1 General Function Stuff

Problem 1.1:

a) The only thing we need to worry about here is square rooting a negative number. For \(f \), that means that we need \(x \geq 0 \). For \(g \), that means we need \(-2x + 4 \geq 0\), which is equivalent to \(x \leq 2 \).

b) The way I think about this is as follows.

First, the “base point” of the square root for \(g \) is going to be at \((2, 1)\). I know this because the domain of \(g \) ends at \(x = 2 \), and the +1 means that I’ll be shifted up by 1. I can also just evaluate \(g(2) \) and see that I get 1.

Next, because there’s a \(-\) in front of the \(x \), I know I’ll be going to the left (normally the square root function grows as you go to the right, but the minus sign flips that). Because there’s a 2 in front of the \(x \), I know I’ll be growing twice as fast as usual, so \(f \) should look flatter than \(g \) when they’re next to each other.

Finally, I can evaluate \(g(1) = 3 \) and \(g(0) = 5 \), so I know I have to go through the points \((1, 3)\) and \((0, 5)\). I picked these points as guides because they have integer coordinates, but any points will do. Because I just sketched \(f \), I know roughly what a square root function looks like, so from there I’ll just draw a curve which looks roughly right.

Problem 1.2:

a) \((f \circ g)(x) = f(g(x))\). In this case, that’s \(f(cx + d) = a(cx + d) + b = acx + (ad + b) \) (which is a line).

b) Here \(f(g(x)) = f(x^2 + 1) = (x^2 + 1)^2 - 1 = x^4 + 2x^2 \).

Problem 1.3: The inverse function \(f^{-1} \) is, by definition, the function that satisfies \(f^{-1}(f(x)) = x \) for every \(x \). If \(f(f(x)) = x \) for every \(x \), then it follows that \(f \) is its own inverse (since it satisfies the definition). This is a reasonably good characterization of these functions.

However we can do better. If a point \((x, y)\) is on the graph of \(f \), then the point \((y, x)\) is on the graph of \(f^{-1} \). For example, if \(f(1) = 2 \), then \(f^{-1}(2) = 1 \), and that means that \((1, 2)\) if on the graph of \(f \) and \((2, 1)\) is on the graph of \(f^{-1} \). The way to go from \((x, y)\) to \((y, x)\) is to reflect across the line \(y = x \). For example, the graphs of \(x^2 \) and \(\sqrt{x} \) are reflections of one another across the line \(y = x \).

So if \(f = f^{-1} \), then that means that when you reflect \(f \) across the line \(y = x \), you end up with the same graph. In other words, \(f \) is symmetric about the line \(y = x \). I think this is the easiest characterization of these
functions.
Examples include $\frac{1}{x}$, $\sqrt{1 - x^2}$, $1 - x$, etc. With this characterization, it’s easy to sketch examples.

2 Inverse Functions

Problem 2.1:

a) Given a value y which we want the function to take on, we’re trying to find the x value which gives that y. In other words, we’re trying to solve $y = \frac{4x - 1}{2x + 3}$ for x:

\[
(2x + 3)y = 4x - 1 \\
(2y)x + 3y = 4x - 1 \\
(2y - 4)x = -3y - 1 \\
x = \frac{3y + 1}{4 - 2y}
\]

So the inverse function is $f^{-1}(y) = \frac{3y + 1}{4 - 2y}$.

b) For the same reason as above, we’re trying to solve $y = x^2 - x$ for x. We can do this using the quadratic formula: $x^2 - x - y = 0$ happens when

\[
x = \frac{1 \pm \sqrt{1 - 4y}}{2}
\]

So our guess would be that $f^{-1}(y) = \frac{1 + \sqrt{1 - 4y}}{2}$. But there is a problem. What is $f^{-1}(0)$, for example? Our guess is multivalued because of the \pm. This is because our original function, $x^2 - x$ admits two solutions to $x^2 - x = y$ (it’s a parabola). As discussed, we can’t talk about inverse functions when this happen. The resolution is to restrict the domain of the function so that $f(x) = y$ has only one solution. Choosing \pm here amounts to saying that $x^2 - x$ is to be considered only for $x \geq \frac{1}{2}$ or $x \leq \frac{1}{2}$.

Problem 2.2 $f^{-1}(3)$ is going to be the x value that gives $f(x) = 3$. By inspection $x = 1$ works, so $f^{-1}(3) = 1$.

$f^{-1}(f(x)) = x$ for every x, by definition, so $f^{-1}(f(2)) = 2$. Actually finding the inverse function would be very difficult.

Problem 2.3 $\arcsin(x)$ is an angle θ. Specifically, it’s the angle defining the triangle in the unit circle with a vertical leg of length x. Then $\cos(\theta)$ is the length of the horizontal leg of this triangle. Since we know this triangle is inscribed in the unit circle, it satisfies $x^2 + \cos(\theta)^2 = 1$, so $\cos(\theta) = \sqrt{1 - x^2}$ (remember that \arcsin is defined to be what you get after you restrict your domain so that you get a positive \cos).
3 Exponentials and Logarithms

Problem 3.1

a) \(x = \exp(\log(x)) \) and \(y = \exp(\log(y)) \), from the definition of \(\log \) as an inverse function of \(x \). Then \(xy = \exp(\log(x)) \exp(\log(y)) \). Using the laws of exponents, we can rewrite the right hand side as \(\exp(\log(x) + \log(y)) \). Finally, take the log of both sides to get \(\log(xy) = \log(x) + \log(y) \).

b) \(x = a^{\log_a(x)} \), by the definition of \(\log_a \) as an inverse function. Take the log of both sides to get \(\log(x) = \log(a^{\log_a(x)}) = \log_a(x) \log(a) \). Divide through by \(\log(a) \) to get the desired result.

Problem 3.2

a) Take \(\log_2 \) of both sides to get \(x = \log_2(10^3) \). This can be rewritten using laws of logarithms as \(x = \frac{3 \log(10)}{\log(2)} \).

b) Exponentiate once to get \(\log(x) = e^1 = e \). Exponentiate again to get \(x = e^e \).

c) Take the log of both sides:

\[
\log(e^{ax}) = \log(Ce^{bx}) \\
ax = \log(C) + bx \\
(a-b)x = \log(C) \\
x = \frac{\log(C)}{a-b}
\]