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M(X) has a canonical obstruction theory

Fix a locally Noetherian base scheme S

Fix X → S an algebraic stack (with hypotheses)

Notation: C denotes a family of nodal (twisted, tame) curves

M(X)(T ) =

{ C X

T S

} C CM(X) X

M M(X)

π

f

Hall-Rydh: M(X) is an algebraic stack

Can allow C to have marks

In fact can use moduli of sections
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Aside: moduli of sections



M(X) has a canonical obstruction theory

perfect
obstruction theoryw�
[M(X)]vir

in A∗(M(X))
=⇒ integrate on

M(X) ⊂ M(X)
=⇒ Gromov-Witten

invariants

What is an obstruction theory?

ϕ : E• → L•
M(X)/M in Dqc

≤1(M(X)) such that . . .

E• sees deformation theory of M(X) encoded in L•
M(X)/M

Perfect: E• is perfect of amplitude [−1, 1]
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M(X) has a canonical obstruction theory

Definition
An obstruction theory on M(X) is a morphism

ϕ : E• → L•
M(X)/M

in D≤1
qc (M(X)) such that H1(ϕ) and H0(ϕ) are

isomorphisms, and H−1(ϕ) is surjective

Theorem (Behrend-Fantechi) If E is perfect and M ⊂ M(X) is
an open Deligne-Mumford substack, separated, and finite type,
then it defines a virtual fundamental class [M]vir ∈ A∗(M).
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Proof credits:

(Behrend-Fantechi, Abramovich-Graber-Vistoli) X and
M(X) ⊂ M(X) are Deligne-Mumford over k characteristic 0

(Schürg, Toën, Vezzosi) Same result, via derived AG

(Poma) M(X) ⊂ M(X) is algebraic over a Dedekind domain
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Rigorously construct the dualizing sheaf
Clarify why the “obvious” isomorphism
H i(E•) ≃ H i(L•) for i = 0, 1 is induced by ϕ
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An obstruction theory on M(X) is ϕ : E• → L•

M(X)/M
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M(X) has a canonical obstruction theory

Theorem (W.)

For every tame curve π : C → M there is a pair (ω, tr) where
ω is locally free in degree -1 and tr : Rπ∗ω → OM, such that

1 the pair is preserved by arbitrary base change

2 if M is a quasi-separated Noetherian algebraic space,
then ω = π!OM and tr is the counit

Proof contents:

When M is an affine scheme, prove that π!OM is locally free
and π! has basechange

C C M
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M(X) has a canonical obstruction theory

Theorem (W.)

The algebraic stack M(X) has a canonical obstruction theory
given by ϕ : Rπ∗(f

∗L•
X ⊗ ω) → L•

M(X)/M.

To show that H i(ϕ) is an isomorphism for i = 0, 1:

Step 1: reduce to the following local statement:

For T
g−→ M(X) and I defining a square-zero extension

ϕ : Exti(g∗L•
M(X)/M, I)

∼−→ Exti(g∗E•, I) for i = 0,−1
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Step 2: For i = 0,−1, interpret

ϕ : Exti(g∗L•
M(X)/M, I)

∼−→ Exti(g∗E•, I)

as a morphism of deformation categories.

Theorem (Illusie, Olsson) ExalY (T, I) ≃ Ext0/−1(L•
T/Y , I[1])
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Thank you.




