The Moduli of Maps Has a Canonical Obstruction Theory

arxiv.org/abs/2109.03377

Rachel Webb UC Berkeley

Fix a locally Noetherian base scheme ${\cal S}$

Fix a locally Noetherian base scheme ${\cal S}$

Fix $X \to S$ an algebraic stack (with hypotheses)

Fix a locally Noetherian base scheme ${\cal S}$

Fix $X \to S$ an algebraic stack (with hypotheses)

Notation: C denotes a family of nodal (twisted, tame) curves

Fix a locally Noetherian base scheme SFix $X \to S$ an algebraic stack (with hypotheses) Notation: C denotes a family of nodal (twisted, tame) curves

$$\mathfrak{M}(X)(T) = \left\{ \begin{array}{cc} \mathcal{C} \longrightarrow X \\ \downarrow & \downarrow \\ T \longrightarrow S \end{array} \right\}$$

Fix a locally Noetherian base scheme SFix $X \to S$ an algebraic stack (with hypotheses) Notation: C denotes a family of nodal (twisted, tame) curves

$$\mathfrak{M}(X)(T) = \left\{ \begin{array}{cc} \mathcal{C} \longrightarrow X \\ \downarrow & \downarrow \\ T \longrightarrow S \end{array} \right\} \qquad \begin{array}{cc} \mathcal{C} \longleftarrow \mathcal{C}_{\mathfrak{M}(X)} \xrightarrow{f} X \\ \downarrow & \downarrow \\ & \downarrow \\ \mathfrak{M} \longleftarrow \mathfrak{M}(X) \end{array}$$

Fix a locally Noetherian base scheme SFix $X \to S$ an algebraic stack (with hypotheses) Notation: C denotes a family of nodal (twisted, tame) curves

$$\mathfrak{M}(X)(T) = \left\{ \begin{array}{c} \mathcal{C} \longrightarrow X \\ \downarrow & \downarrow \\ T \longrightarrow S \end{array} \right\} \qquad \begin{array}{c} \mathcal{C} \longleftarrow \mathcal{C}_{\mathfrak{M}(X)} \xrightarrow{f} X \\ \downarrow & \downarrow \\ & \downarrow \\ \mathfrak{M} \longleftarrow \mathfrak{M}(X) \end{array}$$

• Hall-Rydh: $\mathfrak{M}(X)$ is an algebraic stack

Fix a locally Noetherian base scheme SFix $X \to S$ an algebraic stack (with hypotheses) Notation: C denotes a family of nodal (twisted, tame) curves

$$\mathfrak{M}(X)(T) = \left\{ \begin{array}{c} \mathcal{C} \longrightarrow X \\ \downarrow & \downarrow \\ T \longrightarrow S \end{array} \right\} \qquad \begin{array}{c} \mathcal{C} \longleftarrow \mathcal{C}_{\mathfrak{M}(X)} \xrightarrow{f} X \\ \downarrow & \downarrow \\ & \downarrow \\ \mathfrak{M} \longleftarrow \mathfrak{M}(X) \end{array}$$

 \blacksquare Hall-Rydh: $\mathfrak{M}(X)$ is an algebraic stack

• Can allow \mathcal{C} to have marks

Fix a locally Noetherian base scheme SFix $X \to S$ an algebraic stack (with hypotheses) Notation: C denotes a family of nodal (twisted, tame) curves

$$\mathfrak{M}(X)(T) = \left\{ \begin{array}{c} \mathcal{C} \longrightarrow X \\ \downarrow & \downarrow \\ T \longrightarrow S \end{array} \right\} \qquad \begin{array}{c} \mathcal{C} \longleftarrow \mathcal{C}_{\mathfrak{M}(X)} \xrightarrow{f} X \\ \downarrow & \downarrow \\ & \downarrow \\ \mathfrak{M} \longleftarrow \mathfrak{M}(X) \end{array}$$

- \blacksquare Hall-Rydh: $\mathfrak{M}(X)$ is an algebraic stack
- Can allow \mathcal{C} to have marks
- In fact can use moduli of sections

Thm (Hall-Rydh) Sec (=12) is algerraic

Gromov-Witten invariants

$$\begin{vmatrix} \mathsf{integrate on} \\ \mathcal{M}(X) \subset \mathfrak{M}(X) \end{vmatrix} \Longrightarrow \begin{vmatrix} \mathsf{Gromov-Witten} \\ \mathsf{invariants} \end{vmatrix}$$

What is an obstruction theory?

What is an obstruction theory?

• $\phi: E^{\bullet} \to L^{\bullet}_{\mathfrak{M}(X)/\mathfrak{M}}$ in $\mathbb{D}_{qc}^{\leq 1}(\mathfrak{M}(X))$ such that . . .

What is an obstruction theory?

- $\phi: E^{\bullet} \to L^{\bullet}_{\mathfrak{M}(X)/\mathfrak{M}}$ in $D_{qc}^{\leq 1}(\mathfrak{M}(X))$ such that . . .
- E^{\bullet} sees deformation theory of $\mathfrak{M}(X)$ encoded in $L^{\bullet}_{\mathfrak{M}(X)/\mathfrak{M}}$

•
$$\phi$$
 is perfect if E is perfect in [-1,0]
 $\mathcal{M}(x)$

What is an obstruction theory?

- $\phi: E^{\bullet} \to L^{\bullet}_{\mathfrak{M}(X)/\mathfrak{M}}$ in $D_{qc}^{\leq 1}(\mathfrak{M}(X))$ such that . . .
- E^{\bullet} sees deformation theory of $\mathfrak{M}(X)$ encoded in $L^{\bullet}_{\mathfrak{M}(X)/\mathfrak{M}}$
- Perfect: E^{\bullet} is perfect of amplitude [-1, 1]

Definition An obstruction theory on $\mathfrak{M}(X)$ is a morphism $\phi: E^{\bullet} \to L^{\bullet}_{\mathfrak{M}(X)/\mathfrak{M}}$ in $\mathrm{D}_{\mathrm{qc}}^{\leq 1}(\mathfrak{M}(X))$ such that $H^{1}(\phi)$ and $H^{0}(\phi)$ are isomorphisms, and $H^{-1}(\phi)$ is surjective

Theorem (Behrend-Fantechi) If E is *perfect* and $\mathcal{M} \subset \mathfrak{M}(X)$ is an open Deligne-Mumford substack, separated, and finite type, then it defines a virtual fundamental class $[\mathcal{M}]^{\operatorname{vir}} \in A_*(\mathcal{M})$.

Theorem

The algebraic stack $\mathfrak{M}(X)$ has a canonical obstruction theory (relative to \mathfrak{M}). It is functorial in every way you might hope.

Theorem

The algebraic stack $\mathfrak{M}(X)$ has a canonical obstruction theory (relative to \mathfrak{M}). It is functorial in every way you might hope.

Theorem

The algebraic stack $\mathfrak{M}(X)$ has a canonical obstruction theory (relative to \mathfrak{M}). It is functorial in every way you might hope.

Proof credits:

• (Behrend-Fantechi, Abramovich-Graber-Vistoli) X and $\mathcal{M}(X) \subset \mathfrak{M}(X)$ are Deligne-Mumford over k characteristic 0

Theorem

The algebraic stack $\mathfrak{M}(X)$ has a canonical obstruction theory (relative to \mathfrak{M}). It is functorial in every way you might hope.

- (Behrend-Fantechi, Abramovich-Graber-Vistoli) X and $\mathcal{M}(X) \subset \mathfrak{M}(X)$ are Deligne-Mumford over k characteristic 0
- (Schürg, Toën, Vezzosi) Same result, via derived AG

Theorem

The algebraic stack $\mathfrak{M}(X)$ has a canonical obstruction theory (relative to \mathfrak{M}). It is functorial in every way you might hope.

- (Behrend-Fantechi, Abramovich-Graber-Vistoli) X and $\mathcal{M}(X) \subset \mathfrak{M}(X)$ are Deligne-Mumford over k characteristic 0
- (Schürg, Toën, Vezzosi) Same result, via derived AG
- (Poma) $\mathcal{M}(X) \subset \mathfrak{M}(X)$ is algebraic over a Dedekind domain

Theorem

The algebraic stack $\mathfrak{M}(X)$ has a canonical obstruction theory (relative to \mathfrak{M}). It is functorial in every way you might hope.

- (Behrend-Fantechi, Abramovich-Graber-Vistoli) X and $\mathcal{M}(X) \subset \mathfrak{M}(X)$ are Deligne-Mumford over k characteristic 0
- (Schürg, Toën, Vezzosi) Same result, via derived AG
- (Poma) $\mathcal{M}(X) \subset \mathfrak{M}(X)$ is algebraic over a Dedekind domain
- (Webb) X and $\mathfrak{M}(X)$ are algebraic over locally Noetherian S

Theorem

The algebraic stack $\mathfrak{M}(X)$ has a canonical obstruction theory (relative to \mathfrak{M}). It is functorial in every way you might hope.

- (Behrend-Fantechi, Abramovich-Graber-Vistoli) X and $\mathcal{M}(X) \subset \mathfrak{M}(X)$ are Deligne-Mumford over k characteristic 0
- (Schürg, Toën, Vezzosi) Same result, via derived AG
- (Poma) $\mathcal{M}(X) \subset \mathfrak{M}(X)$ is algebraic over a Dedekind domain
- \blacksquare (Webb) X and $\mathfrak{M}(X)$ are algebraic over locally Noetherian S
 - Rigorously construct the dualizing sheaf
 - Clarify why the "obvious" isomorphism $H^i(E^{\bullet}) \simeq H^i(L^{\bullet})$ for i = 0, 1 is induced by ϕ

Definition

An obstruction theory on $\mathfrak{M}(X)$ is $\phi: E^{\bullet} \to L^{\bullet}_{\mathfrak{M}(X)/\mathfrak{M}}$ inducing an isomorphism on cohomology in degrees 0, 1 and a surjection in degree -1.

Definition

An obstruction theory on $\mathfrak{M}(X)$ is $\phi: E^{\bullet} \to L^{\bullet}_{\mathfrak{M}(X)/\mathfrak{M}}$ inducing an isomorphism on cohomology in degrees 0, 1 and a surjection in degree -1.

Theorem (W.)

For every tame curve $\pi : \mathcal{C} \to \mathcal{M}$ there is a pair (ω, tr) where ω is locally free in degree -1 and $tr : R\pi_*\omega \to \mathcal{O}_{\mathcal{M}}$, such that 1 the pair is preserved by arbitrary base change \checkmark

2 if \mathcal{M} is a quasi-separated Noetherian algebraic space, then $\omega = \pi^{!} \mathcal{O}_{\mathcal{M}}$ and tr is the counit \checkmark

Theorem (W.)

For every tame curve $\pi : \mathcal{C} \to \mathcal{M}$ there is a pair (ω, tr) where ω is locally free in degree -1 and $tr : R\pi_*\omega \to \mathcal{O}_{\mathcal{M}}$, such that 1 the pair is preserved by arbitrary base change

2 if \mathcal{M} is a quasi-separated Noetherian algebraic space, then $\omega = \pi^{!} \mathcal{O}_{\mathcal{M}}$ and tr is the counit

Proof contents:

Theorem (W.)

For every tame curve $\pi : \mathcal{C} \to \mathcal{M}$ there is a pair (ω, tr) where ω is locally free in degree -1 and $tr : R\pi_*\omega \to \mathcal{O}_{\mathcal{M}}$, such that 1 the pair is preserved by arbitrary base change

2 if \mathcal{M} is a quasi-separated Noetherian algebraic space, then $\omega = \pi^! \mathcal{O}_{\mathcal{M}}$ and tr is the counit

Proof contents:

• When \mathcal{M} is an affine scheme, prove that $\pi^{!}\mathcal{O}_{\mathcal{M}}$ is locally free and $\pi^{!}$ has basechange

Theorem (W.)

For every tame curve $\pi : \mathcal{C} \to \mathcal{M}$ there is a pair (ω, tr) where ω is locally free in degree -1 and $tr : R\pi_*\omega \to \mathcal{O}_{\mathcal{M}}$, such that 1 the pair is preserved by arbitrary base change

2 if \mathcal{M} is a quasi-separated Noetherian algebraic space, then $\omega = \pi^{!} \mathcal{O}_{\mathcal{M}}$ and tr is the counit

Proof contents:

• When \mathcal{M} is an affine scheme, prove that $\pi^{!}\mathcal{O}_{\mathcal{M}}$ is locally free and $\pi^{!}$ has basechange $\vee \xrightarrow{\bullet} [\vee/\mu_{n}] \xrightarrow{\bullet} \vee$ $\vee \xrightarrow{\bullet} C \xrightarrow{\pi} \mathcal{M} = p^{*}(\overline{\pi}^{!}\mathcal{O}_{\mathcal{N}}) \otimes p^{!}\mathcal{O}_{C}$

Theorem (W.)

For every tame curve $\pi : \mathcal{C} \to \mathcal{M}$ there is a pair (ω, tr) where ω is locally free in degree -1 and $tr : R\pi_*\omega \to \mathcal{O}_{\mathcal{M}}$, such that 1 the pair is preserved by arbitrary base change

2 if \mathcal{M} is a quasi-separated Noetherian algebraic space, then $\omega = \pi^{!} \mathcal{O}_{\mathcal{M}}$ and tr is the counit

Proof contents:

• When \mathcal{M} is an affine scheme, prove that $\pi^{!}\mathcal{O}_{\mathcal{M}}$ is locally free and $\pi^{!}$ has basechange

$$V \longrightarrow \begin{bmatrix} V/\mu_n \end{bmatrix} \longrightarrow U$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathcal{C} \longrightarrow C \longrightarrow \mathcal{M}$$

Theorem (W.)

For every tame curve $\pi : \mathcal{C} \to \mathcal{M}$ there is a pair (ω, tr) where ω is locally free in degree -1 and $tr : R\pi_*\omega \to \mathcal{O}_{\mathcal{M}}$, such that 1 the pair is preserved by arbitrary base change

2 if \mathcal{M} is a quasi-separated Noetherian algebraic space, then $\omega = \pi^{!} \mathcal{O}_{\mathcal{M}}$ and tr is the counit

Proof contents:

• When \mathcal{M} is an affine scheme, prove that $\pi^{!}\mathcal{O}_{\mathcal{M}}$ is locally free and $\pi^{!}$ has basechange

$$V \longrightarrow \begin{bmatrix} V/\mu_n \end{bmatrix} \longrightarrow U$$
$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$
$$\mathcal{C} \longrightarrow C \longrightarrow \mathcal{M}$$

 \blacksquare Glue these smooth-local objects on the algebraic stacks \mathcal{C}, \mathcal{M}

Theorem (W.) The algebraic stack $\mathfrak{M}(X)$ has a canonical obstruction theory given by $\phi: R\pi_*(f^*L^{\bullet}_X \otimes \omega) \to L^{\bullet}_{\mathfrak{M}(X)/\mathfrak{M}}$.

To show that $H^i(\phi)$ is an isomorphism for i = 0, 1:

Theorem (W.) The algebraic stack $\mathfrak{M}(X)$ has a canonical obstruction theory given by $\phi: R\pi_*(f^*L^{\bullet}_X \otimes \omega) \to L^{\bullet}_{\mathfrak{M}(X)/\mathfrak{M}}$.

To show that $H^i(\phi)$ is an isomorphism for i = 0, 1:

- Step 1: reduce to the following local statement:
- For $T \xrightarrow{g} \mathfrak{M}(X)$ and I defining a square-zero extension

Theorem (W.) The algebraic stack $\mathfrak{M}(X)$ has a canonical obstruction theory given by $\phi: R\pi_*(f^*L^{\bullet}_X \otimes \omega) \to L^{\bullet}_{\mathfrak{M}(X)/\mathfrak{M}}$.

To show that $H^i(\phi)$ is an isomorphism for i=0,1:

- Step 1: reduce to the following local statement:
- For $T \xrightarrow{g} \mathfrak{M}(X)$ and I defining a square-zero extension
- $\phi : \operatorname{Ext}^{i}(g^{*}L^{\bullet}_{\mathfrak{M}(X)/\mathfrak{M}}, I) \xrightarrow{\sim} \operatorname{Ext}^{i}(g^{*}E^{\bullet}, I) \text{ for } i = 0, -1$

Step 2: For i = 0, -1, interpret

$$\phi : \operatorname{Ext}^{i}(g^{*}L^{\bullet}_{\mathfrak{M}(X)/\mathfrak{M}}, I) \xrightarrow{\sim} \operatorname{Ext}^{i}(g^{*}E^{\bullet}, I)$$

as a morphism of deformation categories.

Step 2: For
$$i = 0, -1,$$
 interpret
 $(: Ext^{i}(g^{*}L_{\mathfrak{M}(X)/\mathfrak{M}}^{\circ}, I)) \xrightarrow{\sim} Ext^{i}(g^{*}E^{\circ}, I)$
as a morphism of deformation categories.
For $T \longrightarrow Y$ representable
Theorem (Illusie, Olsson) $Exal_{Y}(T, I) \simeq Ext^{0/-1}(L_{T/Y}^{\circ}, I[1])$
 $f' \xrightarrow{T} \xrightarrow{\sim} Y$
 $g^{i}L_{\mathfrak{M}(Y)} \xrightarrow{T} L_{T/\mathfrak{M}} \xrightarrow{L_{T/\mathfrak{M}(Y)}} \xrightarrow{T} L_{T/\mathfrak{M}(Y)} \xrightarrow{L} L_{T/\mathfrak$

Thank you.