the more general equation xolxil xm! =
 x\ is given by x0 = F0, xi = F\ -1, x2 = F2 -1,..., xm =
 Fm \, X = Frn.

 (2) Assuming a>b>c>d>e>f,we have
 6a! > (a + 1)! or 5 > a. Hence, the only solutions are
 (5,5,5,5,5,5,6) and (3,3,3,2,2,2,4).

 (3) Assuming a>b>c>d>e>f, we have
 6aa > (a + l)a+1 so that there are no solutions.

 Problem 58: (Quickie) Maximum Sum

 Since the sum is convex in each of the x/s, it takes on its
 maximum value for the Xi's being either 0 or 1. Hence
 the maximum sum is n ? 1.

 [Continued from page 31]

 Are alarm bells going off? If not, take another look
 at the ABC conjecture. All it says (hypothetically) is that
 if the number n is greater than 1, [sqp(ABC)]n/C has
 a lower bound greater than zero. Thanks to Frey's dis
 covery, mathematicians now have a chance to derive the
 conjecture from any number of relations that might link
 conductors, discriminants and almost everything else I
 have talked about so far. It seems almost inevitable that

 if we mathematicians propose enough plausible-looking
 relations, one of them will pay off.

 In 1988 I discovered one possibility while looking at
 the two ways of parameterizing the Frey curve: Weier
 strass's method (parallelograms and toruses) and the
 STW method (rigid motions and many-holed surfaces).
 The relation was a simple ratio: the area of the tiling
 parallelogram, divided by the conductor raised to some
 power. If that ratio has a lower bound, I showed, the
 ABC conjecture is true. More recently, harnessing the
 techniques pioneered by Wiles and Taylor, I developed
 some other statements equivalent to the ABC conjecture
 while working with the French mathematician Lucien
 Szpiro of the University of South Paris in Orsay. Szpiro
 has developed an elegant conjecture involving the dis
 criminant and the conductor, from which the ABC con
 jecture would follow. Szpiro has proved his conjecture
 for certain special kinds of elliptic curves, and massive
 computational evidence has borne out the more general
 case. The signs are that a proof of the ABC conjecture
 could well be close at hand.

 If the ABC conjecture yields, mathematicians will
 find themselves staring into a cornucopia of solutions
 to long-standing problems. Some of those problems
 are of more than theoretical interest. Nowadays many
 methods of ensuring the security of electronic mail
 and other computerized transactions depend heavily on
 number theory, as programmers develop ciphers based
 on time-consuming problems in arithmetic. For exam
 ple, a highly popular technique depends on the diffi
 culty of determining all the large prime factors of a very
 large number. In principle, it should also be straightfor
 ward to create a cipher based on the difficulty of solv
 ing problems in Diophantine analysis. The major hur
 dle is the solvability barrier: the number of variables
 above which a Diophantine equation becomes impervi
 ous to attack. Any cipher based on an equation with
 that many variables should be absolutely secure. But
 where is the threshold? As I noted earlier, all anyone
 knows is that it probably lies between three and nine
 variables. At current or foreseeable processing speeds,
 a nine-variable cipher is impracticably slow, even for
 the fastest computers. A four-variable Diophantine ci
 pher, however, would be both practical and extremely
 useful. If Hilbert's ghost were to return to proclaim
 twenty-three directions for mathematical research in the
 twenty-first century, nailing down the solvability barrier
 would certainly be among them.B
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