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Some background

The study of a K-theoretic analogue of the quantum cohomology, namely
the quantum K-theory, was initiated at the beginning of this century.

Givental On the WDVV equation in quantum K-theory

Lee Quantum K-theory. I. Foundations

Givental-Lee Quantum K-theory on flag manifolds, finite-di↵erence
Toda lattices and quantum groups
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About a decade later, relations of such invariants to integrable systems
and representation theory were explored.

Okounkov Lectures on K-theoretic computations in enumerative
geometry

Aganagic-Okounkov Elliptic stable envelopes
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Main result (non-rigorous formulation)

The permutation-invariant big J -function, which is a generating function
of the invariants, plays a crucial role in the theory.

X “ Flagpv1, ¨ ¨ ¨ , vn;Nq: the flag variety (v1 † ¨ ¨ ¨ † vn † N),

Vi : tautological bundles of X p1 § i § nq,
Pij : K-theoretic Chern roots of Vi (1 § i § n, 1 § j § vi ),

Qi p1 § i § nq: Novikov variables of X corresponding to the
determinant bundles of Vi .

Theorem (X.Y.)

The image of the big J -function of X is covered by the orbit of rJ with
respect to a family of pseudo-finite-di↵erence operators, where

rJ “ p1 ´ qq
ÿ

dij•0

π

i,j

Q
dij
ij

±n
i“1

±1§r ,s§vi
r‰s

±dis´dir
l“1 p1 ´ y Pis

Pir
qlq

±n
i“1

±1§s§vi
1§r§vi`1

±dis´di`1,r

l“1 p1 ´ Pis
Pi`1,r

qlq
.
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Questions

Permutation-invariant big J -function?

Pseudo-finite-di↵erence operators??

Why rJ???
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Reconstruction

The main theorem can be regarded as a reconstruction theorem of
the big J -functions of flag varieties, generalizing the result of Givental
[3] where the target variety is required to have its K-ring generated by
line bundles (e.g. toric varieties and complete flag varieties).

Reconstruction of a di↵erent flavor is provided in
Iritani-Milanov-Tonita [7], where the big quantum K-ring is recovered
from the small J-function through analysis of q-shift operators.
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Permutation-invariant quantum K-theory

Assume X is a smooth projective variety and d P H2pX ;Zq.
Definition

Mg ,mpX , dq is the moduli of stable maps f : pC ; p1, ¨ ¨ ¨ , pmq Ñ X of
homological degree d and genus g with m marked points.

Stability: C connected, nodal and projective;
p1, ¨ ¨ ¨ , pm smooth points on C ;
|Autpf , pC ; p1, ¨ ¨ ¨ , pmqq| † 8.

Equivalence: pf , pC ; p1, ¨ ¨ ¨ , pmqq „ pf 1, pC 1; p1
1, ¨ ¨ ¨ , p1

mqq ô D' :
pC ; p1, ¨ ¨ ¨ , pmq „›Ñ pC 1; p1

1, ¨ ¨ ¨ , p1
mq with f 1 ˝ ' “ f .

Sm acts naturally on Mg ,mpX , dq by permuting the marked points.
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Correlators

With the virtual structure sheaf defined by Lee [8], one can define
K-theoretic permutation-invariant correlators (of genus 0):

Definition

xaLk1 , ¨ ¨ ¨ , aLkmySm0,m,d “ �Smp ÑM0,mpX , dq,Ovirt b
nâ

l“1

ev˚
l paqLkl q,

where a P K pX q, evl : ÑM0,mpX , dq Ñ X is the evaluation map at the l-th
marked point, and Ll is the universal cotangent bundle at the l-th marked
point over the moduli space.

Sm in the above construction may be replaced by any subgroup.
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Big J -function

Let t�↵u be an additive basis of K pX q and t�↵u be its dual basis.

The K-theoretic permutation-invariant big J -function is defined by

Definition

J
X pt; qq “ 1 ´ q ` tpqq `

ÿ

m,d ,↵

Qd�↵x �↵

1 ´ qL0
, tpL1q, ¨ ¨ ¨ , tpLnqySm0,m`1,d

where Qd “ ±
i Q

di
i with tQiu are the Novikov variables, and Laurent

polynomial t “ tpqq “ ∞
k tkq

k is the input (with coe�cients
tk P K pX qrrQ1, ¨ ¨ ¨ ,Qnss).
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Loop space formalism

Denote

K “ K pX qrrQ1, ¨ ¨ ¨ ,Qnsspq˘1q
K` “ K pX qrrQ1, ¨ ¨ ¨ ,Qnssrq, q´1s
K´ “ tf P K|fp0q ‰ 8, fp8q “ 0u

Fact

K “ K` ‘ K´ is a Lagrangian polarization under the symplectic pairing

⌦pf, gq “ Resq‰0,8xfpq´1q, gpqqydq
q

where x¨, ¨y is the K-theoretic Poincaré pairing.
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Loop space formalism

Under this polarization,

J
X : t fi›Ñ 1 ´ q ` tpqq `

ÿ

m,d ,↵

Qd�↵x �↵

1 ´ qL0
, tpL1q, ¨ ¨ ¨ , tpLnqySm0,m`1,d

is a map from K` to K.

Fact

The image L
X of J X is an overruled cone in K.

J
X p0q P L

X is called the small J-function.
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Pseudo-finite-di↵erence operators

Fact ([6][3][5])

Let D be any Laurent polynomial. Then,

ruling spaces of LX are invariant under operators like eDpPqQBQ ,Q,qq;

L
X is invariant under operators like e

∞
k°0

 k pDpPqkQBQ ,Q,qqq
kp1´qk q .

Here P represent line bundles and Q represent the Novikov variables
associated to P .

We denote by P the group generated by operators above. LX is preserved
by P.
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Recall our questions:

Permutation-invariant big J -function?

Pseudo-finite-di↵erence operators??

Why rJ???

One-line answer:

Abelian/Non-Abelian Correspondence (“Non-abelian localization”)

We obtain rJ, the “starting” point to generate the overruled cone L
X of

the flag variety (the non-abelian quotient), from a twisted quantum
K-theory of Y , the (abelian quotient) associated to X .

Xiaohan Yan (UCB) Quantum K-theory of flag varieties 1/24/2022



Recall our questions:

Permutation-invariant big J -function?

Pseudo-finite-di↵erence operators??

Why rJ???

One-line answer:

Abelian/Non-Abelian Correspondence (“Non-abelian localization”)

We obtain rJ, the “starting” point to generate the overruled cone L
X of

the flag variety (the non-abelian quotient), from a twisted quantum
K-theory of Y , the (abelian quotient) associated to X .

Xiaohan Yan (UCB) Quantum K-theory of flag varieties 1/24/2022



The abelian quotient Y

We regard the flag variety X as a GIT quotient of vector space

X “ R{{G “ HompCv1 ,Cv2q‘¨ ¨ ¨‘HompCvn ,CNq{{GLpv1qˆ¨ ¨ ¨ˆGLpvnq.

Then the associated abelian quotient Y is defined as

Y “ R{{S “ HompCv1 ,Cv2q‘¨ ¨ ¨‘HompCvn ,CNq{{pCˆqv1 ˆ¨ ¨ ¨ˆpCˆqvn .

Here S Ä G is the maximal torus.

The torus T “ pCˆqN acts naturally on both X and Y by acting on CN .
We denote the characters by ⇤1, ¨ ¨ ¨ ,⇤N .
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Example

When X “ Flp1, 2; 3q,

Y “ HompC,C2q ‘ HompC2,C3q{{Cˆ ˆ pCˆq2.

CP1 � � // Y

✏✏

CP2 ˆ CP2.

We denote by P11,P21,P22 the tautological bundles of Y . These bundles
generate the K-ring of Y .
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In general, the picture of Y is a tower of fiber bundles

pCPv2´1qv1 � � // Y

✏✏¨ ¨ ¨

✏✏
pCPvn´1´1qvn´2 �

�
// Fn´2

✏✏
pCPvn´1qvn´1 �

�
// Fn´1

✏✏
pCPN´1qvn .

We denote by Pij the tautological bundle Op´1q on the j-th copy of
CPvi`1´1 in the i-th level (1 § i § n, 1 § j § vi ).
We denote by tQijun vi

i“1,j“1 the corresponding Novikov variables of Y .
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The abelian quotient Y

RspG q{S � � ◆ //

q

✏✏

Y “ RspSq{S

X “ RspG q{G
where RspG q and RspSq stands for the stable locus of the G - and S-action
respectively.

Fact

We have the following relations of the tautological bundles

◆˚
vià

k“1

Pik “ q˚Vi .
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Grassmannian case: main result (rigorous formulation)

For the case of grassmannian X “ Grpv ,Nq, we simplify our notations as
follows.

V : the (only) tautological bundle of X ;

P1, ¨ ¨ ¨ ,Pv : the tautological bundles of Y “ pCPN´1qv ;
Q and Qi p1 § i § vq: the Novikov variables of X and Y respectively.

Theorem (Main theorem)

The orbit of rJtw ,Y under the group P
W of Weyl-group-invariant

pseudo-finite-di↵erence operators covers LX under the specialization
Qi “ Q and y “ 1, where

rJtw ,Y “
ÿ

0§d1,...,dv

vπ

i“1

Qdi
i

±1§i ,j§v
i‰j

±di´dj
m“1 p1 ´ yqmPi{Pjq

±v
i“1

±di
m“1p1 ´ qmPi qN

.
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Grassmannian case: main result (rigorous formulation)

In fact, we prove the T -equivariant version of the above theorem.

Theorem (Main theorem’, Givental-X.Y.)

The orbit of rJtw ,Y under the group P
W of Weyl-group-invariant

pseudo-finite-di↵erence operators cover the image L
X of the

T -equivariant permutation-invariant big J -function of X under the
specialization Qi “ Q and y “ 1, where

rJtw ,Y “
ÿ

0§d1,...,dv

vπ

i“1

Qdi
i

±1§i ,j§v
i‰j

±di´dj
m“1 p1 ´ yqmPi{Pjq

±v
i“1

±N
j“1

±di
m“1p1 ´ qmPi{⇤jq

.

Taking ⇤i Ñ 1 gives us the previous theorem back.
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The theorem has two aspects:

elements in the orbit of rJtw ,Y lie on L
X ;

all points on L
X appear in the orbit rJtw ,Y .

Ñ save for later
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Idea: abelian/non-abelian correspondence

elements in the orbit of rJtw ,Y lie on the image of big J -function of X

ò
rJtw ,Y lies on the image of big J -function of X

ò
rJtw ,Y lies on the image of big J -function of Y twisted by g{s

`

big J -function of Y twisted by g{s ““” big J -function of X

ò
(Fixed point localization)

Xiaohan Yan (UCB) Quantum K-theory of flag varieties 1/24/2022

0
afterspecializing Qi Q

Ris G S

abelnon abel correspondence



Idea: abelian/non-abelian correspondence

elements in the orbit of rJtw ,Y lie on the image of big J -function of X

ò
rJtw ,Y lies on the image of big J -function of X

ò
rJtw ,Y lies on the image of big J -function of Y twisted by g{s

`

big J -function of Y twisted by g{s ““” big J -function of X

ò
(Fixed point localization)

Xiaohan Yan (UCB) Quantum K-theory of flag varieties 1/24/2022



(Classical) Abelian/non-abelian correspondence

RspG q{S � � ◆ //

q

✏✏

Y “ RspSq{S

X “ RspG q{G

Fact ([10])

Let � P H˚
T pX q and r� P H˚

T pY q such that ◆˚r� “ q˚�. Then,

1

|W |

ª

Y
!r� “

ª

X
�,

where ! “ Eupg{sq.
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Quantum abelian/non-abelian correspondence

Previous works using this idea:

Bertram-Ciocan-Fontanine-Kim Two proofs of a conjecture of Hori
and Vafa, Gromov-Witten invariants for abelian and nonabelian
quotients

Ciocan-Fontanine-Kim-Sabbah The abelian/nonabelian
correspondence and Frobenius manifolds

Webb The abelian-nonabelian correspondence for I -functions

Wen K-theoretic I -functions of V {{✓G and applications

González-Woodward Quantum Witten localization and abelianization
for qde solutions, Quantum Kirwan for quantum K-theory
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Idea: fixed point localization

rJtw ,Y lies on the image of big J -function of Y twisted by g{s

`

big J -function of Y twisted by g{s ““” big J -function of X

This may be proved by a recursive characterization of big J -functions
based on fixed point localization.
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Fixed point localization

Assume that M has isolated fixed points under a torus action by T , and
that the fixed points are connected by isolated one-dimensional T -orbits.
Any q-rational function f P K has the expansion

f “
ÿ

aPF
fa�

a

where t�auaPF are fixed point classes. Then, the following characterization
of big J -function holds [2]:

Fact

f represents a value of LM if and only if it satisfies Conditions (i) and (ii).
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Fixed point localization

(i) fa, when expanded as meromorphic functions with poles only at

roots of unity, lies in L
pt , the cone of the permutation-invariant

quantum K-theory for point target space with coe�cient ring
K pMqrrQss.

(ii) Outside 0,8 and roots of unity, fa has poles only at values of the

form �1{m with � a T -character of the tangent space TaM and m a
positive integer, and the residues satisfy the recursion relations

Resq“�1{m fapqqdq
q

“ QmD

m

EupTaMq
EupT�M0,2pM,mDqq fbp�1{mq.
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rJ tw ,Y
is on twisted theory of Y

Proposition

rJtw ,Y represents a value of the pEu, y´1g{sq-twisted big J -function of the
abelian quotient Y .

One can directly check the recursion relations needed by the twisted
theory.

Alternatively, one could use the Quantum Adams-Riemann-Roch
theorem [4] which describes the twisted big J -function in terms of
the untwisted big J -function.
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Twisted big J -function of Y ““” big J -function of X

Quantum K-theory of Y “ R{{S twisted by y´1g{s

Resq“�1{m fa
dq

q
“

±
i Q

mDi
i

m

EupTaY q
Eupy´1g{sq|a

Euppy´1g{sq0,2,mDq|�
EupT�Y0,2,mDq fbp�1{mq.

ó
Under the limit Qi “ Q, y “ 1

ó
Quantum K-theory of X “ R{{G

Resq“�1{m fapqqdq
q

“ Qm
∞

i Di

m

EupTaX q
EupT�X0,2,m

∞
i Di

q fbp�1{mq.

In other words, we check the recursion coe�cients of the two theories
coincide, under the specialization Qi “ Q, y “ 1.

Xiaohan Yan (UCB) Quantum K-theory of flag varieties 1/24/2022

Rachel
Webb

FYI T Ct's



Remarks

Generating functions of quantum K-theory invariants of symplectic quiver
varieties defined by quasi-map compactifications appear in the study of
quantum integrable systems and representation theory. One often needs
such functions to be balanced [11, 9] in order to apply rigidity arguments.

For the case of T ˚Grpv ,Nq, one may consider I “

ÿ

0§di

Q
∞

i di

±1§i,j§v
i‰j

±di´dj
m“1 p1 ´ qmPi{Pjq

±1§i,j§v
i‰j

±di´dj´1
m“0 p1 ´ ~qmPi{Pjq

±v
i“1

±N
j“1

±di´1
m“0p1 ´ ~qmPi{⇤jq

±v
i“1

±N
j“1

±di
m“1p1 ´ qmPi{⇤jq

,

where ~ denotes the equivariant parameter of an extra fiberwise Cˆ-action
on T ˚Grpv ,Nq.
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Remarks

Question: Can I be realized in terms of the language we introduced
earlier?

Yes, but after certain twistings.

Fact

Let X “ Grpv ,Nq. Then I {EupTX q lies on the image L
Eu,TX of the big

J -function of X twisted by its tangent bundle.

This may be proved using the same method.
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Remarks

Note however that I “
ÿ

0§di

Q
∞

i di

±1§i,j§v
i‰j

±di´dj
m“1 p1 ´ qmPi{Pjq

±1§i,j§v
i‰j

±di´dj´1
m“0 p1 ´ ~qmPi{Pjq

±v
i“1

±N
j“1

±di´1
m“0p1 ´ ~qmPi{⇤jq

±v
i“1

±N
j“1

±di
m“1p1 ´ qmPi{⇤jq

,

is not the small J-function in the twisted theory. In other words, under the
polarization K “ K` ‘ K´, I “ 1 ´ q ` t ` K´ with t ‰ 0.

This is due to the possible ~-terms in the denominator.
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Flag variety case: notations

Recall that

X “ HompCv1 ,Cv2q ‘ ¨ ¨ ¨ ‘ HompCvn ,CNq{{GLpv1q ˆ ¨ ¨ ¨ ˆ GLpvnq

Y “ HompCv1 ,Cv2q ‘ ¨ ¨ ¨ ‘ HompCvn ,CNq{{pCˆqv1 ˆ ¨ ¨ ¨ ˆ pCˆqvn
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New flavor in the flag variety case

Recall that in grassmannian case,

T -fixed points of X are the coordinate subspaces and are isolated;

T -fixed points of Y “ pCPN´1qv are also isolated.

In flag variety case, however,

T -fixed points of X are the standard flags and are still isolated;

but T -fixed points of Y are no longer isolated!

For simplicity of notations, we will mainly consider the case
X “ Flp1, 2; 3q. The method carries over to all partial flag varieties
entirely.
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New flavor in the flag variety case

Example

For X “ Flp1, 2; 3q, Y is a CP1-bundle over CP2 ˆ CP2.

A “
¨

˝
„
1
0

⇢
,

»

–
1 0
0 1
0 0

fi

fl

˛

‚and D “
¨

˝
„
0
1

⇢
,

»

–
1 0
0 1
0 0

fi

fl

˛

‚are isolated T -fixed

points of Y ;

B “
¨

˝
„
1
0

⇢
,

»

–
0 0
1 1
0 0

fi

fl

˛

‚and C “
¨

˝
„
0
1

⇢
,

»

–
0 0
1 1
0 0

fi

fl

˛

‚are non-isolated

T -fixed points of Y . In fact, the fixed point component containing B
and C is isomorphic to CP1:

$
&

%

¨

˝
„
a
b

⇢
,

»

–
0 0
1 1
0 0

fi

fl

˛

‚|a, b P C not both zero

,
.

- .
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New flavor in the flag variety case

A (very sketchy) picture is shown below:

A B

CD

There are T -invariant 1-dim orbits connecting A to all points on BC but
C .
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New idea

We will have to address the issue of “non-isolated recursion”.

The most direct idea is to enlarge the torus action on Y . We enlarge
T Ñ rT

rT “ T ˆ pCˆq2 with the extra action scaling the two entries of
HompC,C2q (i.e. rotating the fibers CP1).

We denote by ⇤4,⇤5 the equivariant parameters of the extra action.

Now, A,B ,C ,D are all isolated fixed points of rT -action.
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Main result: flag variety case

We may follow the same idea of grassmannian case. Under the action of
the enlarged torus rT , we have

Theorem (Main theorem, X.Y.)

The orbit of rJtw ,Y under the group of Weyl-group-invariant
pseudo-finite-di↵erence operators covers the entire image L

X of the big
J -function of X under the specialization ⇤4 “ ⇤5 “ 1, Qij “ Qi and
y “ 1, where

rJ tw ,Y “p1 ´ qq
ÿ

dij•0

π
Q

dij
ij ¨

±d21´d22
l“1 p1 ´ y P21

P22
qlq ±d22´d21

l“1 p1 ´ y P22
P21

qlq
±2

s“1

±d11´d2s
l“1 p1 ´ P11

P2s⇤s`3
qlq ¨ ±2

r“1

±3
s“1

±d2r
l“1p1 ´ P2r

⇤s
qlq

.
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Idea

Consider the 1-dim rT -orbit AD as an example.

Step 1: rJ tw ,Y |A satisfies the recursion relations of the rT -equivariant
pEu, y´1g{sq-twisted big J -function of Y ;

Step 2: Under the specialization ⇤4 “ ⇤5 “ 1, Qi “ Q and y “ 1, the twisted
recursion along AD of Y descends correctly to the expected recursion along
AD of X .

But are we done?
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Idea

NO!! Both AD and AB contributes to the residue of of rJtw ,Y |A at the
pole q “ p⇤2⇤1 q1{m as ⇤4,⇤5 Ñ 1.

A B

CD
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Non-isolated recursion

Essentially, we are showing that the total non-isolated recursion from the
component BC vanishes as ⇤4 “ ⇤5 “ 1, Qi “ Q and y “ 1.

For partial flag varieties in general, at a isolated fixed point (like A), we
prove the vanishing of recursion from the “degenerate” orbits (like AB)
following this same idea:

complete it into non-isolated recursion from a fixed-point component
(like BC ) by taking balanced broken orbits (like ADC ) into
consideration;

prove that both the total non-isolated recursion and the added terms,
which themselves are “lower non-isolated recursions”, vanish.
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A special case of the main theorem:

Corollary

JX “ p1 ´ qq
ÿ

dij•0

π

i

Q
∞

j dij
i

±n
i“1

±1§r ,s§vi
r‰s

±dis´dir
l“1 p1 ´ Pis

Pir
qlq

±n
i“1

±1§s§vi
1§r§vi`1

±dis´di`1,r

l“1 p1 ´ Pis
Pi`1,r

qlq

represents a value of the big J -function of X .

This is actually the small J-function.
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Remarks

Similar to the grassmannian case, we may consider balanced generating
functions IX of K-theoretic quasi-map invariants of T ˚X .

Denote by JXd the coe�cient of Qd in the small J-function JX . Then,
IX “ ∞

d Q
d IXd takes the form

IXd “ JXd ¨
±n

i“1

±1§s§vi
1§r§vi`1

±dis´di`1,r´1
l“0 p1 ´ ~ Pis

Pi`1,r
qlq

±n
i“1

±1§r ,s§vi
r‰s

±dis´dir´1
l“0 p1 ´ ~Pis

Pir
qlq

In fact, we have

Fact

I {EupTX q represents a point on the image L
Eu,TX of the big J -function

of X twisted by its tangent bundle.
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Surjectivity argument

Recall the theorem has two aspects:

elements in the orbit of rJtw ,Y lie on L
X ;

all points on L
X appear in the orbit of rJtw ,Y . Ñ do this now

Idea:

We use the invariance of LX under pseudo-finite-di↵erence operators
to generate a family on it from rJtw ,Y .

We want to show that the projection of this family to K` covers the
entire K`: this is correct modQ by quantum K-theory of point target
space, and is thus correct with Q by Formal Implicit Function
Theorem (Nakayama’s Lemma).
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Applications: level structures

Recently, the level structures are introduced to quantum K-theory,
inspiring new progress in the field.

Ruan-Zhang The level structure in quantum K-theory and mock theta
functions

Ruan-Wen-Zhou Quantum K-theory of toric varieties, level structures,
and 3d mirror symmetry
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Level structure

Definition

Let E be a vector bundle on X and l be an integer. The level structure

pE , lq is defined as the modification

O
virt Ñ O

virt b det´lpft˚ ev˚ E q

to the virtual structure sheaf.

We consider the quantum K-theory of flag varieties with level structures.
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Level structure

Using similar techinques as before, we can prove the following

Proposition

Write JX “ ∞
d•0Q

dJXd as before, then the q-rational function

JX ,Vi ,l “
ÿ

d•0

Qd ¨
«

viπ

s“1

Pdis
is q

dis pdis´1q
2

�l

¨ JXd

represents a point on the overruled cone L
X ,Vi ,l of X with level structure

pVi , lq.

Moreover, this is the small J-function as |l | is small.
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Level correspondence

A correspondence between level-twisted big J -functions of dual
grassmannians was observed in [1]. This may be generalized to the case of
flag varieties as follows.

Consider the flag varieties

X “ Flagpv1, v2, ¨ ¨ ¨ , vn;Nq

and
X 1 “ FlagpN ´ vn,N ´ vn´1, ¨ ¨ ¨ ,N ´ v1;Nq.

There is a T -equivariant isomorphism which is explicitly given by

0 Ä V1 Ä V2 Ä . . . Ä Vn Ä CN fi›Ñ 0 Ä pVnqK Ä pVn´1qK Ä . . . Ä pV1qK Ä pCNq˚.

Both X and X 1 have n tautological bundles, and we name them Vi and V 1
i

respectively.
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Level correspondence

The following fact is not hard to prove.

Fact

L
X ,Vi ,l “ L

X 1,pV 1
i q_,´l .

Therefore, combining the fact with what we have proved above, we have

Corollary

When |l | is small,
JX ,Vi ,l “ JX

1,pV 1
i q_,´l .
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Thank you!!!
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