Quantum K-theory of flag varieties via non-abelian localization

Xiaohan Yan

University of California, Berkeley

1/24/2022

Outline

Introduction

2 Preliminaries

Grassmannian Case

4 Flag Variety Case

5 Applications

The study of a K-theoretic analogue of the quantum cohomology, namely the quantum K-theory, was initiated at the beginning of this century.

- Givental On the WDVV equation in quantum K-theory
- Lee Quantum K-theory. I. Foundations
- Givental-Lee Quantum K-theory on flag manifolds, finite-difference Toda lattices and quantum groups

About a decade later, relations of such invariants to integrable systems and representation theory were explored.

- Okounkov Lectures on K-theoretic computations in enumerative geometry
- Aganagic-Okounkov *Elliptic stable envelopes*

Main result (non-rigorous formulation)

The permutation-invariant **big** \mathcal{J} -function, which is a generating function of the invariants, plays a crucial role in the theory.

- $X = Flag(v_1, \dots, v_n; N)$: the flag variety $(v_1 < \dots < v_n < N)$,
- V_i : tautological bundles of X $(1 \le i \le n)$, Tank $V_i = v_i$ P_{ij} : K-theoretic Chern roots of V_i $(1 \le i \le n, 1 \le j \le v_i)$, $V_i = P_{i1} + \dots + P_i v_i$
- Q_i(1 ≤ i ≤ n): Novikov variables of X corresponding to the determinant bundles of V_i.

Theorem (X.Y.)

The image of the big \mathcal{J} -function of X is covered by the orbit of \underline{J} with respect to a family of pseudo-finite-difference operators, where

$$\widetilde{J} = (1-q) \sum_{d_{ij} \ge 0} \prod_{i,j} Q_{ij}^{d_{ij}} \frac{\prod_{i=1}^{n} \prod_{r \ne s}^{1 \le r, s \le v_i} \prod_{l=1}^{d_{is}-d_{ir}} (1-y \frac{P_{is}}{P_{ir}} q^l)}{\prod_{i=1}^{n} \prod_{1 \le r \le v_i}^{1 \le s \le v_i} \prod_{l=1}^{d_{is}-d_{i+1,r}} (1-\frac{P_{is}}{P_{i+1,r}} q^l)}.$$

- Permutation-invariant big \mathcal{J} -function?
- Pseudo-finite-difference operators??
- Why \widetilde{J} ???

- The main theorem can be regarded as a reconstruction theorem of the big *J*-functions of flag varieties, generalizing the result of Givental [3] where the target variety is required to have its K-ring generated by line bundles (e.g. toric varieties and complete flag varieties).
- Reconstruction of a different flavor is provided in Iritani-Milanov-Tonita [7], where the big quantum K-ring is recovered from the small J-function through analysis of *q*-shift operators.

Permutation-invariant quantum K-theory

Assume X is a smooth projective variety and $d \in H_2(X; \mathbb{Z})$.

Definition

 $\overline{\mathcal{M}}_{g,m}(X,d)$ is the moduli of stable maps $f : (C; p_1, \cdots, p_m) \to X$ of homological degree d and genus g with m marked points.

Correlators

With the virtual structure sheaf defined by Lee [8], one can define **K-theoretic permutation-invariant correlators** (of genus 0):

Definition

$$\begin{array}{l} S_{h} \times S_{m-n} \\ (aL_{1}^{k}) \cdots (aL_{m}^{k}) S_{m} \\ (aL_{1}^{k}) \cdots (aL_{m}^{k}) \cdots (aL_{m}^{k}) \\ (aL_{1}^{k}) \cdots (aL_{m}^{k$$

 S_m in the above construction may be replaced by any subgroup.

Big \mathcal{J} -function

Let $\{\phi_{\alpha}\}$ be an additive basis of K(X) and $\{\phi^{\alpha}\}$ be its dual basis.

The K-theoretic permutation-invariant big \mathcal{J} -function is defined by Definition

$$\mathcal{J}^{X}(\mathbf{t};q) = 1 - q + \mathbf{t}(q) + \sum_{m,d,\alpha} Q^{d} \phi^{\alpha} \langle \frac{\phi_{\alpha}}{1 - qL_{0}}, \mathbf{t}(\underbrace{L_{1}}_{1}), \cdots, \mathbf{t}(L_{n}) \rangle_{0,m+1,d}^{S_{m}}$$

where $Q^d = \prod_i Q_i^{d_i}$ with $\{Q_i\}$ are the Novikov variables, and Laurent polynomial $\mathbf{t} = \mathbf{t}(q) = \sum_k \mathbf{t}_k q^k$ is the input (with coefficients $\mathbf{t}_k \in K(X)[[Q_1, \cdots, Q_n]]).$

Loop space formalism

Denote

$$\mathcal{K} = \frac{\mathcal{K}(X)[[Q_1, \cdots, Q_n]](q^{\pm 1})}{\mathcal{K}_+} = \frac{\mathcal{K}(X)[[Q_1, \cdots, Q_n]](q, q^{-1}]}{\mathcal{K}_-} = \{\mathbf{f} \in \mathcal{K} | \mathbf{f}(0) \neq \infty, \mathbf{f}(\infty) = 0\}$$

Fact

 $\mathcal{K} = \mathcal{K}_+ \oplus \mathcal{K}_-$ is a Lagrangian polarization under the symplectic pairing

$$\Omega(\mathbf{f},\mathbf{g}) = {\sf Res}_{q
eq 0,\infty} \langle \mathbf{f}(q^{-1}), \mathbf{g}(q)
angle rac{dq}{q}$$

where $\langle \cdot, \cdot \rangle$ is the K-theoretic Poincaré pairing.

Loop space formalism

Under this polarization,

$$\mathcal{J}^{\mathcal{X}}: \mathbf{t} \longmapsto 1 \underbrace{-q + \mathbf{t}(q)}_{\mathbb{K}_{+}} + \sum_{m,d,\alpha} Q^{d} \phi^{\alpha} \langle \frac{\phi_{\alpha}}{1 - qL_{0}}, \mathbf{t}(L_{1}), \cdots, \mathbf{t}(L_{n}) \rangle_{0,m+1,d}^{S_{m}}$$

is a map from \mathcal{K}_{+} to \mathcal{K} .

Fact

The image \mathcal{L}^{X} of \mathcal{J}^{X} is an overruled cone in \mathcal{K} .

$$\mathcal{J}^{X}(0) \in \mathcal{L}^{X}$$
 is called the **small** *J*-function.
 \Downarrow_{c}

Pseudo-finite-difference operators

 $(V\otimes \cdots \otimes V)^{Sm} = \Psi^{k}(V)$ $(P_{k}^{Q \partial Q}) \cdot Q^{k} = P \cdot Q^{k} \cdot Q^{k}$ Fact ([6][3][5]) Let D be any Laurent polynomial. Then, Adams operation • ruling spaces of \mathcal{L}^X are invariant under operators like $e^{D(Pq^{Q\partial_Q}, Q, q)}$; • \mathcal{L}^{X} is invariant under operators like $e^{\sum_{k>0} \frac{\Psi^{k}(D(Pq^{kQ\partial_{Q},Q,q))}}{k(1-q^{k})}}$. $\Psi^{k}: K(X) \rightarrow K(X)$ Here P represent line bundles and Q represent the Novikov variables $Q \mapsto Q^{k}$ $\Psi^{k}(Pq^{Q\partial a})=P^{k}q^{Q\partial a}$ associated to P. Ar(bdrgga)=brdrgga We denote by \mathcal{P} the group generated by operators above. \mathcal{L}^X is preserved by \mathcal{P} .

Recall our questions:

- Permutation-invariant big $\mathcal J$ -function? \checkmark
- Pseudo-finite-difference operators?? \checkmark
- Why \widetilde{J} ???

Recall our questions:

- Permutation-invariant big *J*-function?
- Pseudo-finite-difference operators??
- Why \widetilde{J} ???

One-line answer:

• Abelian/Non-Abelian Correspondence ("Non-abelian localization")

We obtain \widetilde{J} , the "starting" point to generate the overruled cone \mathcal{L}^X of the flag variety (*the non-abelian quotient*), from a twisted quantum K-theory of Y, the (*abelian quotient*) associated to X.

The abelian quotient Y

We regard the flag variety X as a GIT quotient of vector space

 $X = R//G = \operatorname{Hom}(\mathbb{C}^{v_1}, \mathbb{C}^{v_2}) \oplus \cdots \oplus \operatorname{Hom}(\mathbb{C}^{v_n}, \mathbb{C}^N)//GL(v_1) \times \cdots \times GL(v_n).$

Then the associated **abelian quotient** Y is defined as

 $Y = R//S = \operatorname{Hom}(\mathbb{C}^{v_1}, \mathbb{C}^{v_2}) \oplus \cdots \oplus \operatorname{Hom}(\mathbb{C}^{v_n}, \mathbb{C}^N)//(\mathbb{C}^{\times})^{v_1} \times \cdots \times (\mathbb{C}^{\times})^{v_n}.$

Here $S \subset G$ is the maximal torus.

The abelian quotient Y

We regard the flag variety X as a GIT quotient of vector space

 $X = R//G = \operatorname{Hom}(\mathbb{C}^{v_1}, \mathbb{C}^{v_2}) \oplus \cdots \oplus \operatorname{Hom}(\mathbb{C}^{v_n}, \mathbb{C}^N)//GL(v_1) \times \cdots \times GL(v_n).$

Then the associated **abelian quotient** Y is defined as

$$Y = R//S = \operatorname{Hom}(\mathbb{C}^{v_1}, \mathbb{C}^{v_2}) \oplus \cdots \oplus \operatorname{Hom}(\mathbb{C}^{v_n}, \mathbb{C}^N)//(\mathbb{C}^{\times})^{v_1} \times \cdots \times (\mathbb{C}^{\times})^{v_n}.$$

Here $S \subset G$ is the maximal torus.

The torus $T = (\mathbb{C}^{\times})^N$ acts naturally on both X and Y by acting on \mathbb{C}^N . We denote the characters by $\Lambda_1, \dots, \Lambda_N$.

Example

When X = FI(1, 2; 3),

$$Y = \operatorname{Hom}(\mathbb{C}, \mathbb{C}^2) \oplus \operatorname{Hom}(\mathbb{C}^2, \mathbb{C}^3) / / \mathbb{C}^{\times} \times (\mathbb{C}^{\times})^2.$$

We denote by P_{11} , P_{21} , P_{22} the tautological bundles of Y. These bundles generate the K-ring of Y.

In general, the picture of Y is a tower of fiber bundles

We denote by P_{ij} the **tautological bundle** $\mathcal{O}(-1)$ on the *j*-th copy of $\mathbb{C}P^{v_{i+1}-1}$ in the *i*-th level $(1 \leq i \leq n, 1 \leq j \leq v_i)$. We denote by $\{Q_{ij}\}_{i=1,j=1}^{n}$ the corresponding **Novikov variables** of *Y*.

The abelian quotient Y

$$X = R^{s}(G)/G \bigvee_{i}^{\iota} = P_{ij} + P_{ij}$$

$$Y = R^{s}(G)/G \bigvee_{i}^{\iota} = P_{ij} + P_{ij} + P_{ij}$$

where $R^{s}(G)$ and $R^{s}(S)$ stands for the stable locus of the G- and S-action respectively.

Fact

We have the following relations of the tautological bundles

$$\iota^* \bigoplus_{k=1}^{v_i} P_{ik} = q^* V_i.$$

Grassmannian case: main result (rigorous formulation)

For the case of grassmannian X = Gr(v, N), we simplify our notations as follows.

- V: the (only) tautological bundle of X;
- P_1, \dots, P_v : the tautological bundles of $Y = (\mathbb{C}P^{N-1})^v$;
- Q and $Q_i(1 \le i \le v)$: the Novikov variables of X and Y respectively.

Theorem (Main theorem) $W = S_v$ The orbit of $\tilde{J}^{tw,Y}$ under the group \mathcal{P}^W of Weyl-group-invariant pseudo-finite-difference operators covers \mathcal{L}^X under the specialization $Q_i = Q$ and y = 1, where

$$\widetilde{J}^{tw,Y} = \sum_{0 \leq d_1,...,d_v} \prod_{i=1}^v Q_i^{d_i} \frac{\prod_{i\neq j}^{1 \leq i,j \leq v} \prod_{m=1}^{d_i - d_j} (1 - yq^m P_i/P_j)}{\prod_{i=1}^v \prod_{m=1}^{d_i} (1 - q^m P_i)^N}$$

In fact, we prove the T-equivariant version of the above theorem.

Theorem (Main theorem', Givental-X.Y.)

The orbit of $\tilde{J}^{tw,Y}$ under the group \mathcal{P}^W of Weyl-group-invariant pseudo-finite-difference operators cover the image \mathcal{L}^X of the T-equivariant permutation-invariant big \mathcal{J} -function of X under the specialization $Q_i = Q$ and y = 1, where

$$\widetilde{J}^{tw,Y} = \sum_{0 \leq d_1,...,d_v} \prod_{i=1}^v Q_i^{d_i} \frac{\prod_{i \neq j}^{1 \leq i,j \leq v} \prod_{m=1}^{d_i-d_j} (1 - yq^m P_i/P_j)}{\prod_{i=1}^v \prod_{j=1}^v \prod_{m=1}^{d_i} (1 - q^m P_i/\Lambda_j)}.$$

Taking $\Lambda_i \rightarrow 1$ gives us the previous theorem back.

The theorem has two aspects:

- elements in the orbit of $\widetilde{J}^{tw,Y}$ lie on \mathcal{L}^X ;
- all points on \mathcal{L}^X appear in the orbit $\widetilde{J}^{tw,Y}$.

The theorem has two aspects:

- elements in the orbit of $\widetilde{J}^{tw,Y}$ lie on \mathcal{L}^X ;
- all points on \mathcal{L}^X appear in the orbit $\widetilde{J}^{tw,Y}$. \rightarrow save for later

Idea: abelian/non-abelian correspondence

elements in the orbit of $(\widetilde{\mathcal{J}}^{tw,Y})$ lie on the image of big \mathcal{J} -function of X (after specializing $Q_i = Q$) $\widetilde{J}^{tw,Y}$ lies on the image of big \mathcal{J} -function of X⇑ RIS G,S $\bigcirc \widetilde{J}^{tw,Y}$ lies on the image of big \mathcal{J} -function of $\overset{``}{Y}$ twisted by $\mathfrak{g}/\mathfrak{s}$ +big \mathcal{J} -function of Y twisted by $\mathfrak{g}/\mathfrak{s}$ (=) big \mathcal{J} -function of Xabel/hon-abel correspondence 2)

Idea: abelian/non-abelian correspondence

elements in the orbit of $\widetilde{J}^{tw,Y}$ lie on the image of big \mathcal{J} -function of X

♠ $\widetilde{J}^{tw,Y}$ lies on the image of big \mathcal{J} -function of X ♠ $\widetilde{J}^{tw,Y}$ lies on the image of big \mathcal{J} -function of Y twisted by $\mathfrak{g}/\mathfrak{s}$ +big \mathcal{J} -function of Y twisted by $\mathfrak{g}/\mathfrak{s}$ "=" big \mathcal{J} -function of X ♠ (Fixed point localization)

(Classical) Abelian/non-abelian correspondence

$$R^{s}(G)/S \xrightarrow{\iota} Y = R^{s}(S)/S$$

$$\downarrow q$$

$$X = R^{s}(G)/G$$

$$\downarrow \sigma$$

Fact ([10]) Let $\sigma \in H^*_T(X)$ and $\tilde{\sigma} \in H^*_T(Y)$ such that $\iota^* \tilde{\sigma} = q^* \sigma$. Then,

$$\frac{1}{|W|}\int_{Y}\omega\widetilde{\sigma}=\int_{X}\sigma,$$

where $\omega = \mathsf{Eu}(\mathfrak{g}/\mathfrak{s})$.

Previous works using this idea:

- Bertram-Ciocan-Fontanine-Kim *Two proofs of a conjecture of Hori* and Vafa, Gromov-Witten invariants for abelian and nonabelian quotients
- Ciocan-Fontanine-Kim-Sabbah *The abelian/nonabelian* correspondence and Frobenius manifolds
- Webb The abelian-nonabelian correspondence for I-functions
- Wen K-theoretic I-functions of $V//_{\theta}G$ and applications
- González-Woodward *Quantum Witten localization and abelianization* for qde solutions, *Quantum Kirwan for quantum K-theory*

J^{tw,Y} lies on the image of big *J*-function of *Y* twisted by g/s
 +

 big *J*-function of *Y* twisted by g/s "=" big *J*-function of *X*

 $\widetilde{\mathcal{J}^{tw,Y}}$ lies on the image of big \mathcal{J} -function of Y twisted by $\mathfrak{g}/\mathfrak{s}$ +

big \mathcal{J} -function of Y twisted by $\mathfrak{g}/\mathfrak{s}$ "=" big \mathcal{J} -function of X

This may be proved by a **recursive characterization** of big \mathcal{J} -functions based on fixed point localization.

basis of KT(M)

Assume that M has isolated fixed points under a torus action by T, and that the fixed points are connected by isolated one-dimensional T-orbits. Any q-rational function $\mathbf{f} \in \mathcal{K}$ has the expansion

where $\{\phi^a\}_{a\in\mathcal{F}}$ are fixed point classes. Then, the following characterization of big \mathcal{J} -function holds [2]:

Fact

f represents a value of \mathcal{L}^{M} if and only if it satisfies Conditions (i) and (ii).

Fixed point localization

- (i) f_a, when expanded as meromorphic functions with poles only at roots of unity, lies in L^{pt}, the cone of the permutation-invariant quantum K-theory for point target space with coefficient ring K(M)[[Q]].
- (ii) Outside 0, ∞ and roots of unity, \mathbf{f}_a has poles only at values of the form $\lambda^{1/m}$ with λ a *T*-character of the tangent space $T_a M$ and *m* a positive integer, and the residues satisfy the recursion relations $\bigvee_{\substack{M_1 \cdots M_k \\ E_u(V) \in (I-M_1^{-1}) \cdots (I-M_k^{-1})}} \operatorname{Res}_{q=\lambda^{1/m}} \mathbf{f}_a(q) \frac{dq}{q} = \frac{Q^{mD}}{m} \frac{\operatorname{Eu}(T_a M)}{\operatorname{Eu}(T_{\phi} \overline{\mathcal{M}}_{0,2}(M, mD))} \mathbf{f}_b(\lambda^{1/m}).$ $\psi \colon \mathbb{CP}^1 \longrightarrow ab$ $z \longmapsto z^m$ $o_t \infty \longmapsto a_1 b$

$\widetilde{J}^{tw,Y}$ is on twisted theory of Y

Proposition

 $\widetilde{J}^{tw,Y}$ represents a value of the $(Eu, y^{-1}\mathfrak{g}/\mathfrak{s})$ -twisted big \mathcal{J} -function of the abelian quotient Y.

Proposition

 $\widetilde{J}^{tw,Y}$ represents a value of the $(Eu, y^{-1}\mathfrak{g}/\mathfrak{s})$ -twisted big \mathcal{J} -function of the abelian quotient Y.

- One can directly check the recursion relations needed by the twisted theory.
- Alternatively, one could use the Quantum Adams-Riemann-Roch theorem [4] which describes the twisted big *J*-function in terms of the untwisted big *J*-function.

Twisted big \mathcal{J} -function of Y "=" big \mathcal{J} -function of X

Quantum K-theory of Y = R//S twisted by $y^{-1}\mathfrak{g}/\mathfrak{s}$

$$\operatorname{Res}_{q=\lambda^{1/m}} \mathbf{f}_{a} \frac{dq}{q} = \frac{\prod_{i} Q_{i}^{mD_{i}}}{m} \frac{\operatorname{Eu}(T_{a}Y)}{\operatorname{Eu}(y^{-1}\mathfrak{g}/\mathfrak{s})|_{a}} \frac{\operatorname{Eu}((y^{-1}\mathfrak{g}/\mathfrak{s})_{0,2,mD})|_{\phi}}{\operatorname{Eu}(T_{\phi}Y_{0,2,mD})} \mathbf{f}_{b}(\lambda^{1/m}).$$

∜

Under the limit $Q_i = Q, y = 1$

∜

Quantum K-theory of X = R//G

$$\operatorname{Res}_{\boldsymbol{q}=\lambda^{1/m}} \mathbf{f}_{\boldsymbol{a}}(\boldsymbol{q}) \frac{d\boldsymbol{q}}{\boldsymbol{q}} = \frac{Q^{m\sum_{i}D_{i}}}{m} \frac{\operatorname{Eu}(T_{\boldsymbol{a}}X)}{\operatorname{Eu}(T_{\phi}X_{0,2,m\sum_{i}D_{i}})} \mathbf{f}_{\boldsymbol{b}}(\lambda^{1/m}).$$

In other words, we check the recursion coefficients of the two theories coincide, under the specialization $Q_i = Q, y = 1$.

Rachel Webb

 $\left(\frac{1}{2}+1\right)^{\alpha}=\left(\frac{1}{2}\right)^{\alpha}$

 $\begin{array}{c} (\uparrow^{\mathsf{tw}},\uparrow) & = & (\uparrow^{\mathsf{X}}) \\ (\downarrow^{\mathsf{tw}},\uparrow) & = & (\uparrow^{\mathsf{X}}) \\ \end{array}$

Remarks

Generating functions of quantum K-theory invariants of *symplectic* quiver varieties defined by quasi-map compactifications appear in the study of quantum integrable systems and representation theory. One often needs such functions to be **balanced** [11, 9] in order to apply rigidity arguments.

For the case of
$$T^*Gr(v, N)$$
, one may consider $I =$

$$\sum_{0 \leq d_{i}} Q^{\sum_{i} d_{i}} \frac{\prod_{i \neq j}^{1 \leq i, j \leq v} \prod_{m=1}^{d_{i} - d_{j}} (1 - q^{m} P_{i} / P_{j})}{\prod_{i \neq j}^{1 \leq i, j \leq v} \prod_{m=0}^{d_{i} - d_{j} - 1} (1 - \hbar q^{m} P_{i} / P_{j})} \frac{\prod_{i=1}^{v} \prod_{j=1}^{N} \prod_{m=0}^{d_{i} - 1} (1 - \hbar q^{m} P_{i} / A_{j})}{\prod_{i=1}^{v} \prod_{j=1}^{N} \prod_{m=1}^{d_{i}} (1 - q^{m} P_{i} / A_{j})},$$

where \hbar denotes the equivariant parameter of an extra fiberwise \mathbb{C}^{\times} -action on $T^*Gr(v, N)$.

• Question: Can *I* be realized in terms of the language we introduced earlier?

- Question: Can I be realized in terms of the language we introduced earlier?
- Yes, but after certain *twistings*.

Fact

Let X = Gr(v, N). Then I/Eu(TX) lies on the image $\mathcal{L}^{Eu,TX}$ of the big \mathcal{J} -function of X twisted by its tangent bundle.

This may be proved using the same method.

Remarks

E LX, TX

Note however that I =

$$\sum_{0 \leq d_{i}} Q^{\sum_{i} d_{i}} \frac{\prod_{i \neq j}^{1 \leq i, j \leq v} \prod_{m=1}^{d_{i} - d_{j}} (1 - q^{m} P_{i} / P_{j})}{\prod_{i \neq j}^{1 \leq i, j \leq v} \prod_{m=0}^{d_{i} - d_{j} - 1} (1 - \hbar q^{m} P_{i} / P_{j})} \frac{\prod_{i=1}^{v} \prod_{j=1}^{N} \prod_{m=0}^{d_{i} - 1} (1 - \hbar q^{m} P_{i} / A_{j})}{\prod_{i=1}^{v} \prod_{j=1}^{N} \prod_{m=1}^{d_{i}} (1 - q^{m} P_{i} / A_{j})}$$

is not the small J-function in the twisted theory. In other words, under the polarization $\mathcal{K} = \mathcal{K}_+ \oplus \mathcal{K}_-$, $I = 1 - q + \mathbf{t} + \mathcal{K}_-$ with $\mathbf{t} \neq 0$.

This is due to the possible \hbar -terms in the denominator.

Recall that

$$X = \operatorname{Hom}(\mathbb{C}^{v_1}, \mathbb{C}^{v_2}) \oplus \cdots \oplus \operatorname{Hom}(\mathbb{C}^{v_n}, \mathbb{C}^N) / / GL(v_1) \times \cdots \times GL(v_n)$$
$$Y = \operatorname{Hom}(\mathbb{C}^{v_1}, \mathbb{C}^{v_2}) \oplus \cdots \oplus \operatorname{Hom}(\mathbb{C}^{v_n}, \mathbb{C}^N) / / (\mathbb{C}^{\times})^{v_1} \times \cdots \times (\mathbb{C}^{\times})^{v_n}$$

Recall that in grassmannian case,

- T-fixed points of X are the coordinate subspaces and are isolated;
- *T*-fixed points of $Y = (\mathbb{C}P^{N-1})^{\nu}$ are also isolated.

Recall that in grassmannian case,

- T-fixed points of X are the coordinate subspaces and are isolated;
- *T*-fixed points of $Y = (\mathbb{C}P^{N-1})^{\nu}$ are also isolated.

In flag variety case, however,

- *T*-fixed points of *X* are the standard flags and are still isolated;
- but *T*-fixed points of *Y* are no longer isolated!
- For simplicity of notations, we will mainly consider the case
 X = FI(1, 2; 3). The method carries over to all partial flag varieties entirely.

Example
For
$$X = Fl(1, 2; 3)$$
, Y is a $\mathbb{C}P^1$ -bundle over $\mathbb{C}P^2 \times \mathbb{C}P^2$.
 $\mathbb{C}^{(X,Y,C)} \subset \mathbb{C}^3$
• $A = \begin{pmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \end{pmatrix}$ and $D = \begin{pmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \end{pmatrix}$ are isolated T-fixed
points of Y;
• $B = \begin{pmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 0 & 0 \end{bmatrix} \end{pmatrix}$ and $C = \begin{pmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 0 & 0 \end{bmatrix})$ are non-isolated
T-fixed points of Y. In fact, the fixed point component containing B
and C is isomorphic to $\mathbb{C}P^1$:

$$\left\{ \underbrace{\left(\begin{bmatrix} a \\ b \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 0 & 0 \end{bmatrix} \right)}_{|a, b \in \mathbb{C} \text{ not both zero}} \right\}$$

A (very sketchy) picture is shown below:

We will have to address the issue of "non-isolated recursion".

We will have to address the issue of "non-isolated recursion".

The most direct idea is to enlarge the torus action on Y. We enlarge $\mathcal{T} \to \widetilde{\mathcal{T}}$

- $\widetilde{T} = T \times (\mathbb{C}^{\times})^2$ with the extra action scaling the two entries of $Hom(\mathbb{C}, \mathbb{C}^2)$ (i.e. rotating the fibers $\mathbb{C}P^1$).
- We denote by Λ_4,Λ_5 the equivariant parameters of the extra action.
- Now, $\underline{A}, \underline{B}, \underline{C}, D$ are all isolated fixed points of \tilde{T} -action.

Main result: flag variety case

We may follow the same idea of grassmannian case. Under the action of the enlarged torus \tilde{T} , we have

Theorem (Main theorem, X.Y.)

The orbit of $\tilde{J}^{tw,Y}$ under the group of Weyl-group-invariant pseudo-finite-difference operators covers the entire image \mathcal{L}^X of the big \mathcal{J} -function of X under the specialization $\Lambda_4 = \Lambda_5 = 1$, $Q_{ij} = Q_i$ and y = 1, where

$$\begin{split} \widetilde{J}^{tw,Y} = & (1-q) \sum_{d_{ij} \ge 0} \prod Q_{ij}^{d_{ij}} \cdot \\ & \frac{\prod_{l=1}^{d_{21}-d_{22}} (1-y \frac{P_{21}}{P_{22}} q^l) \prod_{l=1}^{d_{22}-d_{21}} (1-y \frac{P_{22}}{P_{21}} q^l)}{\prod_{s=1}^2 \prod_{l=1}^{d_{11}-d_{2s}} (1-\frac{P_{11}}{P_{2s}\Lambda_{s+3}} q^l) \cdot \prod_{r=1}^2 \prod_{s=1}^3 \prod_{l=1}^{d_{2r}} (1-\frac{P_{2r}}{\Lambda_s} q^l)} . \end{split}$$

Consider the 1-dim \widetilde{T} -orbit AD as an example.

- Step 1: $\widetilde{J}^{tw,Y}|_A$ satisfies the recursion relations of the \widetilde{T} -equivariant $(\operatorname{Eu}, y^{-1}\mathfrak{g}/\mathfrak{s})$ -twisted big \mathcal{J} -function of Y; \checkmark
- Step 2: Under the specialization $\Lambda_4 = \Lambda_5 = 1$, $Q_i = Q$ and y = 1, the twisted recursion along AD of Y descends correctly to the expected recursion along AD of X.

Consider the 1-dim \widetilde{T} -orbit AD as an example.

- Step 1: $\widetilde{J}^{tw,Y}|_A$ satisfies the recursion relations of the \widetilde{T} -equivariant $(\operatorname{Eu}, y^{-1}\mathfrak{g}/\mathfrak{s})$ -twisted big \mathcal{J} -function of Y;
- Step 2: Under the specialization $\Lambda_4 = \Lambda_5 = 1$, $Q_i = Q$ and y = 1, the twisted recursion along AD of Y descends correctly to the expected recursion along AD of X.

• But are we done?

Idea

Non-isolated recursion

Essentially, we are showing that the total **non-isolated recursion** from the component *BC* vanishes as $\Lambda_4 = \Lambda_5 = 1$, $Q_i = Q$ and y = 1.

Essentially, we are showing that the total **non-isolated recursion** from the component *BC* vanishes as $\Lambda_4 = \Lambda_5 = 1$, $Q_i = Q$ and y = 1.

For partial flag varieties in general, at a isolated fixed point (like A), we prove the vanishing of recursion from the "degenerate" orbits (like AB) following this same idea: AB + ADC = 0

 complete it into non-isolated recursion from a fixed-point component (like BC) by taking balanced broken orbits (like ADC) into consideration;

AB+ADC=0

• prove that both the total non-isolated recursion and the added terms, which themselves are "lower non-isolated recursions", vanish.

DC = o

A special case of the main theorem:

Corollary

$$J^{X} = (1-q) \sum_{d_{ij} \ge 0} \prod_{i} Q_{i}^{\sum_{j} d_{ij}} \frac{\prod_{i=1}^{n} \prod_{r \ne s}^{1 \le r, s \le v_{i}} \prod_{l=1}^{d_{is}-d_{ir}} (1 - \frac{P_{is}}{P_{ir}}q^{l})}{\prod_{i=1}^{n} \prod_{1 \le r \le v_{i+1}}^{1 \le s \le v_{i}} \prod_{l=1}^{d_{is}-d_{i+1,r}} (1 - \frac{P_{is}}{P_{i+1,r}}q^{l})}$$

represents a value of the big \mathcal{J} -function of X.

This is actually the small *J*-function.

Remarks

Similar to the grassmannian case, we may consider balanced generating functions I^X of K-theoretic quasi-map invariants of T^*X .

Denote by J_d^X the coefficient of Q^d in the small *J*-function J^X . Then, $I^X = \sum_d Q^d I_d^X$ takes the form

$$I_{d}^{X} = J_{d}^{X} \cdot \frac{\prod_{i=1}^{n} \prod_{1 \leq r \leq v_{i+1}}^{1 \leq s \leq v_{i}} \prod_{l=0}^{d_{is}-d_{i+1,r}-1} (1 - \hbar \frac{P_{is}}{P_{i+1,r}} q^{l})}{\prod_{i=1}^{n} \prod_{r \neq s}^{1 \leq r, s \leq v_{i}} \prod_{l=0}^{d_{is}-d_{ir}-1} (1 - \hbar \frac{P_{is}}{P_{ir}} q^{l})}$$

In fact, we have

Fact

I/Eu(TX) represents a point on the image $\mathcal{L}^{Eu,TX}$ of the big \mathcal{J} -function of X twisted by its tangent bundle.

Surjectivity argument

Recall the theorem has two aspects:

- elements in the orbit of $\widetilde{J}^{tw,Y}$ lie on \mathcal{L}^X ; \checkmark
- all points on \mathcal{L}^X appear in the orbit of $\widetilde{J}^{tw,Y}$. \rightarrow do this now

Surjectivity argument

Recall the theorem has two aspects:

- elements in the orbit of $\widetilde{J}^{tw,Y}$ lie on \mathcal{L}^X ;
- all points on \mathcal{L}^X appear in the orbit of $\widetilde{J}^{tw,Y}$. \rightarrow do this now

Idea:

- We use the invariance of \mathcal{L}^X under pseudo-finite-difference operators to generate a family on it from $\widetilde{J}^{tw,Y}$.
- We want to show that the projection of this family to K₊ covers the entire K₊: this is correct mod Q by quantum K-theory of point target space, and is thus correct with Q by Formal Implicit Function Theorem (Nakayama's Lemma).

Recently, the level structures are introduced to quantum K-theory, inspiring new progress in the field.

- Ruan-Zhang The level structure in quantum K-theory and mock theta functions
- Ruan-Wen-Zhou *Quantum K-theory of toric varieties, level structures, and 3d mirror symmetry*

 $\overline{M}_{o,n+1}(X,d) \xrightarrow{ev} X$ $\int_{ft} ft$ $\overline{M}_{o,n}(X,d)$

Definition

Let E be a vector bundle on X and I be an integer. The **level structure** (E, I) is defined as the modification

$$\mathcal{O}^{\mathsf{virt}} \to \mathcal{O}^{\mathsf{virt}} \otimes \mathsf{det}^{-1}(\mathsf{ft}_* \operatorname{ev}^* E)$$

to the virtual structure sheaf.

We consider the quantum K-theory of flag varieties with level structures.

Level structure

Using similar techinques as before, we can prove the following

Proposition

Write
$$J^{X} = \sum_{d \ge 0} Q^{d} J_{d}^{X}$$
 as before, then the q-rational function
$$J^{X,V_{i},l} = \sum_{d \ge 0} Q^{d} \cdot \left[\prod_{s=1}^{v_{i}} P_{is}^{d_{is}} q^{\frac{d_{is}(d_{is}-1)}{2}}\right]^{l} \cdot J_{d}^{X}$$

represents a point on the overruled cone $\mathcal{L}^{X,V_i,I}$ of X with level structure (V_i, I) .

Moreover, this is the small J-function as |I| is small.

Level correspondence

A correspondence between level-twisted big \mathcal{J} -functions of dual grassmannians was observed in [1]. This may be generalized to the case of flag varieties as follows.

Consider the flag varieties

$$X = \mathsf{Flag}(v_1, v_2, \cdots, v_n; N)$$

and

$$X' = \operatorname{Flag}(N - v_n, N - v_{n-1}, \cdots, N - v_1; N).$$

There is a T-equivariant isomorphism which is explicitly given by

$$0 \subset V_1 \subset V_2 \subset \ldots \subset V_n \subset \mathbb{C}^N \longmapsto 0 \subset (V_n)^{\perp} \subset (V_{n-1})^{\perp} \subset \ldots \subset (V_1)^{\perp} \subset (\mathbb{C}^N)^*.$$

Both X and X' have n tautological bundles, and we name them V_i and V'_i respectively.

The following fact is not hard to prove.

Fact

$$\mathcal{L}^{X,V_i,I} = \mathcal{L}^{X',(V_i')^{\vee},-I}.$$

Therefore, combining the fact with what we have proved above, we have Corollary When |I| is small,

$$J^{X,V_i,I} = J^{X',(V_i')^{\vee},-I}$$

Thank you!!!

H. Dong and Y. Wen.

Level correspondence of K-theoretic *I*-functions in grassmannian duality.

A. Givental.

Permutation-equivariant quantum K-theory II. Fixed point localization.

A. Givental.

Permutation-equivariant quantum K-theory VIII. Explicit reconstruction.

A. Givental.

Permutation-equivariant quantum K-theory XI. Quantum Adams-Riemann-Roch.

A. Givental.

Permutation-equivariant quantum K-theory X. Quantum Hirzebruch-Riemann-Roch in genus 0.

SIGMA Symmetry Integrability Geom. Methods Appl., 16:Paper No. 031, 16, 2020.

A. Givental and V. Tonita.

The Hirzebruch-Riemann-Roch theorem in true genus-0 quantum K-theory.

In *Symplectic, Poisson, and noncommutative geometry*, volume 62 of *Math. Sci. Res. Inst. Publ.*, pages 43–91. Cambridge Univ. Press, New York, 2014.

H. Iritani, T. Milanov, and V. Tonita.

Reconstruction and convergence in quantum K-theory via difference equations.

Int. Math. Res. Not. IMRN, 2015(11):2887–2937, 2014.

Y.-P. Lee.

Quantum K-theory. I. Foundations. *Duke Math. J.*, 121(3):389–424, 2004.

H. Liu.

Self-duality in quantum K-theory.

S. Martin.

Symplectic quotients by a nonabelian group and by its maximal torus.

A. Okounkov.

Lectures on K-theoretic computations in enumerative geometry.

In *Geometry of moduli spaces and representation theory*, volume 24 of *IAS/Park City Math. Ser.*, pages 251–380. Amer. Math. Soc., Providence, RI, 2017.