Background: enumerative geometry	Coulomb branch and quasimaps	Virtual Coulomb branch	Verma module, vertex function, q-di

Virtual Coulomb branch and quantum K-theory

Zijun Zhou

Kavli IPMU

Columbia University, Nov. 30, 2021

Background: enumerative geometry	Coulomb branch and quasimaps	Virtual Coulomb branch	Verma module, vertex function, q-di

4 Verma module, vertex function, *q*-difference module

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Background: enumerative geometry	Coulomb branch and quasimaps	Virtual Coulomb branch	Verma module, vertex function, q-di
•00000000			

1 Background: enumerative geometry

2 Coulomb branch and quasimaps

3 Virtual Coulomb branch

Verma module, vertex function, q-difference module

$3d \mathcal{N} = 4$ theory

G: complex reductive group; N: G-representation

In physics, the pair (G, T^*N) defines a 3d $\mathcal{N} = 4$ supersymmetric gauge theory.

- The theory admits two interesting components of moduli space of vacua: *Higgs branch* and *Coulomb branch*.
- The theory is parameterized by two families of parameters: *FI parameters* and *mass parameters*.

$3d \mathcal{N} = 4$ Higgs branch

The Higgs branch is the holomorphic symplectic quotient:

$$X := \mu^{-1}(0) / /_{\theta} G,$$

where $\mu : T^*N \to \mathfrak{g}^*$ is the moment map, and $\theta \in char(G)$ is a stability condition.

When θ is generic, i.e. $\mu^{-1}(0)^{ss} = \mu^{-1}(0)^{s}$, X is smooth.

Usually, there is a flavor symmetry T acting on N, commuting with G. Equivariant parameters in $K_T(pt)$ are the mass parameters.

 Background:
 enumerative geometry
 Coulomb branch and quasimaps
 Virtual Coulomb branch
 Verma module, vertex function, q-di

 000000000
 00000000
 0000000
 00000000
 000000000

$3d \mathcal{N} = 2 \text{ Higgs branch}$

The pair (G, N) (instead of T^*N) gives a 3d $\mathcal{N} = 2$ theory. Its Higgs branch is the GIT quotient

 $Y:=N//_{\theta}G.$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Background: enumerative geometry	Coulomb branch and quasimaps	Virtual Coulomb branch	Verma module, vertex function, q-di
000000000			

Example ($G = \mathbb{C}^*$, $N = \mathbb{C}^{n+1}$)

G acts on N by weights $(1, \dots, 1)$, and on T^*N by $(1, \dots, 1, -1, \dots, -1)$.

• Higgs branch: $T^*\mathbb{P}^n$

 $\mu: T^* \mathbb{C}^{n+1} \to \mathbb{C} \text{ is } \mu(\vec{x}, \vec{y}) = \vec{x} \cdot \vec{y}.$ Choice $\theta > 0$ implies $\vec{x} \neq 0.$

flavor symmetry T = (ℂ*)ⁿ⁺¹, K_T(pt) = ℂ[a₁^{±1}, · · · , a_{n+1}^{±1}].
 Another torus ℂ_h^{*} scales the cotangent fiber.

• 3d
$$\mathcal{N}=$$
 2 Higgs branch: \mathbb{P}'

Enumerative geometry: quasimaps and vertex function

Definition (Ciocan-Fontanine–Kim–Maulik)

• A quasimap from \mathbb{P}^1 to the Higgs branch $X = \mu^{-1}(0) / _{\theta} G$ is a map to the stacky quotient

$$f: \mathbb{P}^1 o \mathfrak{X} = [\mu^{-1}(0)/G]$$

which maps generically into the stable locus X.

- Alternatively, it consists of a principal G-bundle \mathcal{P} over \mathbb{P}^1 . together with a section s of the bundle $\mathcal{P} \times_G T^*N$, which satisfies the moment map equation $\mu(s) = 0$, and takes values generically in the stable locus $\mu^{-1}(0)^s$.
- Quasimaps to 3d $\mathcal{N} = 2$ Higgs branch $Y = N//_{\theta}G$ are similar.

 $\operatorname{QM}_d^{\circ}(X)$: open substack where $\infty \in \mathbb{P}^1$ is not a base point. $\operatorname{ev}_{\infty} : \operatorname{QM}_d^{\circ}(X) \to X, f \mapsto f(\infty).$ $\operatorname{ev}_0 : \operatorname{QM}_d^{\circ}(X) \to \mathfrak{X} = [\mu^{-1}(0)/G].$ Let \mathbb{C}_q^* scales $\mathbb{P}^1, q := T_0 \mathbb{P}^1 \in \mathcal{K}_{\mathbb{C}_q^*}(\operatorname{pt}).$

Definition (Ciocan-Fontanine–Kim, A. Okounkov)

Descendent vertex function

$$V^{(au(s))}(Q) := \sum_{eta} Q^{eta} \operatorname{ev}_{\infty st} (\widehat{\mathcal{O}}_{\mathrm{vir}} \cdot \operatorname{ev}_0^st au(s)) \in \mathcal{K}_{\mathcal{T} imes \mathbb{C}^st_q}(X)_{\mathit{loc}}[[Q]],$$

(K-theoretic big I-function, for 3d $\mathcal{N} = 2$ Higgs branch Y)

 $\tau(s) \in K_{T \times \mathbb{C}^*_{\hbar}}(\mathfrak{X}) = K_{G \times T \times \mathbb{C}^*_{\hbar}}(\mathsf{pt}); Q$: Kähler parameters; loc: pass to fraction field of $K_{T \times \mathbb{C}^*_{\hbar} \times \mathbb{C}^*_{a}}(\mathsf{pt})$.

Quantum *q*-difference module

Descendent vertex functions

$$\widetilde{V}^{(au(s))}(Q):=e^{rac{\langle \ln S,\ln Q
angle}{\ln q}}\cdot V^{(au(s))}(Q), \quad au(s)\in \mathcal{K}_{\mathcal{T} imes\mathbb{C}^*_{\hbar}}(\mathfrak{X})$$

form a quantum q-difference module of rank rk K(X).

Lemma

$$q^{\chi Q \partial_Q} \widetilde{V}^{(\tau(s))}(Q) = \widetilde{V}^{(s^{\chi} \cdot \tau(s))}(Q).$$

$$q^{\chi Q \partial_Q} Q^d = q^{\langle \chi, d
angle} Q^d$$
, $\chi \in \operatorname{char}(G)$, $d \in \operatorname{cochar}(G)$,

 S^{χ} : tautological line bundle associated with s^{χ} (image under Kirwan surjection $K_{T \times \mathbb{C}^*_{\hbar}}(\mathfrak{X}) \to K_{T \times \mathbb{C}^*_{\hbar}}(X)$).

Bethe algebra / quantum K-ring

• $q \rightarrow 1$ limit of quantum q-difference module gives the Bethe algebra / quantum K-ring.

(analogous to Givental's quantum K-theory)

• This is a deformation of the usual K-ring $K_{T \times \mathbb{C}^*_{\hbar}}(X)$ over $\mathbb{C}[[Q^{\text{Eff}(X)}]].$

• It can be defined in terms of certain 3-point functions counting relative quasimaps.

Background: enumerative geometry	Coulomb branch and quasimaps	Virtual Coulomb branch	Verma module, vertex function, q-di
00000000			

Physics

- Vertex functions: partition functions on S¹ ×_q D; holomorphic blocks; vortex partition function
- Desendents: line operators
- Bethe algebra/quantum K-ring: Wilson loop algebra; chiral algebra

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Operators *r_d* in quantized Coulomb branch: monopole operators

2 Coulomb branch and quasimaps

4 Verma module, vertex function, q-difference module

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Background: enumerative geometry	Coulomb branch and quasimaps	Virtual Coulomb branch	Verma module, vertex function, q-d
	000000000000000000000000000000000000000		

BFN construction

$$\mathcal{K} = \mathbb{C}((z)), \ \mathcal{O} = \mathbb{C}[[z]], \ D = \operatorname{Spec} \mathcal{O}, \ D^* = \operatorname{Spec} \mathcal{K}.$$

Affine Grassmannian

$$\begin{aligned} Gr_G &= \{ (P, \varphi) \mid P : G \text{-bundle over } D, \ \varphi : P|_{D^*} \cong D^* \times G \} / \sim \\ &= G_{\mathcal{K}} / G_{\mathcal{O}} \end{aligned}$$

- Gr_G admits a G_O -action from the left.
- There is a convolution product $m: Gr_G \times Gr_G \to Gr_G$, defined by composing the trivializations.

BFN construction

Moduli of triples

 $\mathcal{T} := \{ (P, \varphi, s) \mid (P, \varphi) \in Gr_G, \ s \in H^0(D, \mathbb{N}_{\mathcal{O}}) \}$

 $\mathcal{R} := \{ (P, \varphi, s) \in \mathcal{T} \mid \varphi(s|_{D^*}) \text{ extend over } D \},$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

where $N_{\mathcal{O}} := P \times_{G} N$ is the associated bundle.

• \mathcal{T} is a (∞ -rank) vector bundle over Gr_G , and hence smooth over Gr_G .

 \mathcal{R} is not smooth over Gr_G , unless G abelian.

Convolution diagram

Intuitively, \mathcal{R} "acts" on \mathcal{T} from the right.

A convolution product can be defined via

 $m_* \circ (q^*)^{-1} \circ p^!$

Theorem (Braverman–Finkelberg–Nakajima)

The equivariant K-theory $K_0^{G_{\mathcal{O}} \rtimes \mathbb{C}_q^*}(\mathcal{R})$ admits a convolution product *, which is associative, and $K_{G \times \mathbb{C}_q^*}(\text{pt})$ -linear in the first variable. It is commutative when $q \to 1$.

Definition (BFN)

- The algebra $\mathcal{A}(G, N) = K_0^{G_O \rtimes \mathbb{C}_q^*}(\mathcal{R})$ is defined as the quantized *K*-theoretic Coulomb branch.
- Spec K₀^G(R) is defined as the classical K-theoretic Coulomb branch.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The commutative subalgebra $K_{G \times \mathbb{C}_q^*}(pt)$ is called the Cartan subalgebra.

Background: enumerative geometry	Coulomb branch and quasimaps	Virtual Coulomb branch	Verma module, vertex function, q-di
	000000000000000		

Abelian case

When $G = (\mathbb{C}^*)^k$ is abelian, there is an explicit presentation.

- $Gr_G = \mathbb{Z}^k = \{[z^d], d \in \operatorname{cochar}(G)\},\ K_{G \times \mathbb{C}_q^*}(\operatorname{pt}) = \mathbb{C}[q^{\pm 1}, s^{\chi}, \chi \in \operatorname{char}(G)].$
- Let r_d be the structure sheaf of \mathcal{R} over $[z^d]$.
- $\mathcal{A}(G, N)$ is generated by r_d and s^{χ} over $\mathbb{C}[q^{\pm 1}]$.

•
$$r_d s^{\chi} = q^{-\langle \chi, d \rangle} s^{\chi} r_d$$
.

- There is a grading $\mathcal{A} = \bigoplus_{d \in \operatorname{cochar}(G)} \mathcal{A}^d$, where $\mathcal{A}^0 = \mathcal{K}_{G \times \mathbb{C}_q^*}(\operatorname{pt}), \ \mathcal{A}^d = \mathcal{K}_{G \times \mathbb{C}_q^*}(\operatorname{pt}) \cdot r_d$.
- One can add flavor symmetry $T = (\mathbb{C}^*)^n$, if dim N = n.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Background: enumerative geometry Coulomb branch and quasimaps Virtual Coulomb branch Verma module, vertex function, q-di

BFN construction of Coulomb branch

Example ($G = \mathbb{C}^*$, $N = \mathbb{C}^{n+1}$)

- $Gr_G = \mathbb{C}((z))/\mathbb{C}[[z]]^* = \{[z^d] \mid d \in \mathbb{Z}\}.$
- Convolution product $[z^{d_1}] * [z^{d_2}] = [z^{d_1+d_2}].$

•
$$\mathcal{T} = \bigsqcup_d [z^d] \times \mathcal{N}[[z]] / \mathbb{C}[[z]]^*.$$

- $\mathcal{R} = ||_{\mathcal{A}}[z^d] \times (N[[z]] \cap z^d N[[z]] / \mathbb{C}[[z]]^*.$
- Convolution product.

Fibers for d > 0, $\mathcal{R}_d = [z^d] \times z^d N[[z]]$, $\mathcal{R}_{-d} = [z^{-d}] \times N[[z]]$. Apply convolution and intersection, $\rightsquigarrow [z^0] \times z^d N[[z]]$. Compare with $\mathcal{R}_0 = [z^0] \times \mathcal{N}[[z]]$.

Background: enumerative geometry Coulomb branch and quasimaps Virtual Coulomb branch Verma module, vertex function, q-di

Example ($G = \mathbb{C}^*$, $N = \mathbb{C}^{n+1}$)

• Quantized Coulomb branch: generated by $s^{\pm 1}$, r_1 , r_{-1} , such that $r_{+d} = r_{+1}^d$ for d > 0, $r_d s = q^{-d} s r_d$, and

$$r_{-d}\cdot r_d = \prod_{i=1}^{n+1} (1-qa_is)\cdots(1-q^da_is), \qquad d\geq 0$$

 $\mathcal{K}_{G \times \mathbb{C}^*_{\sigma}}(\mathsf{pt}) = \mathbb{C}[s^{\pm 1}, q^{\pm 1}].$

- $r_{-d} \cdot r_d$ is essentially computing the K-theoretic Euler class of \mathcal{R} over $[z^d]$.
- Classical Coulomb branch:

Spec
$$\mathbb{C}[a_i^{\pm 1}, s^{\pm 1}, r_1, r_{-1}]/\langle r_{-1} \cdot r_1 - \prod_{i=1}^{n+1} (1 - a_i s) \rangle$$
.

Deformation of A_n -singularity $\mathbb{C}^2/\mathbb{Z}_{n+1}$ (singular when some a_i 's are equal).

Background: enumerative geometry	Coulomb branch and quasimaps	Virtual Coulomb branch	Verma module, vertex function, q-di
	000000000000000		

Motivation

- A. Braverman's work.
 - There is a g-action on the intersection cohomology of moduli spaces of (Drinfeld's) quasimaps into G/B.
 - The resulting representation is a Verma module of g.
 - J-function of G/B can be expressed as Whittaker function.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Whittaker function \rightsquigarrow quantum Toda system.
- There's also a *K*-theoretic version.

Background: enumerative geometry	Coulomb branch and quasimaps	Virtual Coulomb branch	Verma module, vertex function, q-d
	0000000000000000		

Motivation from physics

Bullimore–Dimofte–Gaiotto–Hilburn–Kim ('16), "Vortices and Vermas":

• monopole operators (quantized (homological) Coulomb branch) acts on the homology of the vortex moduli space (quasimaps), with target space $N//_{\theta}G$;

 $(3d \mathcal{N} = 2 \text{ Higgs branch})$

- the resulting representation is a Verma module of the quantized Coulomb branch;
- generating function of quasimap counting into $N//_{\theta}G$ can be expressed as generalized characters of the Verma module;
- quantum differential equation can be obtained.

Quasimaps to 3d $\mathcal{N}=2$ Higgs branch

Example ($G = \mathbb{C}^*$, $N = \mathbb{C}^{n+1}$, $\operatorname{3d} \mathcal{N} = 2$)

- 3d $\mathcal{N} = 2$ Higgs branch: $N//_{\theta > 0} G = \mathbb{P}^n$.
- A quasimap f from \mathbb{P}^1 to \mathbb{P}^n is (L, s), where L is a line bundle on \mathbb{P}^1 , and s is a section of $L^{\oplus (n+1)}$, such that $s \neq 0$ generically on \mathbb{P}^1 .
- Moduli space of quasimaps of degree d is $\mathsf{QM}(\mathbb{P}^n, d) = \mathbb{P}H^0(\mathbb{P}^1, \mathcal{O}(d)^{\oplus (n+1)}).$
- At a point f, its tangent space is the deformation space of quasimaps

$$H^0(\mathbb{P}^1, \mathcal{O}(d)^{\oplus (n+1)}) - H^0(\mathbb{P}^1, \mathcal{O}).$$

No obstruction, since $H^1(\mathcal{O}(d)) = 0$ always as $d \ge 0$.

Action on quasimaps

Example ($G = \mathbb{C}^*$, $N = \mathbb{C}^{n+1}$)

• Apply
$$\mathbb{C}_q^*$$
-action. $\mathcal{T}^{\mathbb{C}_q^*} = \bigsqcup_d [z^d] \times N$

- If we restrict to stable locus N^s and $d \ge 0$, these are the \mathbb{C}_q^* -equivariant quasimaps.
- r_d acts by "changing the quasimap locally at 0 by degree d".
- $\bigoplus_{d\geq 0} \mathcal{K}(\mathsf{QM}_d(\mathbb{P}^n))$ is a "Verma module" of

$$\mathcal{A} = \bigoplus_{d \in \mathbb{Z}} \mathcal{A}^d = \bigoplus_{d \in \mathbb{Z}} \mathcal{K}_{G \times \mathbb{C}_q^* \times \mathcal{T}}(\mathsf{pt}) \cdot r_d.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Action on quasimaps

Example ($G = \mathbb{C}^*$, $N = \mathbb{C}^{n+1}$, 3d $\mathcal{N} = 2$)

 $\bullet\,$ The 3d $\mathcal{N}=2$ /-function is

$$\sum_{d>0} \frac{1}{\prod_{i=1}^{n+1} (1-qa_iS) \cdots (1-q^da_iS)} \cdot Q^d$$

S: tautological line bundle on \mathbb{P}^n (image of s under the Kirwan surjection);

• The denominator comes from K-theoretic Euler class of the deformation space, which resembles RHS of $r_{-d} \cdot r_d$.

Background: enumerative geometry	Coulomb branch and quasimaps	Virtual Coulomb branch	Verma module, vertex function, q-d
	000000000000000000000000000000000000000		

Idea

- Now: quantized Coulomb branch acts on K-theory of 3d $\mathcal{N} = 2$ Higgs branch.
- Question: why 3d $\mathcal{N} = 2$?
- The Coulomb branch comes from a 3d N = 4 theory. We may expect it acts on the K-theory of the original 3d N = 4 Higgs branch.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• For moduli spaces: same.

For vertex functions/I-functions: different.

Quasimaps into 3d $\mathcal{N} = 4$ Higgs branch

Example ($G = \mathbb{C}^*$, $N = \mathbb{C}^{n+1}$, 3d $\mathcal{N} = 4$ theory)

- 3d $\mathcal{N} = 4$ Higgs branch: $\mu^{-1}(0) / \mu_{>0} G = T^* \mathbb{P}^n$.
- Quasimaps: same as 3d $\mathcal{N} = 2$ theory (for $d \neq 0$)! Moduli space is still $QM_d(T^*\mathbb{P}^n) = \mathbb{P}H^0(\mathbb{P}^1, \mathcal{O}(d)^{\oplus (n+1)}).$
- However, in enumerative geometry we count virtually. The deformation-obstruction theory is now (for d > 0)

 $H^{\bullet}(\mathbb{P}^{1}, \mathcal{O}(d)^{\oplus (n+1)} \oplus \hbar^{-1}\mathcal{O}(-d)^{\oplus (n+1)}) - H^{\bullet}(\mathbb{P}^{1}, \mathcal{O} \oplus \hbar^{-1}\mathcal{O})$

i.e. deformation $H^0(\mathbb{P}^1, \mathcal{O}(d)^{\oplus (n+1)}) - H^0(\mathbb{P}^1, \mathcal{O} \oplus \hbar^{-1}\mathcal{O}).$ obstruction $H^1(\mathbb{P}^1, \hbar^{-1}\mathcal{O}(-d)^{\oplus (n+1)})$.

Quasimaps into 3d $\mathcal{N} = 4$ Higgs branch

Example (
$$G = \mathbb{C}^*$$
, $N = \mathbb{C}^{n+1}$, 3d $\mathcal{N} = 4$ theory)

The vertex function is now (after some extra modification)

$$\sum_{d\geq 0} (-q^{1/2}\hbar^{-1/2})^{(n+1)d} \prod_{i=1}^{n+1} \frac{(1-\hbar a_i S)\cdots(1-\hbar q^{d-1}a_i S)}{(1-qa_i S)\cdots(1-q^d a_i S)} \cdot Q^d.$$

- Question: how does the numerator (i.e. obstruction part) emerge from the Coulomb branch?
- Idea: use the same moduli space of triples \mathcal{R} ; introduce nontrivial obstruction theory, and apply virtual intersection in convolution product.

Background: enumerative geometry	Coulomb branch and quasimaps	Virtual Coulomb branch	Verma module, vertex function, q-di
		000000	

2 Coulomb branch and quasimaps

Werma module, vertex function, q-difference module

Recall: Gysin pullback and intersection theory

- Given a regular embedding $i : X \hookrightarrow Y$, there is a Gysin pullback $i^! : K(Y) \to K(X)$.
- $i^![\mathcal{O}_Y] = [\mathcal{O}_X].$
- $i^! i_* = \bigwedge^{\bullet} (N_{X/Y}^{\vee}).$
- Given a smooth variety X, the intersection product is defined via the Gysin pullback of the diagonal embedding
 Δ : X → X × X.

Virtual Gysin pullback

- Introduce obstruction theories $E_X^{\bullet} = \Omega_X \oplus \hbar \Omega_X^{\vee}[1]$, and E_Y^{\bullet} similarly.
- The complex E_i[●] = N_{X/Y}[1] ⊕ ħN[∨]_{X/Y}[2] is a relative obstruction theory of the morphism *i*, which form a compatible triple with E[●]_X, E[●]_Y, but not perfect (it lies in [-2, -1]).
- Define the virtual Gysin pullback as $i_{\text{vir}}^! := \frac{i^!}{\bigwedge^{\bullet}(\hbar^{-1}N_{X/Y})}$.
- $i_{\mathrm{vir}}^! \mathcal{O}_Y^{\mathrm{vir}} = \mathcal{O}_X^{\mathrm{vir}}.$
- This is beyond the usual virtual pullback [C. Manolache][F. Qu].

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Virtual convolution product

Recall the diagram in [BFN]:

The map p factorizes as

$$\mathcal{T} \times Gr_{G} \times N_{\mathcal{O}} \xleftarrow{p'} G_{\mathcal{K}} \times N_{\mathcal{O}} \times Gr_{G} \times N_{\mathcal{O}} \xleftarrow{\Delta} G_{\mathcal{K}} \times Gr_{G} \times N_{\mathcal{O}}$$

where p' is smooth and Δ is a regular embedding.

Virtual convolution product

The virtual convolution product is defined by the following steps.

- For the 3rd row of the diagram, where each space is smooth over Gr_G, replace the usual Ω by the perfect obstruction theory Ω ⊕ ħΩ[∨][1] (all relative over Gr_G).
- Replace smooth pullback (p')*, q* by the usual virtual pullback [C. Manolache] [F. Qu].
- Replace the Gysin pullback $\Delta^!$ by the virtual Gysin pullback. Some localization of coefficients is needed.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Background: enumerative geometry Coulomb branch and quasimaps Virtual Coulomb branch Verma module, vertex function, q-di

Virtual Coulomb branch

Theorem (Z. '21)

The virtual convolution product is associative and $K_{G \rtimes \mathbb{C}^*_a}(pt)$ -linear in the first variable. It is commutative when $q \rightarrow 1$.

Definition

The K-theoretic quantized virtual Coulomb branch is defined as $\mathcal{K}_{0}^{G \rtimes \mathbb{C}_{q}^{*} \times \mathbb{C}_{h}^{*} \times \mathcal{T}}(\mathcal{R})$, with the virtual convolution product (with some modification).

When G is abelian, there exists explicit presentation of the generators and relations.

Example ($G = \mathbb{C}^*$, $N = \mathbb{C}^{n+1}$)

• Quantized virtual Coulomb branch: generated by $s^{\pm 1}$, r_1 , r_{-1} , such that $r_{\pm d} = r_{\pm 1}^d$ for d > 0, $r_d s = q^{-d} s r_d$, and

$$r_{-d} \cdot r_d = \prod_{i=1}^{n+1} (-q^{1/2}\hbar^{-1/2})^{-d} \frac{(1-qa_is)\cdots(1-q^da_is)}{(1-\hbar a_is)\cdots(1-q^{d-1}\hbar a_is)}$$

$$d\geq 0$$
, $\mathcal{K}_{G imes \mathbb{C}_q^*}(\mathsf{pt})=\mathbb{C}[s^{\pm 1},q^{\pm 1}].$

r_d is the virtual structure sheaf of R over [z^d]. The relation
 r_{-d} · r_d is essentially computing the virtual tangent bundle of
 K-theoretic Euler class of R over [z^d].

• Need to invert
$$1 - q^{\mathbb{Z}} \hbar a_i s$$
.

Background: enumerative geometry	Coulomb branch and quasimaps	Virtual Coulomb branch	Verma module, vertex function, q-di
			••••••

2 Coulomb branch and quasimaps

4 Verma module, vertex function, *q*-difference module

Background: enumerative geometry	Coulomb branch and quasimaps	Virtual Coulomb branch	Verma module, vertex function, q-di
			0000000000

Verma module

G: abelian (Higgs branch X is a hypertoric variety);

$$\mathsf{p}\in X^{\mathcal{T}}$$
 defines a character of the Cartan \mathcal{A}^0 , $s^\chi\mapsto S^\chi|_\mathsf{p}.$

Eff(p): effective cone of quasimaps into p.

 $\mathcal{A}_{p} = \bigoplus_{d} \mathcal{A}_{p}^{d}$: certain localized version of virtual Coulomb branch.

The Verma module M(p) of \mathcal{A}_p is generated by \mathcal{A}_p^d for $d \in Eff(p)$, acting on a highest weight vector v:

$$s^{\chi} \cdot v = S^{\chi}|_{\mathsf{p}} \cdot v, \qquad \mathcal{A}_{\mathsf{p}}^{-d} \cdot v = 0, \qquad d \in \mathsf{Eff}(\mathsf{p}).$$

Theorem (Z. 21')

 \mathcal{A}_{p} acts on $\bigoplus_{d \in Eff(p)} K_{T \times \mathbb{C}^{*}_{\hbar} \times \mathbb{C}^{*}_{q}} (QM_{d}(X; p)^{\circ})_{loc}$, realizing it as the Verma module M(p).

Background: enumerative geometry	Coulomb branch and quasimaps	Virtual Coulomb branch	Verma module, vertex function, q-di
			0000000000

Whittaker function

A Whittaker vector $w_p(Q) \in M(p)[[Q^{1/2} \operatorname{Eff}(p)]]$ of \mathcal{A}_p is defined as

$$\mathfrak{r}_{-d}w_{\mathsf{p}}(Q) = Q^{d/2}w_{\mathsf{p}}(Q), \qquad d \in \mathsf{Eff}(\mathsf{p}).$$

 \mathfrak{r}_d : generators in \mathcal{A}^d_p , modified by "polarizations".

Proposition (Vertex function = Whittaker function)

$$V^{(\tau(s))}(Q)|_{\mathsf{p}} = \langle w_{\mathsf{p}}(Q), \tau(s)w_{\mathsf{p}}(Q) \rangle.$$

 $\langle \ , \ \rangle :$ invariant bilinear form on M(p), s.t. $\mathfrak{r}_{\pm d}$ are adjoint to each other.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example $(G = \mathbb{C}^*, N = \mathbb{C}^{n+1})$

•
$$X=T^*\mathbb{P}^n$$
, $\mathsf{p}=\mathsf{p}_k$, $s\mapsto S|_{\mathsf{p}_k}=a_k^{-1}$.

Highest weight vector v, $sv = a_k^{-1}v$, $r_{-d}v = 0$, d > 0. Verma module is spanned by r_dv , $d \ge 0$.

• Recall
$$(d \ge 0)$$

 $r_{-d} \cdot r_d = \prod_{i=1}^{n+1} (-q^{1/2}\hbar^{-1/2})^{-d} \frac{(1-qa_is)\cdots(1-q^da_is)}{(1-\hbar a_is)\cdots(1-q^{d-1}\hbar a_is)}.$

• Whittaker vector
$$w_{\mathsf{p}_k}(Q) = \sum_{d \ge 0} \frac{r_d v}{(r_{-d} r_d)|_{\mathsf{p}_k}} Q^{d/2}.$$

• Whittaker fuction

$$\langle w_{\mathsf{p}_k}(Q), \tau(s)w_{\mathsf{p}_k}(Q) \rangle = \sum_{d \ge 0} \frac{\tau(q^d s)|_{\mathsf{p}_k}}{(r_{-d}r_d)|_{\mathsf{p}_k}} Q^d = V^{(\tau(s))}(Q).$$

Quantum *q*-difference module

 $\begin{array}{l} G: \text{ abelian; } \mathcal{A}_{\mathsf{T}}(G, \mathsf{N})_{X}: \text{ certain localized version; } d \in \mathsf{Eff}(X). \\ q^{\chi Q \partial_Q} \widetilde{V}^{(\tau(s))}(Q) = \widetilde{V}^{(s^{\chi}\tau(s))}(Q) \\ Q^d \widetilde{V}^{(\tau(s))}(Q) = \widetilde{V}^{(\mathfrak{r}_d \tau(s)\mathfrak{r}_{-d})}(Q). \end{array}$

Theorem (Z. '21)

- q-difference module generated by $\widetilde{V}^{(1)}(Q)$ is isomorphic to $\mathbb{C}[[Q^{\text{Eff}(X)}]] \otimes_{\mathbb{C}} \mathcal{A}^{0}_{\mathsf{T}}(G, \mathbb{N})_X / \langle 1 \otimes \mathfrak{r}_d \tau(s) \mathfrak{r}_{-d} - Q^d \otimes \tau(s) \rangle$ where $d \in \text{Eff}(X)$, $\tau(s) \in \mathcal{A}^{0}_Y$.
- The Bethe algebra of X can be obtained from the q-difference module by setting q → 1.

Quantum q-difference module/equation

Example ($G = \mathbb{C}^*$, $N = \mathbb{C}^{n+1}$)

Take $\tau(s) = 1$ in the theorem. We can determine the *q*-difference equations that $\widetilde{V}^{(1)}(Q)$ satisfies as follows.

We have $Q\widetilde{V}^{(1)}(Q) = \widetilde{V}^{(r_1r_{-1})}(Q), \ q^{Q\partial_Q}\widetilde{V}^{(1)}(Q) = \widetilde{V}^{(s)}(Q),$ where (omit constant factor for simplicity)

$$r_1r_{-1} = \prod_{i=1}^{n+1} \frac{(1-a_is)}{(1-q^{-1}\hbar a_is)}.$$

We get

$$\prod_{i=1}^{n+1}(1-a_iq^{Q\partial_Q})\widetilde{V}^{(1)}(Q)=Q\prod_{i=1}^{n+1}(1-\hbar a_iq^{Q\partial_Q})\widetilde{V}^{(1)}(Q).$$

Nonabelian case

Abelianization: $X^{ab} = \mu^{-1}(0) / /_{\theta} K$; $K \subset G$: maximal torus.

Vertex function can be written in terms of X^{ab} with extra descendent coming from roots of G.

Theorem (Z. '21)

• q-difference module generated by all $\widetilde{V}^{(\tau(s))}(Q)$ is

$$\frac{\mathbb{C}[[Q^{\mathsf{Eff}(X)}]] \otimes_{\mathbb{C}} \mathcal{A}^{0}_{\mathsf{T}}(\mathsf{K},\mathsf{N})^{W}_{X^{ab}, boc}}{\left\langle 1 \otimes \mathfrak{r}_{wd} \tau(s) \mathfrak{r}_{-wd} \cdot \prod_{\alpha} \frac{(qs^{\alpha})_{-\langle \alpha, wd \rangle}}{(hs^{\alpha})_{-\langle \alpha, wd \rangle}} - Q^{\bar{d}} \otimes \tau(s) \right\rangle}$$

where $d \in \text{Eff}(X^{ab}) \cap \operatorname{cochar}(G)_+$, $w \in W$, $\tau(s) \in \mathcal{A}^0_X$.

 The Bethe algebra of X can be obtained from the q-difference module by setting q → 1. Background: enumerative geometry Coulomb branch and quasimaps Virtual Coulomb branch branch ocococo ococo oco oco oco ococo oc

Application: wall-crossing

Variation of GIT: change stability condition θ , $X' = \mu^{-1}(0) / /_{\theta'} G$.

Restriction to fixed points are changed.

Effective cone is changed: for some reversing $d \in Eff(X)$, we have $-d \in Eff(X')$.

Example ($G = \mathbb{C}^*$, $N = \mathbb{C}^{n+1}$)

•
$$\theta > 0, X = \{(\vec{x}, \vec{y}) \mid \vec{x} \cdot \vec{y} = 0, \ \vec{x} \neq 0\} / \mathbb{C}^* = T^* \mathbb{P}^n$$

Eff $(X) = \{d \mid d \ge 0\}. \ S|_{\mathsf{p}_k} = a_k^{-1}.$

•
$$\theta' < 0, \ X' = \{(\vec{x}, \vec{y}) \mid \vec{x} \cdot \vec{y} = 0, \ \vec{y} \neq 0\} / \mathbb{C}^* = T^* \mathbb{P}^r$$

 $\mathsf{Eff}(X') = \{d \mid d \le 0\}. \ S|_{\mathsf{p}_k} = \hbar^{-1} a_k^{-1}.$

Example (Nakajima quiver (v, w) = (2, n))

- $\theta < 0, X = \{(I, J) \mid IJ = 0, \text{ rk } I = 2\}/GL(2) = T^*Gr(2, n)$ $Eff(X) = \{ d \mid d \ge 0 \}.$ $S_i|_p = a_{p_i}^{-1}.$
- $\theta' > 0$, $X' = \{(I, J) \mid IJ = 0, \text{ rk } J = 2\}/GL(2) = T^*Gr(2, n)$ $Eff(X') = \{ d \mid d \leq 0 \}.$ $S_i|_p = \hbar^{-1}a_{p_i}^{-1}.$
- $X^{ab} = (T^* \mathbb{P}^{n-1})^2$, same with $(X')^{ab}$.

Under wall-crossing, the virtual Coulomb branch is well-behaved: for those reversing curve classes d,

$$\mathfrak{r}_{\pm d}' = \mathfrak{r}_{\mp d}^{-1}.$$

Example $(G = \mathbb{C}^*, N = \mathbb{C}^{n+1})$

$$\begin{aligned} r_{-d} \cdot r_{d} &= \prod_{i=1}^{n+1} (-q^{1/2}\hbar^{-1/2})^{-d} \frac{(1-qa_{i}s)\cdots(1-q^{d}a_{i}s)}{(1-\hbar a_{i}s)\cdots(1-q^{d-1}\hbar a_{i}s)} \\ (d \geq 0) \text{ becomes } r'_{-d}r'_{d} &= r_{d}^{-1} \cdot r_{-d}^{-1} = \\ \prod_{i=1}^{n+1} (-q^{1/2}\hbar^{-1/2})^{d} \frac{(1-\hbar a_{i}s)\cdots(1-q^{d-1}\hbar a_{i}s)}{(1-qa_{i}s)\cdots(1-q^{d}a_{i}s)}, \text{ and then} \\ r'_{d}r'_{-d} &= \prod_{i=1}^{n+1} (-q^{1/2}\hbar^{-1/2})^{d} \frac{(1-q^{-1}\hbar a_{i}s)\cdots(1-q^{-d}\hbar a_{i}s)}{(1-a_{i}s)\cdots(1-q^{1-d}a_{i}s)}. \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Application: wall-crossing

Observation: relations

$$1\otimes \mathfrak{r}_{wd} au(s)\mathfrak{r}_{-wd}\cdot \prod_lpha rac{(qs^lpha)_{-\langle lpha,wd
angle}}{(\hbar s^lpha)_{-\langle lpha,wd
angle}}-Q^{ar{d}}\otimes au(s)$$

in the quantum *q*-difference module are invariant under wall-crossing $\theta \mapsto \theta'$.

Theorem (Z. '21)

The quantum q-difference module (also the Bethe algebra) is invariant under wall-crossing.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Background: enumerative geometry	Coulomb branch and quasimaps	Virtual Coulomb branch	Verma module, vertex function, q-di
			0000000000

Thank you!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ