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§1. The ABC–Conjecture.

The ABC–conjecture was first formulated by David Masser and Joseph Osterlé (see
[Ost]) in 1985. Curiously, although this conjecture could have been formulated in the
last century, its discovery was based on modern research in the theory of function fields
and elliptic curves, which suggests that it is a statement about ramification in arithmetic
algebraic geometry. The ABC–conjecture seems connected with many diverse and well
known problems in number theory and always seems to lie on the boundary of what is
known and what is unknown. We hope to elucidate the beautiful connections between
elliptic curves, modular forms and the ABC–conjecture.

Conjecture (ABC). Let A,B, C be non–zero, pairwise relatively prime, rational integers
satisfying A + B + C = 0. Define

N =
∏

p|ABC

p

to be the squarefree part of ABC. Then for every ε > 0, there exists κ(ε) > 0 such that

max(|A|, |B|, |C|) < κ(ε)N1+ε.

A weaker version of the ABC–conjecture (with the same notation as above) may be given
as follows.

Conjecture (ABC) (weak). For every ε > 0, there exists κ(ε) > 0 such that

|ABC| 13 < κ(ε)N1+ε.

Oesterlé, [Ost] showed that if we define

κ(ε) = inf
A+B+C=0

(A,B)=1

max(|A|, |B|, |C|)
N1+ε

∗ Supported in part by a grant from the NSF.

The author would like to thank Iris Anshel and Shu-Wu Zhang for many helpful conversations.

1



then
lim
ε→0

κ(ε) = ∞.

The best result in this direction, known to date, seems to be in the paper of Stewart
and Tijdeman [S–T]. They prove that for any fixed positive δ there exist infinitely many
solutions of

A + B + C = 0, (A,B) = 1, N =
∏

p|ABC

p > 3

with

max(|A|, |B|, |C|) > N exp

(
(4 − δ)

√
log N

log log N

)
.

In 1996 Alan Baker [B] proposed a more precise version of the ABC–conjecture.

Conjecture (ABC). (Baker) For every ε > 0 there exists a constant κ(ε) > 0 such that

max (|A|, |B|, |C|) < κ(ε) ·
(
ε−ωN

)1+ε
,

where ω denotes the number of distinct prime factors of ABC.

This conjecture would give the best lower bounds one could hope for in the theory of linear
forms in logarithms. In the same paper [B] Baker attributes to Granville the following
intriguing conjecture.

Conjecture (ABC). (Granville) Let Θ(N ) denote the number of integers less than or
equal to N that are composed only of prime factors of N . Then

max (|A|, |B|, |C|) << NΘ(N).

At present the best known results in the direction of the ABC–conjecture are exponen-
tial in small powers of N and are obtained using machinery from Baker’s theory of linear
forms in logarithms. The first such result was obtained by Stewart and Tijdeman [S–T]
in 1986.

Theorem 1. Let A,B,C be positive integers satisfying A + B = C, (A,B) = 1, C > 2.

Then there exists a constant κ > 0 (effectively computable) such that C < eκ·N15

.

This was improved in 1990 by Stewart and Yu [S–Y] to

Theorem 2. Let A,B,C be positive integers satisfying A + B = C, (A,B) = 1, C > 2.
Then there exists a constant κ > 0 (effectively computable) such that

C < eN
2
3
+ κ

log log N
.

The constant 2
3

has recently been improved by Yu to 1
3
.
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§2. Applications of the ABC–Conjecture.

In order to show the profound importance of the ABC–conjecture in number theory, we
enumerate some remarkable consequences that would follow if the ABC–conjecture were
proven.

Theorem 3. Assume the ABC–conjecture. Fix 0 < ε < 1, and fix non–zero integers
α, β, γ. Then the diophantine equation

αxr + βys + γzt = 0.

has only finitely many solutions in integers x, y, z, r, s, t satisfying

xyz 6= 0, (x, y) = (x, z) = (y, z) = 1, r, s, t > 0 and
1

r
+

1

s
+

1

t
< 1 − ε.

Moreover, the number of such solutions can be effectively computed provided the constant
κ(ε) in the ABC–conjecture is effective.

Proof: Let
A = αxr, B = βys, C = γzt.

Without loss of generality, we may assume that |C| is the maximum of |A|, |B|, |C|. The
ABC–conjecture (|C| < κ(ε)N1+ε) then implies that

(2.1) |γzt| < κ(ε) · |αβγxyz|1+ε.

Since |A|, |B| ≤ |C| it immediately follows that

|x| ≤
∣∣∣ γ

α

∣∣∣
1
r · |z| t

r , |y| ≤
∣∣∣∣
γ

β

∣∣∣∣
1
s

· |z| t
s .

Plugging these bounds into (2.1) and taking the tth root of both sides, we obtain

(2.2) |z| << κ(ε)
∣∣∣z 1

r + 1
s + 1

t

∣∣∣
1+ε

<< κ(ε)|z|1−ε2 ,

where the implied constants << can be effectively computed and depend at most on α, β, γ.
The inequality (2.2) plainly implies that there can be at most finitely many integers z
satisfying (2.2).

Without loss of generality, we may now assume that |A| ≤ |B|. It follows that

(2.3) |x| ≤
∣∣∣∣
β

α

∣∣∣∣
1
r

· |y|
s
r .

Writing the ABC–conjecture in the form

(2.4) |βys| < κ(ε) · |αβγxyz|1+ε,
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and using the previously proved fact that |z| lies in a finite set, it follows from (2.3) and
(2.4) that

|y| << |y|(
1
r + 1

s )·(1+ε) << |y|1−ε2 .

Thus, y also lies in a finite set. Writing the ABC–conjecture in the form

|βxr| < κ(ε) · |αβγxyz|1+ε,

and noting that r must be ≥ 2, it immediately follows that

|x| << x
1+ε

r ,

so that x also must lie in a finite set. Finally, we again use the ABC–conjecture to write

max |αxr|, |βys|, |γzt| << 1

since x, y, z lie in a finite set. Thus, r, s, t also must lie in a finite set.

In 1988 Silverman [S1] proved the following theorem.

Theorem 4. Assume the ABC–conjecture. Then there exist infinitely many primes p
such that

ap−1 6≡ 1 (mod p2).

In 1991 Elkies [E] proved that the ABC–conjecture implies the Mordell conjecture
(this was first proved by Faltings [F]) which states that every algebraic curve of genus ≥ 2
defined over Q has only finitely many rational points.

Another interesting application is due to Granville [Gr] 1998. He proved the following.

Theorem 5. Let f (x) be a polynomial with integer coefficients which is not divisible by
the square of another polynomial. Then there exists a constant cf > 0 such that

∑

n≤x

f(n) is squarefree

1 ∼ cfx (x → ∞).

The most recent application of ABC is due to Granville and Stark [Gr-S] (1999). They
show that a very strong uniform ABC–conjecture for number fields implies there are no
Siegel zeros for Dirichlet L–functions associated to imaginary quadratic fields Q(

√
−d)

where −d < 0, and d is squarefree with −d ≡ 1(4) or −d ≡ 8, 12(16).

Vojta ([V], 1987) first showed how to formulate the ABC–conjecture for number fields.
Let K/Q be a number field of degree n with discriminant DK . For each prime ideal p of

K define a valuation | |p normalized so that |p|p = NormK/Q(p)−
1
n . For each embedding
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v : K → C define a valuation | |v by |α|v = |αv| 1
n , for α ∈ K, and where | | denotes the

ordinary absolute value on C. For α1, α2, . . . , αm ∈ K we define the height:

H(α1, . . . , αm) =
∏

v

max
(
|α1|v, |α2|v, . . . , |αm|v

)
,

where the product goes over all places v (prime ideals and embeddings). We also define
the conductor:

N (α1, . . . , αm) =
∏

p∈I

|p|−1
p

where I denotes the set of prime ideals p such that |α1|p, . . . , |αm|p are not all equal. We
can now state.

Uniform ABC–Conjecture. Let α, β, γ ∈ K satisfy α+β +γ = 0. Then for every ε > 0,
there exists κ(ε) > 0 such that

H(α, β, γ) ≤ κ(ε)
(
D

1
n

K ·N (α, β, γ)
)1+ε

.

Assuming the uniform ABC–conjecture Stark and Granville obtained the following lower
bound for the class number h(−d) of Q(

√
−d):

h(−d) ≥
(π

3
+ o(1)

) √
d

log d

∑

(a,b,c)∈Z3

−d=b2−4ac
−a<b≤a<c or 0≤b≤a=c

1

a
(d → +∞).

§3. Elliptic curves over Q (Global Minimal Models).

An elliptic curve over a field K is a projective non–singular algebraic curve of genus one
defined over K, furnished with a K–rational point. Every such curve has a generalized
Weierstrass equation or model of the form:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

where ai ∈ K, (i = 1, 2, 3, 4, 6) with K–rational point (point at infinity) given in projective
coordinates by (0, 1, 0). It was first proved by Mordell [Mo] (for K = Q) and generalized by
Weil [W] to arbitrary K that the K–rational points on E (denoted E(K)) form a finitely
generated abelian group (Mordell–Weil group). The rank of the Mordell–Weil group E(K)
is defined to be the number of generators of infinite order.
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Following Tate’s formulaire [T1], we define

b2 = a2
1 + 4a2

b4 = a1a3 + 2a4

b6 = a2
3 + 4a6

b8 = a2
1a6 − a1a3a4 + 4a2a6 + a2a

2
3 − a2

4

∆ = −b2
2b8 − 8b34 − 27b2

6 + 9b2b4b6

j = c3
4/∆,

where ∆ denotes the discriminant of E.

Let
E′ : y′2 + a′

1xy + a′
3y = x′3 + a′

2x
′2 + a′

4x
′ + a′

6

be another elliptic curve defined over K. Then E,E′ are isomorphic if and only if there is
a coordinate change of the form

x = u2x′ + r, y = u3y′ + u2sx′ + t

with r, s, t ∈ K and u ∈ K∗, which transforms E to E′. In this case we have

j′ = j, ∆′ = u−12∆.

For each rational prime number p, consider the local field Qp. Let vp denote the p–adic
valuation normalized so that vp(p) = 1, Zp = {x ∈ Qp | vp(x) ≥ 0}, denotes the ring of
p–adic integers.

Fix a rational prime p. Among all isomorphic models of a given elliptic curve

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

defined over Qp, we can find one where all coefficients ai ∈ Zp, and thus vp(∆) ≥ 0. This
is easily seen by the coordinate change x → u−2x, y → u−3y which sends each ai to uiai.
Choosing u to be a high power of p does what we want. Since vp is discrete, we can look
for an equation with vp(∆) as small as possible.

Definition (Global Minimal Model). Let E be an elliptic curve over Q with Weierstrass
equation given by

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6.

Then E is defined to be minimal at p if

• ai ∈ Zp (i = 1, 2, 3, 4, 6)

• vp(∆) is minimal (among all isomorphic models over Qp).

We define E to be a global minimal model if E is minimal at every prime p.
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§4. Conjectures which are equivalent to ABC.

Let E be an elliptic curve defined over Q (global minimal model) with Weierstrass
equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6.

Then associated to E we have two important invariants:

• Discriminant ∆ = −b2
2b8 − 8b34 − 27b26 + 9b2b4b6,

• Conductor N =
∏

p ∆pfp , where

fp =





0, if E(Fp) is nonsingular;

1, if E(Fp) has a nodal singularity;

2 + δ, if E(Fp) has a cuspidal singularity, with δ = 0 if p 6= 2, 3.

The recipe for the conductor was first shown by Ogg [O] in 1967. An algorithm to compute
fp in all cases was proposed by Tate in a letter to Cassels (see [T1]). An elliptic curve
which never has bad reduction of cuspidal type is said to be semistable, and in this case N
is always the squarefree part of ∆. This is the bridge between the theory of elliptic curves
and the ABC–conjecture.

Conjecture. (Szpiro, 1981) Let E be an elliptic curve over Q which is a global minimal
model with discriminant ∆ and conductor N . Then for every ε > 0, there exists κ(ε) > 0
such that

∆ < κ(ε)N6+ε.

We show that Szpiro’s conjecture above is equivalent to the weak ABC–conjecture. Let
A,B,C be coprime integers satisfying A + B + C = 0 and ABC 6= 0. Set N =

∏
p|ABC

p.

Consider the Frey–Hellegouarch curve

EA,B : y2 = x(x −A)(x + B).

A minimal model for EA,B has discriminant (ABC)2 · 2−s and conductor N · 2−t for
certain absolutely bounded integers s, t, (see Frey [F1]). Plugging this data into Szpiro’s
conjecture immediately shows the equivalence.

Another conjecture equivalent to a version of the ABC–conjecture is the degree conjec-

ture. Let Γ0(N) denote the group of matrices

(
a b
c d

)
∈ SL(2, Z) with c ≡ 0 (mod N ),

and set X0(N) to be the compactified Riemann surface realized as the quotient of the
upper–half plane by Γ0(N ). An elliptic curve E defined over Q is said to be modular if
there exists a non–constant covering map

φ : X0(N ) → E,

normalized so that φ(i∞) = 0, the origin on E. It is now known (by work of Christophe
Breuil, Brian Conrad, Fred Diamond, Richard Taylor, and Andrew Wiles) that every
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elliptic curve over Q is modular. The degree conjecture concerns the growth in N of the
topological degree of the map φ as N → ∞.

Degree Conjecture. (Frey 1987) For every ε > 0, there exists κ(ε) > 0 such that
deg(φ) < κ(ε)N2+ε.

Frey [F2] proved that some bound for the degree implies a weak version of the ABC–
conjecture. It was shown by Mai–Murty [M–M] (1994) that the ABC–conjecture implies
the degree conjecture for all Frey–Hellegouarch curves and by Murty [M] in 1996 that the
degree conjecture implies the ABC–conjecture. These results use work of Wiles–Diamond
[Wi], [D] as well as work of Goldfeld–Hoffstein–Liemann–Lockhart [G-H-L-L ] on the
non–existence of Siegel zeros on GL(3) which are symmetric square lifts from GL(2).

The ABC conjecture is also intimately related to the size of the periods of the Frey–
Hellegouarch curve

EA,B : y2 = x(x −A)(x + B).

Assume −B < 0 < A. This curve has two periods:

Ω1 = 2

∫ 0

−B

dx√
x(x − A)(x + B)

and

Ω2 = 2

∫ ∞

A

dx√
x(x − A)(x + B)

.

Period Conjecture. (Goldfeld 1988) Let EA,B : y2 = x(x − A)(x + B) be the Frey–
Hellegouarch curve with A, B ∈ Z, (A,B) = 1, and −B < 0 < A. Let N denote the
conductor of EA,B. Then for every ε > 0, there exists κ(ε) > 0 such that

min
(
|Ω1|, |Ω2|

)
> κ(ε)N− 1

2−ε.

It was shown in [G1] that the period conjecture implies the weak ABC–conjecture.

The final conjecture we shall discuss (which is equivalent to ABC) is a conjecture on
the size of the Shafarevich–Tate group X (see [Sha], [T2] ) of an elliptic curve defined
over Q. It was only recently (see [R1], [R2], [Kol1], [Kol2], [Kol3]) that X was proved
finite for a single elliptic curve and this explains why the ABC conjecture is so intractable.
We shall now define X from first principles.

Let X be a set. We say a group G acts on X with left set–action • if for all g ∈ G, x ∈ X,
the binary operation g • x ∈ X, and • satisfies (for all g, g′ ∈ G, x ∈ X) the identities:
e • x = x, (g · g′) • x = g • (g′ • x), where e is the identity in G and · denotes the group
operation in G. If A is an abelian group with internal operation +, we say G acts on A
with left–group action ◦ if ◦ is a left set–action which also satisfies g ◦(a+a′) = g◦a+g◦a′

for all g ∈ G and a, a′ ∈ A.
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Let A be an abelian group with internal operation + and let G be another group which
acts on A with left group–action ◦. We define Z1(G, A) to be the group of all functions
(cocycles) c : G → A which satisfy the cocycle relation

c(g · g′) = c(g) + g ◦ c(g′),

where · denotes the group operation in G. The subgroup B1(G,A) of coboundaries consists
of all cocycles of the form g ◦ a − a with a ∈ A. We define the first cohomology group
H1(G, A) to be the quotient group H1(G, A) = Z1(G, A)/B1(G, A).

Definition. Fix an abelian group A and another group G acting on A with a left group–
action ◦. A principal homogeneous action for (G, A, ◦) is a left set–action • of G on A
which satisfies the identity

g • a − g • a′ = g ◦ a− g ◦ a′

for all g ∈ G and a, a′ ∈ A.

We now define an equivalence relation on the set of principal homogeneous actions.

Definition. Two principal homogeneous actions •, •′ for (G, A, ◦) are said to be equivalent
if

g • a − g •′ a = g ◦ a0 − a0

for all g ∈ G, all a ∈ A, and some fixed a0 ∈ A.

Let WC(G, A) denote the set of equivalence classes of principal homogeneous actions
for (G, A, ◦). We will show that WC(G, A) (Weil–Châtelet group) is in fact a group by
demonstrating that there is a bijection (of sets) β : WC(G, A) → H1(G, A). First, if •
is a principal homogeneous action for (G, A, ◦) then for some fixed a0 ∈ A we have that
c(g) := g • a0 − a0 ∈ Z1(G,A) because

c(g · g′) = (g · g′) • a0 − a0 = g • (g′ • a0) − a0 = g • (g′ • a0) − g • a0 + g • a0 − a0

= g ◦ (g′ • a0) − g ◦ a0 + c(g) = g ◦ c(g′) + c(g).

Further, if we replace a0 by a0 +a for any a ∈ A then the cocycle changes to c(g)+g ◦a−a
which is equivalent to c(g) mod B1(G, A). Thus each principal homogeneous action • maps
to a unique element of H1(G, A). One also easily checks that equivalent homogeneous
actions map to the same element of H1(G, A). Finally, to show the surjectivity, let c(g) ∈
Z1(G, A). Define a left action • of G on A by g • a := c(g) + g ◦ a for all g ∈ G and a ∈ A.
If we change c(g) to the equivalent cocycle c(g) + g ◦ a0 − a0 then this gives rise to a new
action •′ given by b•′ a = c(g)+g ◦a0−a0 +g ◦a. Clearly • and •′ are equivalent principal
homogeneous actions.

Remark. The identity element in the group WC(G,A) is the equivalence class of all
actions equivalent to ◦. A principal homogeneous action • is equivalent to ◦ if and only if
G has a fixed point under the left set–action •, i.e., if and only if there exists a0 ∈ A such
that g • a0 = a0 for all g ∈ G (clearly true because g • a0 − a0 is the zero cocycle).
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In order to explicitly realize principal homogeneous actions, it is often convenient to
consider a set X = φ(A) where φ is a bijection. The bijection φ leads to a transitive right

set–action of A on X (denoted XA) and defined by xa′
= φ(a + a′) for all x = φ(a) ∈ X ,

and all a′ ∈ A. In this situation, the existence of a principal homogeneous action • for
(G,A, ◦) gives rise to a left set–action •′ of G on X defined by

g •′ x = φ(g • a)

for all g ∈ G, and x = φ(a) ∈ X . One checks that g •′ xa1 = (g •′ x)
g◦a1 for all a1 ∈ A.

Thus X has the properties of a principal homogeneous space (see [Se]), i.e., there is a right
set–action of A on X and a left principal homogeneous action • of G on X .

To define the Shafarevich–Tate group X for an elliptic curve E defined over Q we
first consider the Weil–Châtelet group WC(G, E(Q̄)) where G = Gal(Q̄/Q) which acts on
E(Q̄), the group of Q̄–rational points on E. Elements of WC(G, E(Q̄)) can be realized
as curves of genus one, denoted X , defined over Q which are birationally equivalent to E
over Q̄ together with an appropriate action •. Note that a curve of genus one defined over
Q may not have a point in Q. Let φ : E → X be such a birational equivalence. Then for
any g ∈ G the map

(gφ)φ−1 : E → E

is of the type (see [C2])
a → a + c(g)

with a ∈ E(Q̄), c(g) ∈ Z1(G, E(Q̄)), and addition above denoting addition on the elliptic
curve E. The right action of E(Q̄) on X(Q̄) is then given by translation (on the elliptic

curve E): xa′
= φ(a + a′) for x = φ(a) ∈ X(Q̄), a, a′ ∈ E(Q̄). The left action • of G

on X(Q̄) is given by g • x = φ(a + c(g)) with x = φ(a) ∈ X(Q) which is induced from
the cocycle c(g) associated to the birational equivalence. The Tate–Shafarevich group X
for E over Q is defined to be the subgroup of WC(G, E(Q̄)) associated to curves X as
above which have a point in R and in every p–adic field Qp, or equivalently, the elements
of WC(G, E(Q̄)) which have trivial images in WC(Gp, E(Q̄p) and WC(G∞, E(C), where
Gp = Gal(Q̄p/Qp) for all finite primes p, and G∞ = Gal(C/R). If X has a point in
Q then by the remark above, the action • of G on X is in the identity class of principal
homogeneous actions. Thus, X measures the obstruction to the Hasse principle (Hasse’s
principle states that if a curve has points in R and in every p-adic field Qp then it has a
point in Q).

Definition. Mazur [Ma2] defined the notion of a companion to an elliptic curve E as a
curve X of genus one which is isomorphic to E over R and over Qp for all primes p. The
Shafarevich –Tate group X may then be defined as the set of isomorphism classes over Q
of companions of E, each endowed (as above) with the structure of a principal homogeneous
space.

Conjecture I. (Bound for X) Let E be an elliptic curve defined over Q of conductor N
with Shafarevich–Tate group X. Then for every ε > 0, there exists κ(ε) > 0 such that

|X| < κ(ε)N
1
2+ε (N → ∞).
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One of the most remarkable conjectures in number theory is the Birch–Swinnerton–Dyer
conjecture [B-S-D] which relates the rank of the Mordell–Weil group of an elliptic curve
E and the Shafarevich–Tate group of E to the special value at s = 1 of the Hasse–Weil L–
function associated to E (see [S2] for the definition of the Hasse–Weil L–function). It was
shown in Goldfeld–Szpiro (1995) [G-S] that assuming the B–S–D (for rank 0 curves only),
the above conjectured bound for X implies the following version of the ABC–conjecture:

|ABC| 13 << N3+ε.

If one further assumes the generalized Riemann hypothesis (for the Rankin–Selberg zeta
function associated to the weight 3

2 cusp form coming from the Shintani–Shimura lift) then
it was also shown in [G-S] that the above conjectured bound for X (for rank 0 curves
only) implies the weak ABC–conjecture:

|ABC| 13 << N1+ε.

Actually, similar implications can be obtained from the following weaker conjecture.

Conjecture II. (Average Bound for Xq) Let E : y2 = x3 + ax + b be an elliptic curve
of conductor N with a, b ∈ Z. For a square–free integer q, define the twisted curve
Eq : y2 = x3 + q2ax + q3b with Mordell–Weil rank rq and Shafarevich–Tate group Xq.
Then there exists a constant c > 0 and for every ε > 0 there exists a constant κ(ε) > 0
such that ∑

q < Nc

rq=0

|Xq| < κ(ε)N c+ 1
2+ε (N → ∞).

We now sketch the proof that Conjecture II plus B-S-D implies a version of the ABC–
conjecture. The B-S-D conjecture states that the Hasse–Weil L–function LE(s) of an
elliptic curve E defined over Q has a zero of order r = rank of the Mordell-Weil group of
E(Q) and that the Taylor series of LE(s) about s = 1 is given by

LE(s) =

(
cEΩE · |XE| · vol(E(Q))

|E(Q)tor|2

)
· (s − 1)r + O(s − 1)r+1.

Here ΩE is either the real period or twice the real period of E (depending on whether or not
E(R) is connected), |XE| is the order of the Tate–Shafarevich group of E/Q, vol(E(Q))
is the volume of the Mordell–Weil group for the Néron–Tate bilinear pairing, |E(Q)tors|
is the order of the torsion subgroup of E/Q, and cE =

∏
p cp where cp = 1 unless E has

bad reduction at E in which case cp is the order E(Qp)/E0(Qp) (Here E0(Qp) is the set
of points reducing to non-singular points of E(Z/pZ).) (see [S2]).

It is known that cE ≥ 1,

|E(Q)tors|2 ≤ 256 (Mazur 1977 [Ma1]),
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and that vol(E(Q)) = 1 if r = 0. So in the rank r = 0 situation, a lower bound for
LE(1) together with an upper bound for the order of XE would imply a lower bound for
the period ΩE. If the lower bound for the period were strong enough to give the period
conjecture we would get a version of ABC. It is enough to do this for one twisted curve Eq

since the period changes by q−
1
2 . Now, by a theorem of Waldspurger (see [Wa], [Koh])

one can find enough twists (q < Nc with c >> 1) of E with Mordell–Weil rank zero where
LEq(1) >> 1, to do what we want. In the case 0 < c << 1 it is necessary to use the
generalized Riemann hypothesis.

Conjecture I can be proved for CM elliptic curves with j 6= 0, 1728 (we actually get
better bounds). This was first done in Goldfeld–Lieman (1996) [G-L] (see Theorem 6
below). For CM elliptic curves E defined over Q we expect.

Conjecture. Let E be a CM elliptic curve defined over Q with Shafarevich–Tate group
XE. Then

|XE| << N
1
4+ε, (if j 6= 0, 1728)

|XE| << N
5
12+ε, (if j = 0)

|XE| << N
3
8+ε, (if j = 1728).

The constant << depends only on ε and is effectively computable.

Theorem 6. (Goldfeld–Lieman) Let E be a CM elliptic curve defined over Q with Mordell–
Weil rank 0 and Shafarevich–Tate group XE. Then

|XE| << N
59
120+ε, (if j 6= 0, 1728)

|XE| << N
37
60 +ε, (if j = 0)

|XE| << N
79
120+ε, (if j = 1728).

The constant << depends only on ε and is effectively computable.

This result uses the deep work of K. Rubin [R1] (where the B-S-D conjecture is proved
for CM elliptic curves over Q of Mordell–Weil rank 0), together with the upper bounds for
special values of L–functions obtained by Duke–Friedlander–Iwaniec [D–F–I].

§5. Large Shafarevich–Tate groups.

Cassels [C1] in 1964 showed that the Tate–Shafarevich group of an elliptic curve over
Q can be arbitrarily large. Cassels method actually shows that there exist a fixed constant
c > 0 and infinitely many integers N for which there exist an elliptic curve of conductor
N , defined over Q, with

|X| >> N
c

log log N ,

12



This result was obtained by a different method by Kramer [Kr] in 1983. Assuming the
Birch–Swinnerton–Dyer conjecture, Mai–Murty [M–M] showed in 1994 that there are
infinitely many elliptic curves, defined over Q for which

|X| >> N
1
4−ε.

This was improved by De Weger in 1996 [We] who showed that

|X| >> N
1
2−ε

infinitely often, under the assumption of both the generalized Riemann hypothesis and the
Birch–Swinnerton–Dyer conjecture.

The connection between the ABC–conjecture and the growth of X allows one to con-
struct elliptic curves with large Shafarevich–Tate groups from bad ABC examples. B. De
Weger (1997) [We] has found 11 examples of curves with |X| >

√
N. Cremona (1993)

[Cr] (by other methods) had also found several such curves.

The best known example of a Frey–Hellegouarch curve with large X is

y2 = x(x − 643641)(x + 2)

coming from the ABC example, A = 310 · 109, B = 2, C = 235, due to Reyssat with
N = 15042. In this case:

|X|√
N

= 0.7358...

§6. Modular Symbols.

Let f(z) =
∑∞

n=1 a(n)e2πinz be a holomorphic Hecke newform of weight two for Γ0(N)
normalized so that a(1) = 1. For γ ∈ Γ0(N) we define the modular symbol

< γ, f >= −2πi

∫ γτ

τ

f(z) dz

which is independent of τ ∈ h ∪Q ∪ {i∞}. Shimura (1973) [Sh] showed that the modular
symbol is a homomorphism of Γ0(N ) into the period lattice associated with J0(N). More
specifically, if the coefficients a(n) all lie in Q then the homomorphism is into the period
lattice of an elliptic curve, i.e.,

< γ, f >= m1Ωq + m2Ω2

where m1,m2 ∈ Z and E = C/Z[,Ω1, Ω2]. For γ =

(
a b
c d

)
, define the height of γ,

denoted H(γ) to be the maximum of |a|, |b|, |c|, |d|.

Modular Symbol Conjecture. (Goldfeld 1988) Let < γ, f >= m1Ω1 + m2Ω2 as above.
Then m1,m2 have at most a polynomial growth in H(γ).

13



It is not hard to show that there exists κ > 0 such that < γ, f > is larger than N−ε for
some γ with height H(γ) << Nκ. The above conjecture then implies a lower bound for
the periods which can be used (via the period conjecture) to prove a version of the ABC–
conjecture. Alternatively, the special value LE(1) (at the B-S-D point) can be expressed
as a linear combination of modular symbols which also provides a bridge to the growth of
X.

In order to study the growth properties of modular symbols, we have introduced a new
type of Eisenstein series E∗ twisted by modular symbols, which is defined as follows:

E∗(z, s) =
∑

γ∈Γ∞\Γ0(N)

< γ, f > Im(γz)s.

Now E∗ is not an automorphic form, but it satisfies (for all γ ∈ Γ0(N)) the following
automorphic relation

E∗(γz, s) = E∗(z, s)− < γ, f > E(z, s)

where
E(z, s) =

∑

γ∈Γ∞\Γ0(N)

Im(γz)s

is the classical Eisenstein series. We have shown [G2] that E∗(z, s) has a meromorphic
continuation to the entire complex s–plane with only one simple pole at s = 1 with residue
given by

3

πN

∏

p|N

(
1 +

1

p

)−1

F (z)

where

F (z) = 2πi

∫ i∞

z

f (w) dw.

As a consequence, it follows (see [G3]) that for fixed M,N and x → ∞ that

(6.1)
∑

γ∈Γ∞\Γ0(N)

< γ, f > e−
c2M+d2

x ∼
3

πN

∏

p|N

F (iM)

M
x.

This result was recently improved by O’Sullivan [O’S] who explicitly evaluated the error
term as a function of M,N and found exponential decay in M . An intriguing possibility
is to choose M so that F (iM) is precisely the real period of the associated elliptic curve.
The problem is that there is a lot of cancellation in the modular symbols so that the
asymptotic relation (6.1) gives no information in the direction of the modular symbols
conjecture. It would be of great interest to try to construct other such series which have
positive coefficients and have a simple pole at s = 1 with residue given by the period of an
elliptic curve. If the period were too small, such series would have to have a Siegel zero.
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