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M(X)

Fix a locally Noetherian base scheme S
Fix X — S an algebraic stack (with hypotheses)
Notation: C denotes a family of nodal (twisted, tame) curves

C %CW(X) LX

C — X
sm<X><T>{ [ } l I
T — S
M +—— M(X)

m Hall-Rydh: 9t(X) is an algebraic stack
m Can allow C to have marks

m In fact can use moduli of sections
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in A,(M(X)) M(X) CM(X) invariants

What is an obstruction theory?

B¢ E® = Ly ) o in Dge™" (M(X)) such that . . .

m F° sees deformation theory of 9t(X) encoded in Linixy/m
m Perfect: E° is perfect of amplitude [—1, 1]
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obstruction theory

Definition
An obstruction theory on 91(X) is a morphism

in D! (M(X)) such that H'(¢) and HY(¢) are
isomorphisms, and H~1(¢) is surjective

Theorem (Behrend-Fantechi) If £ is perfect and M C IM(X) is
an open Deligne-Mumford substack, separated, and finite type,

then it defines a virtual fundamental class [M|"" € A,(M).
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has

Theorem
The algebraic stack (X) has a canonical obstruction theory
(relative to 901). It is functorial in every way you might hope.

Proof credits:

m (Behrend-Fantechi, Abramovich-Graber-Vistoli) X and
M(X) CM(X) are Deligne-Mumford over k characteristic 0

m (Schirg, Toén, Vezzosi) Same result, via derived AG
m (Poma) M(X) C M(X) is algebraic over a Dedekind domain

m (Webb) X and (X)) are algebraic over locally Noetherian S

m Rigorously construct the dualizing sheaf

m Clarify why the “obvious” isomorphism
H'(E®) ~ H(L®) for i = 0,1 is induced by ¢
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inducing an isomorphism on cohomology in degrees 0, 1 and a

surjection in degree -1.




canonical obstruction theory

Definition
An obstruction theory on 9i(

surjection in degree -1.

X) isgb:E‘—>L5ﬁ(
inducing an isomorphism on cohomology in degrees 0, 1 and a

X) /M

L)X

}

L X

Con(x)

lﬂ
—— M(X) .o

F\v — >
¥ " /x-——) “—C%u/c%f‘)“_ w L’MW/’M,W

2

( ——

C +—
M +—

Need +o dbet Tarokand (1, 4

E———

What we wish we comtd do

()

T — 7t L’Mu)/'m \

) !
. [211* has & n‘ﬂ\ﬂ- &A‘SOM*- w eﬂ'&m

v go qa* has - ll4/-| 0\_()‘,‘0.“\* @'ﬂ
noeNC
Rﬂ*w T ‘ﬁ"? L'm(.x)/'m, au.al&";"* o x

Qn(-@ﬂ)

X

)

works wwan MX) w got tvo ,\039 "

‘L‘&K P lL,fD l)\ {lw :&Wi Lmuym® U\
w = "‘W"\/m

A LW)I"V\ () Rﬂx

oo : cant ghmo SV 45 Bmnchirial
b/c ! st lenown to be fmwul

rTr.
by ackiteny Sk

. Ln,w

|



canonical obstruction theory

Theorem (W.)

For every tame curve 7 : C — M there is a pair (w, tr) where
w is locally free in degree -1 and tr : Rm.w — O, such that
the pair is preserved by arbitrary base change

if M is a quasi-separated Noetherian algebraic space,
then w = 7O and tr is the counit ~




canonical obstruction theory

Theorem (W.)

For every tame curve 7 : C — M there is a pair (w, tr) where
w is locally free in degree -1 and tr : Rm.w — O, such that
the pair is preserved by arbitrary base change

if M is a quasi-separated Noetherian algebraic space,
then w = 7O and tr is the counit

Proof contents:




canonical obstruction theory

Theorem (W.)

For every tame curve 7 : C — M there is a pair (w, tr) where
w is locally free in degree -1 and tr : Rm.w — O, such that
the pair is preserved by arbitrary base change

if M is a quasi-separated Noetherian algebraic space,
then w = 7O and tr is the counit

Proof contents:

m When M is an affine scheme, prove that 7' O, is locally free
and 7' has basechange




canonical obstruction theory

Theorem (W.)

For every tame curve 7 : C — M there is a pair (w, tr) where
w is locally free in degree -1 and tr : Rm.w — O, such that
the pair is preserved by arbitrary base change

if M is a quasi-separated Noetherian algebraic space,
then w = 7O and tr is the counit

Proof contents:
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Theorem (W.)

For every tame curve 7 : C — M there is a pair (w,tr) where
w is locally free in degree -1 and tr : Rm.w — O, such that
the pair is preserved by arbitrary base change

if M is a quasi-separated Noetherian algebraic space,
then w = 7O and tr is the counit

Proof contents:

m When M is an affine scheme, prove that 7' O, is locally free
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m Glue these smooth-local objects on the algebraic stacks C, M
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Theorem (W.)

The algebraic stack 2(X) has a canonical obstruction theory
given by ¢ : Rm.(f*L% ® w) — L‘SJI(X)/Z)JI'

adno I B

To show that H*(¢) is an isomorphism for i = 0, 1:
m Step 1: reduce to the following local statement:
m For T2 91(X) and I defining a square-zero extension

m & Ext' (9" Lig xy jomr 1) = Ext’(g*E*, I) for i = 0, -1



Step 2: For v = 0, —1, interpret
¢ - Ext*(g" Lin x> 1) = Ext'(g*E*, )

as a morphism of deformation categories.
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Thank you.





