Variation of GIT and Variation of Lagrangian skeletons.

$$
\begin{aligned}
& \text { Peng Thou } \\
& 2022.01 .31 .
\end{aligned}
$$

UC Berkeley.
based on Peng Zhou. Variation of GIT and variation of Lagrangian skeletons I: flip and flop. arXiv preprint arXiv:2011.03719, 2020
Jesse Huang and Peng Zhou. Variation of GIT and variation of Lagrangian skeletons II: Quasi-symmetric case. arXiv preprint arXiv:2011.06114, 2020

Outline
§O. Background on toric mirror symmetry.
31. Motivations
82. VGIT and Window subcategories
§3. VLag and Window subskeletons.
cheatsheet for constructible sheaves on \mathbb{R}^{2}
(1) $\Lambda=\left\{\begin{array}{l}E=\frac{\text { half }}{\text { conormal to the line }\left\{x_{1}=0\right\}}+\text { zero section } \\ \left\{\left(x_{1}, x_{2}, \xi_{1}, \xi_{2}^{\prime \prime}\right) \in T^{*} \mathbb{R}^{2} \left\lvert\, \begin{array}{ll}x_{1}=0, & \xi_{2}=0 \\ \xi_{1} \geq 0, & x_{2} \text { free }\end{array}\right.\right\}\end{array}\right.$

$$
\operatorname{Sh}\left(\cdot \frac{E}{E} \cdot\right) \cong \operatorname{Rep}(\omega)
$$

(2) $\Lambda=$ (zero section) + half conormal to $\left\{x_{1}=0\right\}$

+ half conormal to $\left\{x_{2}=0\right\}$
+ quadrant conormal to $\left\{x_{1}=0, x_{2}=0\right\}$

$$
\hat{B}^{B} \leftarrow_{A}^{A}=\left\{\left(0,0 ; \xi_{1} \geqslant 0, \xi_{2} \geqslant 0\right)\right\}
$$

(3)

$$
\operatorname{sh}(\Lambda)=\operatorname{Rep}\binom{\stackrel{\leftarrow}{\square} \downarrow}{\vdots \longleftarrow \downarrow}
$$

cartesian diagram.

Toric Coherent Constructible Correspondence (CCC)

$$
\begin{aligned}
& N \cong \mathbb{Z}^{d}, \quad N_{\mathbb{R}}=N \otimes \mathbb{R} \simeq \mathbb{R}^{d}, \quad N_{\mathbb{C}^{*}} \simeq N \otimes \mathbb{C}^{*}, \quad \mathbb{T}=\mathbb{R} / \mathbb{Z}=S^{\prime} \\
& M=\operatorname{Hom}(N, \mathbb{Z}), \quad M_{T}=M \otimes \mathbb{I}=\left(\delta^{\prime}\right)^{d}
\end{aligned}
$$

- $\Sigma \in N \mathbb{R}$: smooth toric fan. (cone are simplicial)
- X_{Σ}; a smooth toric DM stack.
- $\Lambda_{\Sigma} \subset T^{*}\left(S^{\prime}\right)^{d}=T^{*} M_{T}: F L T Z$ Lagrangian skeleton. $\widetilde{\Lambda}_{\Sigma} \subset T^{*} \mathbb{R}^{d}=T^{*} M_{\mathbb{R}}$. $F L T Z$ equivariant skeleton.

Therrem (Bondal, Fang-Liu-Treumann-Zaslow,, Kuwagaki) We have equivaleme of categories:
non-eq $C C C: \operatorname{Coh}\left(X_{\Sigma}\right) \simeq \operatorname{Sh}^{\omega}\left(M_{T}, \Lambda_{\Sigma}\right)$

$$
\text { equivariaut } C C C: \quad \operatorname{coh}\left(\mathbb{C}^{*}\right)^{d}\left(X_{\Sigma}\right) \simeq \operatorname{Sh}\left(M_{\mathbb{R}}, \tilde{\Lambda}_{\Sigma}\right)
$$

CCC examples
(1)

$$
\begin{aligned}
X_{\Sigma}= & \mathbb{C}^{*}, \quad \Lambda_{\Sigma}=S^{\prime} \subset T^{*} S^{\prime} \\
& \operatorname{coh}\left(\mathbb{C}^{*}\right) \simeq \operatorname{sh}^{\omega}\left(S^{\prime}, \Lambda_{\Sigma}\right) \simeq \operatorname{Loe}\left(S^{\prime}\right)
\end{aligned}
$$

$\forall \lambda \in \mathbb{Q}^{*} ; \bigcup_{\{\lambda\}}^{\longleftrightarrow}$ rank 1 local system with monodromy

$$
O_{\mathbb{C}^{*}} \quad \longleftrightarrow \quad \pi_{*} \frac{\mathbb{C}}{\mathbb{R}} \mathbb{R} .
$$

\uparrow an infinite rank locally constant $(\pi: \mathbb{R} \rightarrow \mathbb{R} / \mathbb{Z})$
(2).

$$
\mathrm{O}_{\{0\}} \longleftrightarrow \pi_{*} \mathbb{C}_{[-1,0)}[1]
$$

$$
O_{\mathbb{C}} \longleftrightarrow \pi_{*} \mathbb{C}_{(-\infty, 0)}^{[1]}
$$

$$
\begin{aligned}
& \operatorname{Coh}(\mathbb{C}) \longleftrightarrow \operatorname{sh}^{\omega}\left(S^{\prime}, \lambda_{\Sigma}\right)
\end{aligned}
$$

(3)

$$
\begin{aligned}
& X=\mathbb{P}^{\prime}, \quad \underbrace{\infty} \xrightarrow{\mu} I=\Delta x, \begin{array}{l}
\text { moment polytope }, \\
N \pi=s^{\prime} \text { - orbit on }
\end{array} \\
& N_{T}=s^{\prime} \text { - orbit on } \mathbb{P}^{\prime} \text {. } \\
& \Lambda=-\quad \Sigma=\{ \\
& {O_{\mathbb{P}^{\prime}}(0) \longleftrightarrow \mathbb{C}_{\text {\{0\} }}} \\
& O_{\mathbb{P}^{\prime}}(1) \longleftrightarrow \pi_{*} \mathbb{C}_{(0,1)}[1] \\
& O_{\mathbb{P}^{(}(-1)} \longleftrightarrow \pi_{*} \mathbb{C}_{[0,1]} \\
& 0 \xi 0\} \longleftrightarrow \pi_{*} \mathbb{C}_{[-1,0)[1]} \\
& \theta_{\{\infty\}} \longleftrightarrow \pi_{*} \mathbb{C}_{(-1,0]^{[1]}} \text {. }
\end{aligned}
$$

$$
\pi: \mathbb{R} \rightarrow \mathbb{R} / \mathbb{Z}
$$

Microlocal Sheaf Theory and Fukaya Category.

- microlocal sheaf theory can be used to compute Fukaya category of a Weinstein mfd (e.g. cotangent bundle).
Thm (Kontsevich, Nadler, Zaslow, Ganatra-Pardon-Shonde).
(a) Let $(M, \omega=d \lambda)$ be a Weinstein domain, Let $\Lambda=\operatorname{skel}(M, \lambda)$ be the Liouville skeletion of M. Then $L_{1}, L_{2} \subset M$

$$
\begin{equation*}
\operatorname{\mu sh}^{\omega}(\Lambda) \simeq \operatorname{Fuk}^{\omega}(M) \quad L_{1}, L_{2} C M \tag{2}
\end{equation*}
$$

(b) If M is a Weinstein domain, $H \subset \partial M$ is a Weinstein hypersurface, $\Lambda=\operatorname{skel}(M) \cup \mathbb{R}_{\rightarrow 0}^{\text {Liounille flow }} \operatorname{skel}(H)$, then

Reelo flow

$$
\operatorname{ush}^{\omega}(\Lambda) \simeq \operatorname{Fuk}^{\omega}(M, \operatorname{stop}=H)
$$

(a) M on ∂M

(b)

Reeb flow

$$
\text { on } \partial M \backslash H \text {. }
$$

λ.

Toric Homological Mirror Symmetry.

- Using previous "microlocal sheaf \leftrightarrow Lagrangian" correspondeme. we have

$$
\operatorname{Coh}\left(X_{\Sigma}\right) \stackrel{c c c}{\simeq} \operatorname{sh}^{\omega}\left(M_{T}, \Lambda_{\Sigma}\right) \simeq F_{u} k^{\omega}\left(T^{*} M_{T},{ }^{\text {stop }}=\Lambda_{\Sigma}^{\infty}\right)
$$

- The traditional tonic HMS mirror, uses LG A-model.

$$
\begin{gathered}
\operatorname{Coh}\left(X_{\Sigma}\right) \cong F S\left(\left(\mathbb{C}^{*}\right)^{d}, W_{\Sigma}\right) . \\
\text { [e.g. } \left.\quad \operatorname{coh}\left(\mathbb{P}^{n}\right) \cong F S\left(\left(\mathbb{C}^{*}\right)^{n}, W=z_{1}+\cdots+z_{n}+\frac{1}{z_{1}-z_{n}}\right)\right]
\end{gathered}
$$

Thm (Ruddat-sibilia - Truman - Zaslow, Gammage-shende, Thou).
Let X_{Σ} be a smooth Doric Fane, $w_{\Sigma}:\left(C^{*}\right)^{d} \rightarrow \mathbb{C}, \wedge_{\Sigma} \subset T^{*}\left(S^{\prime}\right)^{d}$, then " $\Lambda_{\Sigma}^{\infty}=\operatorname{skel}\left(\omega_{\Sigma}^{-1}(R)\right)$ " for $R \gg 0$.
. $\mathbb{P}^{2} . \quad w=x+y+\frac{1}{x y}$.

$$
\left.\Lambda_{\Sigma}^{\infty}=\operatorname{skel}\right)=\sum_{\xi 0}^{\infty}
$$

$\$ 1$ Motivations.
(1.1) Let $A \subset \mathbb{Z}^{d}, \quad \Delta=$ Convex Hull $(A) \subset \mathbb{R}^{d}$, and let

$$
W=\sum_{\alpha \in A} C_{\alpha} \cdot z^{\alpha}
$$

be a Laurent polynomial with generic coefficients $c_{\alpha} \in \mathbb{C}^{*}$. Then, $F u k^{\omega}\left(\left(\mathbb{C}^{*}\right)^{d}, W\right)$ only depends on Δ.

- One can choose "tropicalization" for W,

$$
W=\sum_{\alpha \in A} e^{i \theta_{\alpha}} \cdot R^{h_{\alpha}} \cdot Z^{\alpha}
$$

$$
\theta_{\alpha} \in \mathbb{R} / 2 \pi \mathbb{Z}
$$

$$
h_{\alpha} \in \mathbb{R}
$$

Then different choices results in different

$$
R \rightarrow \infty
$$

$\Lambda_{W}^{\infty}=\operatorname{skel}\left(W^{-1}(+\infty)\right)$, however

$$
\operatorname{sh}^{\omega}\left(\left(S^{\prime}\right)^{d}, \Lambda_{w}\right) \quad \Lambda_{w}=\left(S^{\prime}\right)^{d} \cup \mathbb{R}_{70} \cdot \Lambda_{w}^{\infty}
$$

should be invariant. How?

Ex: (a). $\quad W=z+\frac{e^{i \theta}}{Z}$
(c.f. Hanlon's thesis)

$z=0$
$\leadsto \quad \Lambda_{w}=$

$$
\uparrow_{z=\infty}^{-\log \mid z}
$$

(b) $\quad W=y\left(x^{-1}+x\right)$
$W=y\left(x^{-1}+R+x\right)$

$$
A_{w}=\quad \ldots
$$

(1,2). In the comparison of $F S\left(\left(\mathbb{C}^{*}\right)^{n}, W\right)$ and $\operatorname{sh}\left(T^{n}, N\right)$, one natural question is, where does Lagrangian thimbles go?

Ex: mirror for \mathbb{P}^{1} :

$$
W: \mathbb{C}^{*} \rightarrow \mathbb{C}, \quad W(z)=z+\frac{1}{z}
$$

$$
\begin{aligned}
& L(1)=\pi_{*} \mathbb{C}_{(0,1)}[1] \\
& L(0)=\mathbb{C}_{\{0\}}
\end{aligned}
$$

In general, the critical values of W has no pattern, and choice of vanishing path is very ad hoc (straight line paths is complicated)
(1.2 cont') Semi-orthogonal decomposition (Ballard-Favero-Diemer

- If we tropicalize W (in a generic way). - Katzarkou-Kerr) then Crit (W) comes in circle clusters.

$$
F_{u k}\left(\left(\mathbb{C}^{*}\right)^{d}, w\right)=\left\langle A^{(n)}, \cdots, A^{(2)}, A^{(1)}\right\rangle
$$

- On the mirror side, we have birational transformation.

$$
\begin{aligned}
& X=X^{(n)} \rightarrow X^{(n-1)} \rightarrow \cdots \rightarrow X^{1} \\
& \operatorname{Coh}\left(X^{(k)}\right)=\left\langle B^{(k)}, \operatorname{coh}\left(X^{(k-1)}\right)\right\rangle \quad \forall k=1, \cdots, n .
\end{aligned}
$$

$B^{(k)}$ is supported on the exceptional loci.
loci in $X^{(k)} \rightarrow X^{(k-1)}$. Thy: [Kerr] associated
Conj: $\operatorname{coh}\left(X^{(k)}\right) \simeq\left\langle A^{(k)}, \cdots, A^{(1)}\right\rangle \quad\left(\begin{array}{cc}\text { Thy: [Kerr] associated } \\ A^{(i)} \cong B^{(i)} & \begin{array}{c}\text { graded } \\ \text { level }\end{array}\end{array}\right)$

- One trouble that this is still a conj is that Fukaya cat is hard.
(1.2 continue) The bridge between A and B sides is $\operatorname{sh}\left(T^{d}, \Lambda\right)$.
- Let $\Lambda^{(k)} \subset T^{*} M_{T}$, such that $\operatorname{coh}\left(X^{(k)}\right) \simeq \operatorname{sh}\left(M_{T}, \Lambda^{(k)}\right)$. Then, if we can "measure the difference" between $\Lambda^{(k-1)}$ and $\Lambda^{(k)}$, we can see where the thimbles in SOD component $A^{(k)}$ go.

$$
(|t| \rightarrow 0)
$$

- Ex: $W=x+y+\frac{1}{x y}+t \cdot x y: \quad X=B l 。 \mathbb{P}^{2}$.
- Crit $(W)=$

$$
\begin{aligned}
& \cdot \phi \rightarrow X^{(1)} \longrightarrow X^{(2)} \\
& \phi \rightarrow \mathbb{P}^{2} \longrightarrow B l_{0} \mathbb{P}^{2}
\end{aligned}
$$

- Triangulation of Newton Polytiope of W, Δ_{W}
$\Delta \xrightarrow{@}$

Tropical hyper surfaces: $t^{-k}=x+y+\frac{1}{x y}+t \cdot x y,(k \rightarrow \infty)$

$$
\begin{aligned}
& \phi \rightarrow \Lambda^{(1), \infty} \rightarrow \Lambda^{(0), \infty} \\
& \phi \rightarrow \sum_{0}^{D} \rightarrow \sum_{0}^{D}
\end{aligned}
$$

Goal:
We want to find a family of Lagrangian skeletons $\left\{\Lambda_{t}\right\}_{t \in[0,1]}$, interpolating Λ_{0} and Λ_{1}.

- If $\operatorname{sh}\left(\Lambda_{0}\right) \simeq \operatorname{Sh}\left(\Lambda_{1}\right)$, we want Λ_{t} variation to be "non-characteristic", i.e. Sh $\left(\Lambda_{t}\right)$ remain constant
- If $\operatorname{sh}\left(\Lambda_{1}\right) \simeq\left\langle\tau, \operatorname{th}, \operatorname{thimbles.}\left(\Lambda_{0}\right)\right\rangle \quad$ SOD,
we want to have critical moments.

$\operatorname{sh}\left(\Lambda_{t}\right)$ constant over $\left(t_{i}, t_{i+1}\right)$

Ex: (1)

$\operatorname{Coh}\left(\left[\mathbb{C}^{2} / \mathbb{Z}_{2}\right]\right) \quad \operatorname{Coh}\left(T^{*} \mathbb{P}^{\prime}\right)$

n

$$
\begin{array}{cc}
\operatorname{Coh}\left(\mathbb{C}^{2}\right) & \operatorname{Coh}\left(\mathrm{BI}_{1} \mathbb{C}^{2}\right) \\
\operatorname{sh}^{\omega}\left(\Lambda_{0}\right) & \operatorname{sh}^{\omega}\left(\Lambda_{1}\right)
\end{array}
$$

Q2 Variation of GIT and Window subcategory.
(Herbst-Hori-Page, E.Segal, Halpemn-Leistreer, Ballard-Favero-Kattaxker)
\$2. 1

- Idea:
- When we study transitions between toric varieties

$$
\left.X_{-} \text {and } X_{+} \quad \text { (e.g. } X_{-}=\mathbb{C}^{2}, \quad X_{+}=B l_{0} \mathbb{C}^{2}\right) \text {, }
$$ they often come from different "phases" of GIT quotients

$$
\begin{aligned}
& X_{ \pm}=\left[\tilde{X} \|_{\theta_{ \pm}} \mathbb{C}^{*}\right]=\left[\tilde{X}-\tilde{X}_{\theta_{ \pm}}^{\text {us }} / \mathbb{C}^{\text {unstable loci }}\right] \stackrel{l_{ \pm}}{\longrightarrow}\left[\tilde{X} / \mathbb{C}^{*}\right] \\
& \operatorname{Coh}\left(\left[\tilde{x} / \mathbb{C}^{*}\right]\right) \simeq \operatorname{Coh}_{\mathbb{C}^{*}}(\tilde{x}) \\
& l_{t}^{*} \\
& \operatorname{coh}\left(X_{+}\right) \\
& \operatorname{coh}(X-)
\end{aligned}
$$

$$
\operatorname{Coh}\left(X_{ \pm}\right)=\operatorname{Coh}\left(\left[\tilde{X} / \mathbb{C}^{*}\right]\right) /\left\langle\text { sheaves supported on } \tilde{\mathbb{V}}_{\text {us }}\right\rangle
$$ unstable lei $\tilde{x}_{ \pm}^{u s}$

- Def: A window subcategory for a GIT quotient $X_{ \pm}$ is a subcategory $W_{ \pm} \subset \operatorname{Coh}\left(\left[\tilde{x} / \mathbb{C}^{*}\right]\right)$, such that

$$
\left.L_{i}^{*}\right|_{w_{i}}: w_{i} \xrightarrow{\sim} \operatorname{Coh}\left(x_{i}\right) \quad i=+,-
$$ is an equivalence.

Rm:

- We can compare $\operatorname{Coh}\left(X_{ \pm}\right)$via comparing $W_{ \pm}$in $\operatorname{Coh}\left(\left[\tilde{x} / \mathbb{C}^{*}\right]\right)$ now.
- Choices of $W_{ \pm}$are far from unique.
- Window subcategories exist for general GIT quotients by algebraic group $\left[\tilde{X} / \|_{\theta} G\right] \rightarrow[\tilde{X} / G]$. $[B F K, H L]$
$\$ 2.2$
Example:
(1) $\mathbb{C}^{3} / \mathbb{C}^{*}, \mathbb{C}^{*} \mathbb{C}^{\mathbb{C}} \mathbb{C}^{3}$ with weight $(1,1,-1)$.

$$
\begin{aligned}
& X_{+}= {[\mathbb{C}^{3}-\underbrace{\{(0,0, z) \mid z \in \mathbb{C}\}}_{z_{+}}\} / \mathbb{C}^{*}] } \\
&=\operatorname{Bl} \cdot \mathbb{C}^{2} \\
&=\operatorname{Tot}\left[O_{\mathbb{P}^{(-1)}}^{(-1)}\right] \\
& X_{-}=[\mathbb{C}^{3}-\underbrace{\left\{\left(z_{1}, z_{2}, 0\right) \mid z_{i} \in \mathbb{C}\right\}}_{z_{-}} / \mathbb{C}^{*}] \simeq \mathbb{C}^{2}
\end{aligned}
$$

$\left(\mathbb{C}^{3}\right)^{3} \subset \mathbb{C}^{3} \xrightarrow{\mu} \mathbb{R}^{3=\left[L_{1}\left(\mathbb{C}^{*}\right)\right]^{v}}$
$\Delta x_{-}=$

$$
\Delta_{x_{t}}=
$$

- Coherent sheaves on $Z_{+}=\{(0,0, z)\}$ is generated by $O_{Z_{t}}$.

$$
0 \rightarrow \bigcirc_{\mathbb{C}^{3}}^{\{-2\}} \stackrel{\left(-z_{2}, z_{1}\right)}{\longrightarrow} \bigcirc_{\mathbb{C}^{3}}^{2}\{-1\} \xrightarrow{\left(z_{1}, z_{2}\right)} \bigcirc_{\mathbb{C}^{3}}\{0\} \rightarrow O_{Z_{+}}^{\{0\} \rightarrow 0} \quad \begin{gathered}
\left.\begin{array}{c}
\text { Koszul } \\
\text { resolution }
\end{array}\right)
\end{gathered}
$$

$\{k\}$ means \mathbb{C}^{*} equivariant degree.
Thus, when restricted to $X_{+}, O_{Z_{+}}$become 0 , hence we have exact seq.

$$
0 \rightarrow \theta\{-2\} \rightarrow \theta\{-1\}^{\oplus 2} \rightarrow \theta\{0\} \rightarrow 0
$$

$\Rightarrow \begin{cases}0 & \theta\{k\} \text { can be expressed using } \theta\{k-1\} \text { and } \theta\{k-2\} \\ \cdot \emptyset\{k-2\} \text { can } & O\{k-1\} \text { and } O\{k\} .\end{cases}$
$\Rightarrow \operatorname{coh}\left(\mathbb{C}^{3}-Z_{+} / \mathbb{C}^{*}\right)$ can be generated by

$$
l_{+}^{*}\langle O\{k\}, O\{k+1\}\rangle
$$

$\cdots . \forall k \in \mathbb{Z}$, we can choose $W_{+}=\langle O\{k\}, O\{k+1\}\rangle$ still need to prove $l_{+}^{*} \mid w_{+}$is fully-faithful

- Coherent sheaves on $Z_{-}=\left\{\left(z_{1}, z_{2}, 0\right)\right\}$ is generated by $O_{Z_{-}}$

$$
0 \rightarrow O_{\mathbb{C}^{3}}\{+1\} \xrightarrow{Z_{3}} O_{\mathbb{C}^{3}}\{0\} \rightarrow O_{Z_{-}}^{\{0\}} 0
$$

same arguments shows $\forall k \in \mathbb{Z}$, we can choose

$$
W_{-}=\langle O\{k\}\rangle \subset \operatorname{coh}\left(\left[\mathbb{C}^{3} / \mathbb{C}^{*}\right]\right) .
$$

W_{+}: as lattice points in an interval of length
W-: \qquad

$$
d_{+}=2
$$

$$
d-=1
$$

- SOD: $\cdot \operatorname{Coh}\left(B 1, \mathbb{C}^{2}\right)=\left\langle O_{E}(-1), \pi^{*} \operatorname{Coh} \mathbb{C}^{2}\right\rangle$
$W_{t}\{0\} \quad\{-1,0\} \quad W_{-}$
\$2.3 Magic windows (HL-Sam, Spenko-van den Bergen)
How about general $\left[\mathbb{C}^{N} \|_{\theta}\left(\mathbb{C}^{*}\right)^{k}\right]$?
- any sm proj tonic variety arises from Cox construct (GIT quotient)
- If $\left(\mathbb{C}^{*}\right)^{k} \bigodot \mathbb{C}^{N}$ preserves $d z_{1} \cap \cdots \cap d z_{N}$, then different smooth quotients are all boric $C Y$, and derived equivalent. (in a non-canonical way).

Q: Can we find a universal window

$$
W=\left\langle\underset{\substack{\text { some } \\ \text { bundles }}}{\operatorname{line}\rangle} \subset \operatorname{Coh}\left[\mathbb{C}^{N} \|\left(\mathbb{C}^{*}\right)^{*}\right]\right.
$$

such that,

$$
l_{\theta}^{*}: W \xrightarrow{\sim} \operatorname{coh}\left[\mathbb{C}^{N} \|_{\theta}\left(\mathbb{C}^{*}\right)^{k}\right]
$$

for all GIT param θ in stable chambers?
(in general, I cannot)

- One can achieve this under stronger assumption than doric $C Y$,

Def: (quasi-symmetric condition)
Let $\beta_{1}, \cdots, \beta_{N} \in \mathbb{Z}^{k}$ denote the collection of weights for $\left(\mathbb{C}^{*}\right)^{k} @ \mathbb{C}^{N}$. If for any line (passing through o) $L \subset \mathbb{R}^{k}$, the sum of weights on L is zero, then we say $\left(\mathbb{C}^{*}\right)^{k} \subset \mathbb{C}^{N}$ is quasi -symmetric.

Ex: $k=1$, toric CY \Leftrightarrow quasi-symetric.

- If $\left\{\beta_{1},-, \beta_{N}\right\}$ is invariant under $(-1) \cdot: \mathbb{Z}^{k} \rightarrow \mathbb{Z}^{k}$, ie. symmetric under inversion, then it is quasi-symm,
- Let $\Delta=\frac{1}{2} \sum_{i=1}^{N}\left[0, \beta_{i}\right] \quad$ Minkowski sum of line segments.
for any generic $\eta \in \mathbb{R}^{k}$, we have lattice points.

$$
A_{\eta}=(\eta+\Delta) \cap \mathbb{Z}^{k}
$$

and corresponding Windows

$$
\begin{aligned}
& \left.W_{\eta}=\underset{\alpha \in A_{\eta}}{\left\langle\bigoplus^{\prime}\right.} O\{\alpha\}\right\rangle \subset \operatorname{coh}\left(\left[\mathbb{C}^{N} / /\left(\mathbb{C}^{*}\right)^{k}\right]\right) \\
& \operatorname{Coh}_{\left(\mathbb{C}^{*}\right)^{k}}\left(\mathbb{C}^{N}\right)
\end{aligned}
$$

Thy (HL-Sam, Sud B)
For any stable GIT parameter $\theta \in \mathbb{R}^{k}$, any window param η, we have equivalence

$$
l_{\theta}^{*}: W_{\eta} \xrightarrow{\sim} \operatorname{coh}\left(\left[\mathbb{C}^{N} \|_{\theta}\left(\mathbb{C}^{*}\right)^{k}\right]\right)
$$

(V Lag)
$\$ 3$ Variation of Lagrangian Skeleton and windows
83.1 General VLag:
(Nader)
(1) Some variations of Lagrangians induces equivalences of categories.
Ex: $\quad \cap \subset T^{*} \mathbb{R}$

- equivaleme from invariance of its Weinstein tubular nbhd
- constructible sheaves in $\operatorname{Sh}(\mathbb{R}, \lambda)$ deform along:
e.g. $\mathbb{L}_{[-1,1]} \sim \mathbb{C}_{\{0\}} \rightarrow \mathbb{C}_{(-1,1)}^{[1]}$
(2) Some V Lag are not equivalences:

$$
\lambda \subset T^{*} \mathbb{R}^{2}
$$ front projection

the new Reed chords ending on Λ causes trouble.

$$
M_{b} \subset T^{*} M
$$

(3). In general, given a family of skeletons $\left\{\Lambda_{b}\right\}_{b \in B}$. we can construct a universal skeleton $\Lambda_{B} C T^{*}(M \times B)$,
Q: when is restriction

$$
l_{b}^{*}: \operatorname{sh}\left(M \times B, \Lambda_{B}\right) \xrightarrow{\sim} \operatorname{Sh}\left(M, a_{b}\right)
$$

an equivaleme of category?

Ex:
(1)

(2)

$\operatorname{Sh}\left(\mathbb{R}^{2}, \Lambda_{B}\right) \rightarrow \operatorname{Sh}\left(\mathbb{R}, \Lambda_{t}\right)$ is not an equivalence
(3)
 $\mathbb{C}_{[0,1)}$ can not be produced.

$$
\operatorname{sh}\left(\Lambda_{-}\right) \rightleftharpoons \operatorname{sh}\left(\Lambda_{B}\right) \xrightarrow{\sim} \operatorname{sh}\left(\Lambda_{+}\right)
$$

83.2 Window subskeleton from window subcategory. Given a window
-idea: $\quad W=\left\langle\mathcal{L}_{1}, \cdots, \mathcal{L}_{m}\right\rangle \hookrightarrow \operatorname{coh}\left[\mathbb{C}^{N} /\left(\mathbb{C}^{*}\right)^{k}\right] \quad, \mathcal{L}_{i}=\mathcal{O}\left\{\alpha_{i}\right\}$

$$
\downarrow \simeq \quad \tau \downarrow \simeq
$$

equiv. line bundle $\alpha_{i} \in \mathbb{Z}^{k}$.
(w) c sh(hw) $\tau(W)=\left\langle F_{1}, \cdots, F_{m}\right\rangle \leftrightarrow \operatorname{sh}\left(\mathbb{R}^{k} \times T^{N^{-k}}, \Lambda_{\text {fum }}\right)$

- Define $\Lambda_{W}:=\bigcup_{i=1}^{m} S S\left(F_{i}\right) \subset \Lambda_{\text {full }}$
- let $\pi: \mathbb{R}^{k} \times T^{N-k} \rightarrow \mathbb{R}^{k}$, for any $b \in \mathbb{R}^{k}$, let $\Lambda_{w, b} \subset \bar{T}^{*} \mathbb{R}^{k}$ be the restriction of Λ_{w}.
- For b deep in the $G I T$ chamber $C \subset \mathbb{R}^{k}$,

[Z]
$\operatorname{Thm} A\left(\mathbb{C}^{*} \subset \mathbb{C}^{N}\right)$ Let $\mathbb{C}^{*} \mathbb{C} \mathbb{C}^{N}$ with weight $\left(a_{1}, \cdots, a_{N}\right)$, sit. a_{i} coprime, nonzero. Let $d_{ \pm}=\sum_{ \pm a_{i>0}}\left|a_{i}\right|$
Assume $d_{+} \geqslant d_{-},{ }^{n=d_{+}-d_{-}}$Then for any $k \in \mathbb{Z}$, define

$$
w:=\left\langle 0\{k\}, \cdots, O\left\{k+d_{+}-1\right\}\right\rangle \subset \operatorname{Coh} \mathbb{C}^{*}\left(\mathbb{C}^{N}\right)
$$

(1) $\tau: W \xrightarrow{\sim} \operatorname{sh}\left(\mathbb{R} \times T^{N-1}, \lambda_{w}\right)$
(2) $\operatorname{sh}\left(T^{N-1}, \Lambda_{w, t}\right)$ is locally constant as t vary in \mathbb{R} except at $t \in\{\underbrace{k k, k+1, \cdots, k+\eta-1}_{\eta \text { many. }}$, $\}$

$$
\begin{aligned}
& \forall t \ll 0 \operatorname{Sh}\left(T^{N-1}, \Lambda_{w, t}\right) \simeq \operatorname{coh}\left(\left[\mathbb{C}^{N} \|_{\left.-\mathbb{C}^{*}\right]}\right)\right. \\
& \forall t>0 \operatorname{sh}\left(T^{N-1}, \Lambda_{w, t}\right) \simeq \operatorname{coh}\left(\left[\mathbb{C}^{N} \|_{+} \mathbb{C}^{*}\right]\right) .
\end{aligned}
$$

Ex: ${ }^{(1)} \mathbb{C}^{*} \mathbb{C}^{2}$ with weight $(1,1)$.

$$
\begin{aligned}
& X_{-}=\phi, \quad X_{+}=\mathbb{P}^{\prime} \\
& W=\langle 0\{0\}, O\{1\}\rangle
\end{aligned}
$$

$$
w=z+\frac{e^{i \theta}}{z}
$$

$$
\Lambda_{t}=\bigcap_{\downarrow}^{\uparrow} \simeq \Lambda_{\mathbb{P}^{\prime}}
$$

Ex2:

Example 1.3. Consider \mathbb{C}^{*} acting on \mathbb{C}^{2} with weight $(3,-1)$. The window skeleton is shown as below, living over $S^{1} \times \mathbb{R}$ (drawn as $\mathbb{R} \times[0,1]$ with top and bottom edge identified).

The window skeleton is the union of three skeleton $\Lambda(0), \Lambda(1), \Lambda(2)$, whose vertices are marked in black nodes. The window region is marked in shadow. Take a vertical slice on the right of the window region, we get the skeleton Λ_{+}for $\left[\mathbb{C} / \mathbb{Z}_{3}\right]$; and the vertical slice on the left of the window region gives skeleton Λ_{-}for \mathbb{C}.

Thy $B\left[\right.$ Huang -Z]. Suppose $\left(\mathbb{C}^{*}\right)^{k} \subset \mathbb{C}^{N}$ satisfies quasi-symmetric condition, then for any $\delta \in \mathbb{R}^{k}$, we have B-side window subcat $W_{\delta} C \operatorname{coh}\left(\left[\mathbb{C}^{N} /\left(\mathbb{C}^{*}\right)^{k}\right]\right)$, and A-side window skeleton $\Lambda_{\delta} \subset T^{*}\left(\mathbb{R}^{k} \times T^{N-k}\right)$, and
(1) $\quad W_{\delta} \simeq \operatorname{sh}\left(\mathbb{R}^{k} \times T^{N-k}, \Lambda_{\delta}\right)$
(2) For any η deep in GIT chamber $\subset \subset \mathbb{R}^{k}$,

$$
\begin{aligned}
\operatorname{sh}\left(T^{N-k}, \Lambda_{\delta, \eta}\right) & \simeq \operatorname{sh}\left(T^{N-k}, \Lambda_{c}\right) \\
& \simeq \operatorname{coh}\left(\left[\mathbb{C}^{N} \|_{c}\left(\mathbb{C}^{*}\right)^{k}\right]\right) .
\end{aligned}
$$

(3). For generic δ, Λ_{δ} defines a non-characterisitic k-parameter variation of skeleton $\left\{\Lambda_{\delta, \eta}\right\}_{\eta \in \mathbb{R}^{k}}$.
(4) More generally, $\pi_{*}\left(s h \Lambda_{\delta}\right)$ defines a sheaf of categories over \mathbb{R}^{k}, with singular support along some thickened hyperplanes.

Example $1.10(N=6, k=2)$. Consider the example of $\left(\mathbb{C}^{*}\right)^{2}$ acting on \mathbb{C}^{6} with weight vectors β_{i} (as column vectors) given by
Ex:

$$
\left(\beta_{1}, \beta_{2}, \cdots, \beta_{6}\right)=\left(\begin{array}{cccccc}
1 & -1 & 0 & 0 & 1 & -1 \\
0 & 0 & 1 & -1 & 1 & -1
\end{array}\right)
$$

There are 6 GKZ chambers, separated by the 6 rays generated by β_{i}.
The stratification of the shift parameter space \mathbb{R}_{δ}^{k} (subscript is used to indicate the name of the coordinate) is shown in Figure 1. We consider three sample choices of δ as shown above, with δ_{1} being the most non-generic and δ_{3} being generic. For each δ_{i}, we illustrate in Figure 2 the zonotope, window points, and the singular support of \mathcal{C}_{δ}. Note that in the first figure, over the vertices the zonotope, we have Lagrangian cones in the cotangent fiber, marked by the blue arcs, and over other intersections of the blue hairy lines, we don't have anything extra in the cotangent fiber.

Figure 1. Stratification of the shift parameter space \mathbb{R}_{δ}^{k}.

(A) $\delta=\delta_{1}$

(B) $\delta=\delta_{2}$

(C) $\delta=\delta_{3}$

$$
W=\Sigma \underline{C}_{x} z^{\alpha}
$$

$\underline{Z}_{\text {dits }} \subset\left\{\right.$ space of $\left.C_{k}\right\}$

$$
\{\text { space }-f w\}
$$

