Virtual Coulomb branch and quantum K-theory

Zijun Zhou

Kavli IPMU
Columbia University, Nov. 30, 2021
(1) Background: enumerative geometry
(2) Coulomb branch and quasimaps
(3) Virtual Coulomb branch

4 Verma module, vertex function, q-difference module
(1) Background: enumerative geometry

(2) Coulomb branch and quasimaps

(3) Virtual Coulomb branch

4 Verma module, vertex function, q-difference module

3d $\mathcal{N}=4$ theory

G: complex reductive group; N : G-representation
In physics, the pair $\left(G, T^{*} N\right)$ defines a $3 \mathrm{~d} \mathcal{N}=4$ supersymmetric gauge theory.

- The theory admits two interesting components of moduli space of vacua: Higgs branch and Coulomb branch.
- The theory is parameterized by two families of parameters: FI parameters and mass parameters.

3d $\mathcal{N}=4$ Higgs branch

The Higgs branch is the holomorphic symplectic quotient:

$$
X:=\mu^{-1}(0) / /{ }_{\theta} G
$$

where $\mu: T^{*} N \rightarrow \mathfrak{g}^{*}$ is the moment map, and $\theta \in \operatorname{char}(G)$ is a stability condition.

When θ is generic, i.e. $\mu^{-1}(0)^{s s}=\mu^{-1}(0)^{s}, X$ is smooth.
Usually, there is a flavor symmetry T acting on N, commuting with G. Equivariant parameters in $K_{T}(\mathrm{pt})$ are the mass parameters.

3d $\mathcal{N}=2$ Higgs branch

The pair (G, N) (instead of $\left.T^{*} N\right)$ gives a $3 \mathrm{~d} \mathcal{N}=2$ theory. Its Higgs branch is the GIT quotient

$$
Y:=N / /{ }_{\theta} G .
$$

Example $\left(G=\mathbb{C}^{*}, N=\mathbb{C}^{n+1}\right)$

G acts on N by weights $(1, \cdots, 1)$, and on $T^{*} N$ by $(1, \cdots, 1,-1, \cdots,-1)$.

- Higgs branch: $T^{*} \mathbb{P}^{n}$
$\mu: T^{*} \mathbb{C}^{n+1} \rightarrow \mathbb{C}$ is $\mu(\vec{x}, \vec{y})=\vec{x} \cdot \vec{y}$. Choice $\theta>0$ implies $\vec{x} \neq 0$.
- flavor symmetry $T=\left(\mathbb{C}^{*}\right)^{n+1}, K_{T}(\mathrm{pt})=\mathbb{C}\left[a_{1}^{ \pm 1}, \cdots, a_{n+1}^{ \pm 1}\right]$.

Another torus \mathbb{C}_{\hbar}^{*} scales the cotangent fiber.

- 3d $\mathcal{N}=2$ Higgs branch: \mathbb{P}^{n}

Enumerative geometry: quasimaps and vertex function

Definition (Ciocan-Fontanine-Kim-Maulik)

- A quasimap from \mathbb{P}^{1} to the Higgs branch $X=\mu^{-1}(0) / /{ }_{\theta} G$ is a map to the stacky quotient

$$
f: \mathbb{P}^{1} \rightarrow \mathfrak{X}=\left[\mu^{-1}(0) / G\right]
$$

which maps generically into the stable locus X.

- Alternatively, it consists of a principal G-bundle \mathcal{P} over \mathbb{P}^{1}, together with a section s of the bundle $\mathcal{P} \times{ }_{G} T^{*} N$, which satisfies the moment map equation $\mu(s)=0$, and takes values generically in the stable locus $\mu^{-1}(0)^{s}$.
- Quasimaps to $3 \mathrm{~d} \mathcal{N}=2$ Higgs branch $Y=N / /{ }_{\theta} G$ are similar.
$\mathrm{QM}_{d}^{\circ}(X)$: open substack where $\infty \in \mathbb{P}^{1}$ is not a base point.
$\mathrm{ev}_{\infty}: \mathrm{QM}_{d}^{\circ}(X) \rightarrow X, f \mapsto f(\infty)$.
$\mathrm{ev}_{0}: \mathrm{QM}_{d}^{\circ}(X) \rightarrow \mathfrak{X}=\left[\mu^{-1}(0) / G\right]$.
Let \mathbb{C}_{q}^{*} scales $\mathbb{P}^{1}, q:=T_{0} \mathbb{P}^{1} \in K_{\mathbb{C}_{q}^{*}}(\mathrm{pt})$.

Definition (Ciocan-Fontanine-Kim, A. Okounkov)

Descendent vertex function
$V^{(\tau(s))}(Q):=\sum_{\beta} Q^{\beta} \mathrm{ev}_{\infty *}\left(\widehat{\mathcal{O}}_{\mathrm{vir}} \cdot \mathrm{ev}_{0}^{*} \tau(s)\right) \in K_{T \times \mathbb{C}_{\hbar}^{*} \times \mathbb{C}_{q}^{*}}(X)_{l o c}[[Q]]$,
(K-theoretic big l-function, for $3 \mathrm{~d} \mathcal{N}=2$ Higgs branch Y)
$\tau(s) \in K_{T \times \mathbb{C}_{\hbar}^{*}}(\mathfrak{X})=K_{G \times T \times \mathbb{C}_{\hbar}^{*}}(\mathrm{pt}) ; Q$: Kähler parameters;
loc: pass to fraction field of $K_{T \times \mathbb{C}_{\hbar}^{*} \times \mathbb{C}_{q}^{*}}(\mathrm{pt})$.

Quantum q-difference module

Descendent vertex functions

$$
\widetilde{V}^{(\tau(s))}(Q):=e^{\frac{\langle\ln S \ln Q\rangle}{\ln q}} \cdot V^{(\tau(s))}(Q), \quad \tau(s) \in K_{T \times \mathbb{C}_{\hbar}^{*}}(\mathfrak{X})
$$

form a quantum q-difference module of rank rk $K(X)$.

Lemma

$$
\left.q^{\chi Q \partial_{Q} \widetilde{V}^{(\tau(s))}}(Q)=\widetilde{V}^{(s}{ }^{\chi} \cdot \tau(s)\right)(Q)
$$

S^{χ} : tautological line bundle associated with s^{χ} (image under Kirwan surjection $\left.K_{T \times \mathbb{C}_{\hbar}^{*}}(\mathfrak{X}) \rightarrow K_{T \times \mathbb{C}_{\hbar}^{*}}(X)\right)$.

Bethe algebra / quantum K-ring

- $q \rightarrow 1$ limit of quantum q-difference module gives the Bethe algebra / quantum K-ring.
(analogous to Givental's quantum K-theory)
- This is a deformation of the usual K-ring $K_{T \times \mathbb{C}_{\hbar}^{*}}(X)$ over $\mathbb{C}\left[\left[Q^{\mathrm{Eff}(X)}\right]\right]$.
- It can be defined in terms of certain 3-point functions counting relative quasimaps.

Physics

- Vertex functions: partition functions on $S^{1} \times{ }_{q} D$; holomorphic blocks; vortex partition function
- Desendents: line operators
- Bethe algebra/quantum K-ring: Wilson loop algebra; chiral algebra
- Operators r_{d} in quantized Coulomb branch: monopole operators

(1) Background: enumerative geometry

(2) Coulomb branch and quasimaps
(3) Virtual Coulomb branch

44 Verma module, vertex function, q-difference module

BFN construction

$$
\mathcal{K}=\mathbb{C}((z)), \mathcal{O}=\mathbb{C}[[z]], D=\operatorname{Spec} \mathcal{O}, D^{*}=\operatorname{Spec} \mathcal{K} .
$$

- Affine Grassmannian

$$
\begin{aligned}
G_{G} & =\left\{(P, \varphi) \mid P: G \text {-bundle over } D, \varphi:\left.P\right|_{D^{*}} \cong D^{*} \times G\right\} / \sim \\
& =G_{\mathcal{K}} / G_{\mathcal{O}}
\end{aligned}
$$

- Gr_{G} admits a $G_{\mathcal{O}}$-action from the left.
- There is a convolution product $m: G r_{G} \widetilde{\times} G r_{G} \rightarrow G r_{G}$, defined by composing the trivializations.

BFN construction

- Moduli of triples

$$
\begin{aligned}
\mathcal{T} & :=\left\{(P, \varphi, s) \mid(P, \varphi) \in G r_{G}, s \in H^{0}\left(D, N_{\mathcal{O}}\right)\right\} \\
\mathcal{R} & :=\left\{(P, \varphi, s) \in \mathcal{T} \mid \varphi\left(\left.s\right|_{D^{*}}\right) \text { extend over } D\right\}
\end{aligned}
$$

where $N_{\mathcal{O}}:=P \times{ }_{G} N$ is the associated bundle.

- \mathcal{T} is a (∞-rank) vector bundle over Gr_{G}, and hence smooth over Grg $_{G}$.
\mathcal{R} is not smooth over $G r_{G}$, unless G abelian.

Convolution diagram

Intuitively, \mathcal{R} "acts" on \mathcal{T} from the right.

A convolution product can be defined via

$$
m_{*} \circ\left(q^{*}\right)^{-1} \circ p^{!}
$$

Theorem (Braverman-Finkelberg-Nakajima)

The equivariant K-theory $K_{0}^{G_{\mathcal{O}} \rtimes \mathbb{C}_{q}^{*}}(\mathcal{R})$ admits a convolution product $*$, which is associative, and $K_{G \times \mathbb{C}_{q}^{*}}(\mathrm{pt})$-linear in the first variable. It is commutative when $q \rightarrow 1$.

Definition (BFN)

- The algebra $\mathcal{A}(G, N)=K_{0}^{G_{\mathcal{O}} \times \mathbb{C}_{q}^{*}}(\mathcal{R})$ is defined as the quantized K-theoretic Coulomb branch.
- Spec $K_{0}^{G_{\mathcal{O}}}(\mathcal{R})$ is defined as the classical K-theoretic Coulomb branch.

The commutative subalgebra $K_{G \times \mathbb{C}_{q}^{*}}(\mathrm{pt})$ is called the Cartan subalgebra.

Abelian case

When $G=\left(\mathbb{C}^{*}\right)^{k}$ is abelian, there is an explicit presentation.

- $\operatorname{Gr}_{G}=\mathbb{Z}^{k}=\left\{\left[z^{d}\right], d \in \operatorname{cochar}(G)\right\}$,

$$
K_{G \times \mathbb{C}_{q}^{*}}(\mathrm{pt})=\mathbb{C}\left[q^{ \pm 1}, s^{\chi}, \chi \in \operatorname{char}(G)\right] .
$$

- Let r_{d} be the structure sheaf of \mathcal{R} over $\left[z^{d}\right]$.
- $\mathcal{A}(G, N)$ is generated by r_{d} and s^{χ} over $\mathbb{C}\left[q^{ \pm 1}\right]$.
- $r_{d} s^{\chi}=q^{-\langle\chi, d\rangle} s^{\chi} r_{d}$.
- There is a grading $\mathcal{A}=\bigoplus_{d \in \operatorname{cochar}(G)} \mathcal{A}^{d}$, where $\mathcal{A}^{0}=K_{G \times \mathbb{C}_{q}^{*}}(\mathrm{pt}), \mathcal{A}^{d}=K_{G \times \mathbb{C}_{q}^{*}}(\mathrm{pt}) \cdot r_{d}$.
- One can add flavor symmetry $T=\left(\mathbb{C}^{*}\right)^{n}$, if $\operatorname{dim} N=n$.

BFN construction of Coulomb branch

Example $\left(G=\mathbb{C}^{*}, N=\mathbb{C}^{n+1}\right)$

- $\operatorname{Gr}_{G}=\mathbb{C}((z)) / \mathbb{C}[[z]]^{*}=\left\{\left[z^{d}\right] \mid d \in \mathbb{Z}\right\}$.
- Convolution product $\left[z^{d_{1}}\right] *\left[z^{d_{2}}\right]=\left[z^{d_{1}+d_{2}}\right]$.
- $\mathcal{T}=\bigsqcup_{d}\left[z^{d}\right] \times N[[z]] / \mathbb{C}[[z]]^{*}$.
- $\mathcal{R}=\bigsqcup_{d}\left[z^{d}\right] \times\left(N[[z]] \cap z^{d} N[[z]] / \mathbb{C}[[z]]^{*}\right.$.
- Convolution product.

Fibers for $d>0, \mathcal{R}_{d}=\left[z^{d}\right] \times z^{d} N[[z]], \mathcal{R}_{-d}=\left[z^{-d}\right] \times N[[z]]$.
Apply convolution and intersection, $\rightsquigarrow\left[z^{0}\right] \times z^{d} N[[z]]$.
Compare with $\mathcal{R}_{0}=\left[z^{0}\right] \times N[[z]]$.

Example $\left(G=\mathbb{C}^{*}, N=\mathbb{C}^{n+1}\right)$

- Quantized Coulomb branch: generated by $s^{ \pm 1}, r_{1}, r_{-1}$, such that $r_{ \pm d}=r_{ \pm 1}^{d}$ for $d>0, r_{d} s=q^{-d} s r_{d}$, and

$$
\begin{aligned}
r_{-d} \cdot r_{d} & =\prod_{i=1}^{n+1}\left(1-q a_{i} s\right) \cdots\left(1-q^{d} a_{i} s\right), \quad d \geq 0 \\
K_{G \times \mathbb{C}_{q}^{*}}(\mathrm{pt}) & =\mathbb{C}\left[s^{ \pm 1}, q^{ \pm 1}\right] .
\end{aligned}
$$

- $r_{-d} \cdot r_{d}$ is essentially computing the K-theoretic Euler class of \mathcal{R} over [$\left.z^{d}\right]$.
- Classical Coulomb branch:

$$
\text { Spec } \mathbb{C}\left[a_{i}^{ \pm 1}, s^{ \pm 1}, r_{1}, r_{-1}\right] /\left\langle r_{-1} \cdot r_{1}-\prod_{i=1}^{n+1}\left(1-a_{i} s\right)\right\rangle .
$$

Deformation of A_{n}-singularity $\mathbb{C}^{2} / \mathbb{Z}_{n+1}$ (singular when some a_{i} 's are equal).

Motivation

A. Braverman's work.

- There is a \mathfrak{g}-action on the intersection cohomology of moduli spaces of (Drinfeld's) quasimaps into G / B.
- The resulting representation is a Verma module of \mathfrak{g}.
- J-function of G / B can be expressed as Whittaker function.
- Whittaker function \rightsquigarrow quantum Toda system.
- There's also a K-theoretic version.

Motivation from physics

Bullimore-Dimofte-Gaiotto-Hilburn-Kim ('16), "Vortices and Vermas":

- monopole operators (quantized (homological) Coulomb branch) acts on the homology of the vortex moduli space (quasimaps), with target space $N / /{ }_{\theta} G$;
(3d $\mathcal{N}=2$ Higgs branch)
- the resulting representation is a Verma module of the quantized Coulomb branch;
- generating function of quasimap counting into $N / /{ }_{\theta} G$ can be expressed as generalized characters of the Verma module;
- quantum differential equation can be obtained.

Quasimaps to $3 \mathrm{~d} \mathcal{N}=2$ Higgs branch

Example ($G=\mathbb{C}^{*}, N=\mathbb{C}^{n+1}, 3 \mathrm{~d} \mathcal{N}=2$)

- 3d $\mathcal{N}=2$ Higgs branch: $N / / \theta>0 G=\mathbb{P}^{n}$.
- A quasimap f from \mathbb{P}^{1} to \mathbb{P}^{n} is (L, s), where L is a line bundle on \mathbb{P}^{1}, and s is a section of $L^{\oplus(n+1)}$, such that $s \neq 0$ generically on \mathbb{P}^{1}.
- Moduli space of quasimaps of degree d is $\mathrm{QM}\left(\mathbb{P}^{n}, d\right)=\mathbb{P} H^{0}\left(\mathbb{P}^{1}, \mathcal{O}(d)^{\oplus(n+1)}\right)$.
- At a point f, its tangent space is the deformation space of quasimaps

$$
H^{0}\left(\mathbb{P}^{1}, \mathcal{O}(d)^{\oplus(n+1)}\right)-H^{0}\left(\mathbb{P}^{1}, \mathcal{O}\right)
$$

No obstruction, since $H^{1}(\mathcal{O}(d))=0$ always as $d \geq 0$.

Action on quasimaps

Example ($G=\mathbb{C}^{*}, N=\mathbb{C}^{n+1}$)

- Apply \mathbb{C}_{q}^{*}-action. $\mathcal{T}^{\mathbb{C}_{q}^{*}}=\bigsqcup_{d}\left[z^{d}\right] \times N$
- If we restrict to stable locus N^{s} and $d \geq 0$, these are the \mathbb{C}_{q}^{*}-equivariant quasimaps.
- r_{d} acts by "changing the quasimap locally at 0 by degree d ".
- $\bigoplus_{d \geq 0} K\left(Q M_{d}\left(\mathbb{P}^{n}\right)\right)$ is a "Verma module" of

$$
\mathcal{A}=\bigoplus_{d \in \mathbb{Z}} \mathcal{A}^{d}=\bigoplus_{d \in \mathbb{Z}} K_{G \times \mathbb{C}_{q}^{*} \times T(\mathrm{pt})} \cdot r_{d} .
$$

Action on quasimaps

Example ($G=\mathbb{C}^{*}, N=\mathbb{C}^{n+1}, 3 \mathrm{~d} \mathcal{N}=2$)

- The $3 \mathrm{~d} \mathcal{N}=2 l$-function is

$$
\sum_{d \geq 0} \frac{1}{\prod_{i=1}^{n+1}\left(1-q a_{i} S\right) \cdots\left(1-q^{d} a_{i} S\right)} \cdot Q^{d}
$$

S: tautological line bundle on \mathbb{P}^{n} (image of s under the Kirwan surjection);

- The denominator comes from K-theoretic Euler class of the deformation space, which resembles RHS of $r_{-d} \cdot r_{d}$.

Idea

- Now: quantized Coulomb branch acts on K-theory of 3d $\mathcal{N}=2$ Higgs branch.
- Question: why 3d $\mathcal{N}=2$?
- The Coulomb branch comes from a 3d $\mathcal{N}=4$ theory. We may expect it acts on the K-theory of the original $3 \mathrm{~d} \mathcal{N}=4$ Higgs branch.
- For moduli spaces: same.

For vertex functions/I-functions: different.

Quasimaps into 3d $\mathcal{N}=4$ Higgs branch

Example $\left(G=\mathbb{C}^{*}, N=\mathbb{C}^{n+1}, 3 \mathrm{~d} \mathcal{N}=4\right.$ theory)

- 3d $\mathcal{N}=4$ Higgs branch: $\mu^{-1}(0) / /{ }_{\theta>0} G=T^{*} \mathbb{P}^{n}$.
- Quasimaps: same as $3 \mathrm{~d} \mathcal{N}=2$ theory (for $d \neq 0$)!

Moduli space is still $\mathrm{QM}_{d}\left(T^{*} \mathbb{P}^{n}\right)=\mathbb{P} H^{0}\left(\mathbb{P}^{1}, \mathcal{O}(d)^{\oplus(n+1)}\right)$.

- However, in enumerative geometry we count virtually. The deformation-obstruction theory is now (for $d>0$)
$H^{\bullet}\left(\mathbb{P}^{1}, \mathcal{O}(d)^{\oplus(n+1)} \oplus \hbar^{-1} \mathcal{O}(-d)^{\oplus(n+1)}\right)-H^{\bullet}\left(\mathbb{P}^{1}, \mathcal{O} \oplus \hbar^{-1} \mathcal{O}\right)$
i.e. deformation $H^{0}\left(\mathbb{P}^{1}, \mathcal{O}(d)^{\oplus(n+1)}\right)-H^{0}\left(\mathbb{P}^{1}, \mathcal{O} \oplus \hbar^{-1} \mathcal{O}\right)$, obstruction $H^{1}\left(\mathbb{P}^{1}, \hbar^{-1} \mathcal{O}(-d)^{\oplus(n+1)}\right)$.

Quasimaps into 3d $\mathcal{N}=4$ Higgs branch

Example ($G=\mathbb{C}^{*}, N=\mathbb{C}^{n+1}$, 3d $\mathcal{N}=4$ theory)

The vertex function is now (after some extra modification)

$$
\sum_{d \geq 0}\left(-q^{1 / 2} \hbar^{-1 / 2}\right)^{(n+1) d} \prod_{i=1}^{n+1} \frac{\left(1-\hbar a_{i} S\right) \cdots\left(1-\hbar q^{d-1} a_{i} S\right)}{\left(1-q a_{i} S\right) \cdots\left(1-q^{d} a_{i} S\right)} \cdot Q^{d}
$$

- Question: how does the numerator (i.e. obstruction part) emerge from the Coulomb branch?
- Idea: use the same moduli space of triples \mathcal{R}; introduce nontrivial obstruction theory, and apply virtual intersection in convolution product.

(1) Background: enumerative geometry

 (2) Coulomb branch and quasimaps

 (2) Coulomb branch and quasimaps}
(3) Virtual Coulomb branch

4 Verma module, vertex function, q-difference module

Recall: Gysin pullback and intersection theory

- Given a regular embedding $i: X \hookrightarrow Y$, there is a Gysin pullback $i^{!}: K(Y) \rightarrow K(X)$.
- $i^{!}\left[\mathcal{O}_{Y}\right]=\left[\mathcal{O}_{X}\right]$.
- $i^{!} i_{*}=\Lambda^{\bullet}\left(N_{X / Y}^{\vee}\right)$.
- Given a smooth variety X, the intersection product is defined via the Gysin pullback of the diagonal embedding $\Delta: X \hookrightarrow X \times X$.

Virtual Gysin pullback

- Introduce obstruction theories $E_{X}^{\bullet}=\Omega_{X} \oplus \hbar \Omega_{X}^{\vee}[1]$, and E_{Y}^{\bullet} similarly.
- The complex $E_{i}^{\bullet}=N_{X / Y}[1] \oplus \hbar N_{X / Y}^{\vee}[2]$ is a relative obstruction theory of the morphism i, which form a compatible triple with $E_{X}^{\bullet}, E_{Y}^{\bullet}$, but not perfect (it lies in $[-2,-1]$).
- Define the virtual Gysin pullback as $i_{\text {vir }}^{!}:=\frac{i^{!}}{\bigwedge^{\bullet}\left(\hbar^{-1} N_{X / Y}\right)}$.
- $i_{\text {vir }}^{!} \mathcal{O}_{Y}^{\text {vir }}=\mathcal{O}_{X}^{\text {vir }}$.
- This is beyond the usual virtual pullback [C. Manolache][F. Qu].

Virtual convolution product

Recall the diagram in [BFN]:

The map p factorizes as

$$
\mathcal{T} \times G r_{G} \times N_{\mathcal{O}} \stackrel{p^{\prime}}{\leftarrow} G_{\mathcal{K}} \times N_{\mathcal{O}} \times G r_{G} \times N_{\mathcal{O}} \stackrel{\Delta}{\leftarrow} G_{\mathcal{K}} \times G r_{G} \times N_{\mathcal{O}}
$$

where p^{\prime} is smooth and Δ is a regular embedding.

Virtual convolution product

The virtual convolution product is defined by the following steps.

- For the 3rd row of the diagram, where each space is smooth over Gr_{G}, replace the usual Ω by the perfect obstruction theory $\Omega \oplus \hbar \Omega^{\vee}[1]$ (all relative over Gr_{G}).
- Replace smooth pullback $\left(p^{\prime}\right)^{*}, q^{*}$ by the usual virtual pullback [C. Manolache] [F. Qu].
- Replace the Gysin pullback Δ ! by the virtual Gysin pullback. Some localization of coefficients is needed.

Virtual Coulomb branch

Theorem (Z. '21)

The virtual convolution product is associative and $K_{G \rtimes \mathbb{C}_{q}^{*}}(\mathrm{pt})$-linear in the first variable. It is commutative when $q \rightarrow 1$.

Definition

The K-theoretic quantized virtual Coulomb branch is defined as $K_{0}^{G \times \mathbb{C}_{q}^{*} \times \mathbb{C}_{\hbar}^{*} \times T}(\mathcal{R})$, with the virtual convolution product (with some modification).

When G is abelian, there exists explicit presentation of the generators and relations.

Example $\left(G=\mathbb{C}^{*}, N=\mathbb{C}^{n+1}\right)$

- Quantized virtual Coulomb branch: generated by $s^{ \pm 1}, r_{1}, r_{-1}$, such that $r_{ \pm d}=r_{ \pm 1}^{d}$ for $d>0, r_{d} s=q^{-d} s r_{d}$, and

$$
\begin{aligned}
& r_{-d} \cdot r_{d}=\prod_{i=1}^{n+1}\left(-q^{1 / 2} \hbar^{-1 / 2}\right)^{-d} \frac{\left(1-q a_{i} s\right) \cdots\left(1-q^{d} a_{i} s\right)}{\left(1-\hbar a_{i} s\right) \cdots\left(1-q^{d-1} \hbar a_{i} s\right)} \\
& d \geq 0, K_{G \times \mathbb{C}_{q}^{*}}(\mathrm{pt})=\mathbb{C}\left[s^{ \pm 1}, q^{ \pm 1}\right]
\end{aligned}
$$

- r_{d} is the virtual structure sheaf of \mathcal{R} over [$\left.z^{d}\right]$. The relation $r_{-d} \cdot r_{d}$ is essentially computing the virtual tangent bundle of K-theoretic Euler class of \mathcal{R} over $\left[z^{d}\right]$.
- Need to invert $1-q^{\mathbb{Z}} \hbar a_{i} s$.

(1) Background: enumerative geometry

(2) Coulomb branch and quasimaps

(3) Virtual Coulomb branch

4 Verma module, vertex function, q-difference module

Verma module

G : abelian (Higgs branch X is a hypertoric variety); $\mathrm{p} \in X^{\top}$ defines a character of the Cartan $\mathcal{A}^{0},\left.s^{\chi} \mapsto S^{\chi}\right|_{\mathrm{p}}$. Eff(p): effective cone of quasimaps into p.
$\mathcal{A}_{\mathrm{p}}=\bigoplus_{d} \mathcal{A}_{\mathrm{p}}^{d}:$ certain localized version of virtual Coulomb branch. The Verma module $M(\mathrm{p})$ of \mathcal{A}_{p} is generated by $\mathcal{A}_{\mathrm{p}}^{d}$ for $d \in \operatorname{Eff}(\mathrm{p})$, acting on a highest weight vector v :

$$
s^{\chi} \cdot v=\left.S^{\chi}\right|_{\mathrm{p}} \cdot v, \quad \mathcal{A}_{\mathrm{p}}^{-d} \cdot v=0, \quad d \in \operatorname{Eff}(\mathrm{p})
$$

Theorem (Z. 21')

\mathcal{A}_{p} acts on $\bigoplus_{d \in \operatorname{Eff}(\mathrm{p})} K_{\mathrm{T} \times \mathbb{C}_{\hbar}^{*} \times \mathbb{C}_{q}^{*}}\left(\mathrm{QM}_{d}(X ; \mathrm{p})^{\circ}\right)_{\text {loc }}$, realizing it as the Verma module $M(\mathrm{p})$.

Whittaker function

A Whittaker vector $w_{\mathrm{p}}(Q) \in M(\mathrm{p})\left[\left[Q^{1 / 2 \mathrm{Eff}(\mathrm{p})}\right]\right]$ of \mathcal{A}_{p} is defined as

$$
\mathfrak{r}_{-d} w_{\mathrm{p}}(Q)=Q^{d / 2} w_{\mathrm{p}}(Q), \quad d \in \operatorname{Eff}(\mathrm{p}) .
$$

\mathfrak{r}_{d} : generators in $\mathcal{A}_{\mathrm{p}}^{d}$, modified by "polarizations".
Proposition (Vertex function $=$ Whittaker function)

$$
\left.V^{(\tau(s))}(Q)\right|_{\mathrm{p}}=\left\langle w_{\mathrm{p}}(Q), \tau(s) w_{\mathrm{p}}(Q)\right\rangle .
$$

\langle,$\rangle : invariant bilinear form on M(\mathrm{p})$, s.t. $\mathfrak{r}_{ \pm d}$ are adjoint to each other.

Example $\left(G=\mathbb{C}^{*}, N=\mathbb{C}^{n+1}\right)$

- $X=T^{*} \mathbb{P}^{n}, \mathrm{p}=\mathrm{p}_{k},\left.s \mapsto S\right|_{\mathrm{p}_{k}}=a_{k}^{-1}$.

Highest weight vector $v, s v=a_{k}^{-1} v, r_{-d} v=0, d>0$.
Verma module is spanned by $r_{d} v, d \geq 0$.

- Recall $(d \geq 0)$
$r_{-d} \cdot r_{d}=\prod_{i=1}^{n+1}\left(-q^{1 / 2} \hbar^{-1 / 2}\right)^{-d} \frac{\left(1-q a_{i} s\right) \cdots\left(1-q^{d} a_{i} s\right)}{\left(1-\hbar a_{i} s\right) \cdots\left(1-q^{d-1} \hbar a_{i} s\right)}$.
- Whittaker vector $w_{p_{k}}(Q)=\sum_{d \geq 0} \frac{r_{d} v}{\left.\left(r_{-d} r_{d}\right)\right|_{p_{k}}} Q^{d / 2}$.
- Whittaker fucntion

$$
\left\langle w_{\mathrm{p}_{k}}(Q), \tau(s) w_{\mathrm{p}_{k}}(Q)\right\rangle=\sum_{d \geq 0} \frac{\left.\tau\left(q^{d} s\right)\right|_{\mathrm{p}_{k}}}{\left.\left(r_{-d} r_{d}\right)\right|_{\mathrm{p}_{k}}} Q^{d}=V^{(\tau(s))}(Q)
$$

Quantum q-difference module

G : abelian; $\mathcal{A}_{\top}(G, N)_{X}$: certain localized version; $d \in \operatorname{Eff}(X)$.

$$
\begin{aligned}
& q^{\chi Q \partial_{Q}} \widetilde{V}^{(\tau(s))}(Q)=\widetilde{V}^{\left(s^{\chi} \tau(s)\right)}(Q) \\
& Q^{d} \widetilde{V}^{(\tau(s))}(Q)=\widetilde{V}^{\left(\mathfrak{r}_{d} \tau(s) \mathfrak{r}_{-d}\right)}(Q) .
\end{aligned}
$$

Theorem (Z. '21)

- q-difference module generated by $\widetilde{V}^{(1)}(Q)$ is isomorphic to

$$
\mathbb{C}\left[\left[Q^{\mathrm{Eff}(X)}\right]\right] \otimes_{\mathbb{C}} \mathcal{A}_{\mathrm{T}}^{0}(G, N)_{X} /\left\langle 1 \otimes \mathfrak{r}_{d} \tau(s) \mathfrak{r}_{-d}-Q^{d} \otimes \tau(s)\right\rangle
$$

where $d \in \operatorname{Eff}(X), \tau(s) \in \mathcal{A}_{X}^{0}$.

- The Bethe algebra of X can be obtained from the q-difference module by setting $q \mapsto 1$.

Quantum q-difference module/equation

Example $\left(G=\mathbb{C}^{*}, N=\mathbb{C}^{n+1}\right)$

Take $\tau(s)=1$ in the theorem. We can determine the q-difference equations that $\widetilde{V}^{(1)}(Q)$ satisfies as follows.
We have $Q \widetilde{V}^{(1)}(Q)=\widetilde{V}^{\left(r_{1} r_{-1}\right)}(Q), q^{Q \partial_{Q}} \widetilde{V}^{(1)}(Q)=\widetilde{V}^{(s)}(Q)$, where (omit constant factor for simplicity)

$$
r_{1} r_{-1}=\prod_{i=1}^{n+1} \frac{\left(1-a_{i} s\right)}{\left(1-q^{-1} \hbar a_{i} s\right)}
$$

We get

$$
\prod_{i=1}^{n+1}\left(1-a_{i} q^{Q \partial_{Q}}\right) \widetilde{V}^{(1)}(Q)=Q \prod_{i=1}^{n+1}\left(1-\hbar a_{i} q^{Q \partial_{Q}}\right) \widetilde{V}^{(1)}(Q)
$$

Nonabelian case

Abelianization: $X^{a b}=\mu^{-1}(0) / /{ }_{\theta} K ; K \subset G$: maximal torus.
Vertex function can be written in terms of $X^{a b}$ with extra descendent coming from roots of G.

Theorem (Z. '21)

- q-difference module generated by all $\widetilde{V}^{(\tau(s))}(Q)$ is

$$
\frac{\mathbb{C}\left[\left[Q^{\mathrm{Eff}(X)}\right]\right] \otimes_{\mathbb{C}} \mathcal{A}_{\top}^{0}(K, N)_{X^{a b}, l o c}^{W}}{\left\langle 1 \otimes \mathfrak{r}_{w d} \tau(s) \mathfrak{r}_{-w d} \cdot \prod_{\alpha} \frac{\left.\left(q^{\alpha}\right)^{\alpha}\right)-\langle\alpha, \alpha, \bar{s})}{\left(h s^{\alpha}\right)_{-\alpha, w d\rangle}}-Q^{\bar{d}} \otimes \tau(s)\right\rangle}
$$

where $d \in \operatorname{Eff}\left(X^{a b}\right) \cap \operatorname{cochar}(G)_{+}, w \in W, \tau(s) \in \mathcal{A}_{X}^{0}$.

- The Bethe algebra of X can be obtained from the q-difference module by setting $q \mapsto 1$.

Application: wall-crossing

Variation of GIT: change stability condition $\theta, X^{\prime}=\mu^{-1}(0) / / \theta^{\prime} G$.
Restriction to fixed points are changed.
Effective cone is changed: for some reversing $d \in \operatorname{Eff}(X)$, we have $-d \in \operatorname{Eff}\left(X^{\prime}\right)$.

Example $\left(G=\mathbb{C}^{*}, N=\mathbb{C}^{n+1}\right)$

- $\theta>0, X=\{(\vec{x}, \vec{y}) \mid \vec{x} \cdot \vec{y}=0, \vec{x} \neq 0\} / \mathbb{C}^{*}=T^{*} \mathbb{P}^{n}$
$\operatorname{Eff}(X)=\{d \mid d \geq 0\} .\left.S\right|_{\mathrm{p}_{k}}=a_{k}^{-1}$.
- $\theta^{\prime}<0, X^{\prime}=\{(\vec{x}, \vec{y}) \mid \vec{x} \cdot \vec{y}=0, \vec{y} \neq 0\} / \mathbb{C}^{*}=T^{*} \mathbb{P}^{n}$
$\operatorname{Eff}\left(X^{\prime}\right)=\{d \mid d \leq 0\} .\left.S\right|_{\mathrm{p}_{k}}=\hbar^{-1} \mathrm{a}_{k}^{-1}$.

Example (Nakajima quiver $(v, w)=(2, n)$)

- $\theta<0, X=\{(I, J) \mid I J=0$, bk $I=2\} / G L(2)=T^{*} \operatorname{Gr}(2, n)$
$\operatorname{Eff}(X)=\{d \mid d \geq 0\} .\left.S_{i}\right|_{\mathrm{p}}=a_{\mathrm{p}_{i}}^{-1}$.
- $\theta^{\prime}>0, X^{\prime}=\{(I, J) \mid I J=0$, re $J=2\} / G L(2)=T^{*} \operatorname{Gr}(2, n)$
$\operatorname{Eff}\left(X^{\prime}\right)=\{d \mid d \leq 0\} .\left.S_{i}\right|_{\mathrm{p}}=\hbar^{-1} a_{\mathrm{p}_{i}}^{-1}$.
- $X^{a b}=\left(T^{*} \mathbb{P}^{n-1}\right)^{2}$, same with $\left(X^{\prime}\right)^{a b}$.

Under wall-crossing, the virtual Coulomb branch is well-behaved: for those reversing curve classes d,

$$
\mathfrak{r}_{ \pm d}^{\prime}=\mathfrak{r}_{\mp d}^{-1} .
$$

Example $\left(G=\mathbb{C}^{*}, N=\mathbb{C}^{n+1}\right)$

$$
r_{-d} \cdot r_{d}=\prod_{i=1}^{n+1}\left(-q^{1 / 2} \hbar^{-1 / 2}\right)^{-d} \frac{\left(1-q a_{i} s\right) \cdots\left(1-q^{d} a_{i} s\right)}{\left(1-\hbar a_{i} s\right) \cdots\left(1-q^{d-1} \hbar a_{i} s\right)}
$$

$(d \geq 0)$ becomes $r_{-d}^{\prime} r_{d}^{\prime}=r_{d}^{-1} \cdot r_{-d}^{-1}=$
$\prod_{i=1}^{n+1}\left(-q^{1 / 2} \hbar^{-1 / 2}\right)^{d} \frac{\left(1-\hbar a_{i} s\right) \cdots\left(1-q^{d-1} \hbar a_{i} s\right)}{\left(1-q a_{i} s\right) \cdots\left(1-q^{d} a_{i} s\right)}$, and then
$r_{d}^{\prime} r_{-d}^{\prime}=\prod_{i=1}^{n+1}\left(-q^{1 / 2} \hbar^{-1 / 2}\right)^{d} \frac{\left(1-q^{-1} \hbar a_{i} s\right) \cdots\left(1-q^{-d} \hbar a_{i} s\right)}{\left(1-a_{i} s\right) \cdots\left(1-q^{1-d} a_{i} s\right)}$.

Application: wall-crossing

Observation: relations

$$
1 \otimes \mathfrak{r}_{w d} \tau(s) \mathfrak{r}_{-w d} \cdot \prod_{\alpha} \frac{\left(q s^{\alpha}\right)_{-\langle\alpha, w d\rangle}}{\left(\hbar s^{\alpha}\right)_{-\langle\alpha, w d\rangle}}-Q^{\bar{d}} \otimes \tau(s)
$$

in the quantum q-difference module are invariant under wall-crossing $\theta \mapsto \theta^{\prime}$.

Theorem (Z. '21)

The quantum q-difference module (also the Bethe algebra) is invariant under wall-crossing.

Thank you!

